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Supposedly, thyrocyte-specific transcripts such as thyroglobulin (Tg) and thyroid-stimulating hormone receptor (TSH-R) were
proposed to be useful for the diagnosis of circulating tumour cells in patients suffering from differentiated thyroid carcinoma (DTC).
However, several research groups reported blood-borne Tg transcripts in healthy individuals. This study determines in particular the
origin of Tg mRNA in nucleated blood cells and analyses whether other tumour-associated sequences are absent in leukocytes, but
widely expressed in DTC. Therefore, expression analyses for Tg, TSH-R, cytokeratin 19 (CK 19), human telomerase reverse
transcriptase (hTERT) and oncofoetal fibronectin (onfFN) were carried out using cDNAs derived from (1) leukocyte fractions, (2) 18
follicular thyroid carcinomas (FTCs) and 48 papillary thyroid carcinomas (PTCs), and (3) leukocytes of two thyrocyte-depleted
individuals treated for C-cell carcinoma of the thyroid. Expression of onfFN was additionally analysed by semiquantitative RT–PCR
and by quantitative fluorescence-based real-time PCR. Tg and TSH-R expression was demonstrated not only in both athyroid
individuals, but in all leukocyte subgroups tested, while hTERT was absent in resting CD4þ cells and only weakly expressed in the
CD8þ group. CK 19 was notable in each leukocyte population except for resting CD14þ , as well as for activated and resting
CD19þ cells. All blood cell fractions proved negative for onfFN mRNA, whereas its presence in thyroid carcinoma was 78/98%
(FTC/PTC). Threshold cycle values were calculated at: porphobilinogen deaminase (PBGD) ¼ 25.9570.73 (FTC)/24.5575.43
(PTC) (P¼ 0.2878); onfFN¼ 25.4873.15 (FTC)/21.4473.44 (PTC) (*P¼ 0.0001). Finally, onfFN transcripts were detected in blood
samples of six out of nine patients with known DTC metastases, demonstrating a reliable assay functionality. We propose that real-
time RT–PCR of onfFN mRNA is superior to other markers in monitoring minimal residual disease in DTC with regard to both assay
sensitivity and specificity.
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Differentiated thyroid carcinoma (DTC) appears with an incidence
of approximately three out of 100 000 and ranks 14th among the
major malignancies (Mazzaferri, 2000). In Europe and North
America, DTC is the most common endocrine malignancy
accounting for 1% of all tumours (Parker et al, 1997). Periodic
radioiodine scanning and serum thyroglobulin (Tg) measurement
are an integral part of the postoperative care. However, in about
13% of a population, interfering anti-Tg antibodies are present
(Pedersen et al, 2003) which may lead to a decreased Tg
immunoassay sensitivity (Ringel et al, 1998; Spencer et al, 1998).
Additionally, appropriate serum Tg measurement requires a TSH
stimulus achieved by rhTSH administration, which obviates the
need for long-term thyroid hormone withdrawal, leading to patient
morbidity due to symptomatic hypothyroidism. Both concepts
may cause tumour growth stimulation. Despite improved therapy
concepts and excellent prognosis, tumour relapse and metastases

do occur in 10% of patients (Mazzaferri, 2000). Thus, over the last
decade, many studies have attempted to improve DTC diagnosis
and patient follow-up using RT–PCR-based approaches in order
to track down circulating tumour cells (Ditkoff et al, 1996; Tallini
et al, 1998; Ringel et al, 1999; Wingo et al, 1999; Biscolla et al, 2000;
Bojunga et al, 2000; Weber et al, 2000; Bugalho et al, 2001; Takano
et al, 2001; Eszlinger et al, 2002; Span et al, 2003; Chinnappa et al,
2004; Elisei et al, 2004; Li et al, 2004).

Thyroglobulin mRNA was thought to originate from circulating
thyrocytes (Ringel et al, 1998), but other studies demonstrated
that physiological blood cells such as leukocytes are capable of
ectopic Tg mRNA transcription (Tallini et al, 1998; Bojunga et al,
2000; Bugalho et al, 2001; Takano et al, 2001; Eszlinger et al,
2002). To overcome these inherent limitations, one must consider
either cumbersome tumour cell enrichment from peripheral
blood or amplification of tumour-specific markers. However,
the exact origin of Tg transcripts in healthy volunteers remains
to be elucidated, and molecular approaches should integrate
sequences lacking the phenomenon of illegitimate transcription
in order to obtain signals specific for the respective malignant
cell.
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In order to monitor patients with DTC for minimal residual
disease by blood assays, we decided to analyse promising
candidate transcripts, which have been discussed to be useful in
this context. For instance, cytokeratin 19 (CK 19) transcripts were
used in several studies as a molecular marker for tumour cell
detection (Datta et al, 1994; Burchill et al, 1995; Eltahir et al, 1998;
Trummer et al, 2000).

Furthermore, human telomerase reverse transcriptase (hTERT)
activity is associated with the majority of malignancies, and its
activity is absent in most benign tissues (Kim et al, 1994; de Kok
et al, 1999; Holt and Shay, 1999; Soria et al, 1999).

During tumorigenesis, fibronectin is alternatively spliced,
leading to isoforms such as the extracellular domains A/B (ED-
A/ED-B) and the III-connecting segment (III-cs) (Takano et al,
1997, 1999, 2000). These uniquely glycosylated isoforms are
predominantly expressed by foetal and neoplastic cells, and have
been designated oncofoetal fibronectin (onfFN) (Guller et al,
2003).

The overall purpose of this study is to analyse the expression
of Tg, thyroid-stimulating hormone receptor (TSH-R), CK 19,
hTERT, and onfFN transcripts in leukocytes, as well as in papillary
thyroid carcinomas (PTCs) and follicular thyroid carcinomas
(FTCs), respectively. Conspicuous mRNA sequence abundance in
DTC combined with unequivocal absence in leukocytes will serve
as a valuable diagnostic tool in cancer cell detection in the
peripheral blood, which is finally tested in a small group of
patients. Herein, we intentionally confine our focus to a selected
number of mRNA transcripts which can be useful in future
investigations of minimal residual disease in DTC with promising
clinical applications.

MATERIALS AND METHODS

Patient samples and blood

The local university ethics committee approved the study and
informed consent was obtained from all patients. Tissue samples
from patients suffering from FTC or PTC and from nonmalignant
thyroid glands were collected intraoperatively (FTC: n¼ 18, PTC:
n¼ 48, nonmalignant thyroid¼ 4), immediately snap-frozen in
liquid nitrogen, and stored at �801C. Of the FTC group, five
tumours represented oxyphilic thyroid carcinomas displaying
follicular architecture in more than 30% of the tumour (Musholt
et al, 2003). The diagnosis of all thyroid tissues was histopatho-
logically confirmed by an experienced pathologist prior to
analysis.

Commercial cDNA from different leukocyte fractions was used
as template for PCR (MTC Panel, Clontech, Heidelberg, Germany).

Two individuals with a history of medullary thyroid carcinoma
(MTC¼C-cell carcinoma) who additionally underwent radio-
iodine treatment following total thyroidectomy served as negative
controls for thyrocyte-depleted human blood. For onfFN expres-
sion analysis, blood samples from nine patients suffering from
either FTC or PTC metastatic disease and from eight healthy
control individuals were obtained. Mononuclear peripheral blood

cells were isolated from 5 ml EDTA treated blood by Ficoll-Paques

(Nycomed, Oslo, Norway) density gradient centrifugation accord-
ing to the manufacturer’s protocol.

RNA extraction

Total RNA was extracted from tissue samples (20 mg) by TRIzol
Reagent (Invitrogen, Karlsruhe, Germany), and genomic DNA
was eliminated by DNase I digest (Roche Diagnostics, Mannheim,
Germany) prior to RNA purification (RNeasy Kit, Qiagen, Hilden,
Germany). Peripheral blood-derived total RNA was isolated using
only the column-based RNeasy Kit (Qiagen). The total RNA
concentration was measured fluorometrically by use of RiboGreen
RNA Quantitation Kit (MoBiTec, Goettingen, Germany).

RT–PCR

Synthesis of cDNA was performed using either 4 mg (tissue
samples) or 1 mg (blood samples) of total RNA and 3 ml oligo-
dT20 primer (25 pmolml�1) (MWG, Ebersberg, Germany). Follow-
ing incubation at 701C for 10 min, a reaction mixture containing
4 ml dNTPs (5 mmol ml�1 of each dNTP) (Roche Diagnostics), 8 ml
5� SuperScript II Buffer, 4 ml DTT (0.1 mmol ml�1) and 1 ml
SuperScript II (200 Uml�1) (Invitrogen) was added and then
incubated for another 50/10 min at 42/701C. The final volume of
this mixture was adjusted to 100 ml using tRNA solution
(0.25 mg ml�1) (Roche Diagnostics). For the PCR reaction, 9.5 ml
of diethyl pyrocarbonate (DEPC)-treated double-distilled H2O
(ddH2O) was added to 2.5 ml of cDNA. Amplification was
performed in 25 ml total volume containing 2.5 ml 10� reaction
buffer (Promega, Mannheim, Germany), 1.5ml MgCl2
(25 mmol ml�1), 0.4 ml Taq polymerase (5 U ml�1) (Qiagen), 1 ml
DTT (25 mmol ml�1), 0.5 ml of each oligonucleotide (50 pmol ml�1)
(MWG), 1 ml dNTPs (5 mmol ml�1) (Roche Diagnostics) and 13 ml
DEPC-ddH2O. After incubation at 941C for 3 min, a touch-down
PCR programme was started at 941C/annealing temperature þ 10/
721C for 30/45/60 s with increments of 11C each for two cycles,
followed by 15 cycles at the specific annealing temperature and an
incubation at 701C for 5 min. Reaction mixtures either lacking
template or containing RNA instead of cDNA served as negative
controls. The primer sequences and annealing temperatures used
in this study are listed in Table 1.

Polyacrylamide (15%) gel electrophoresis (PAGE)

Vertical PAGE was used for PCR product separation, and the
amplicons were visualised by silver staining as described
previously (Lichtinghagen et al, 1994). Resulting signals were
subdivided semiquantitatively in the categories high, intermediate,
low and none according to their band intensities.

Real-time PCR

Fluorescence resonance energy transfer (FRET) technology (Light-
Cycler, Roche Diagnostics) was used for real-time PCR analysis.
Expression of the low-abundance housekeeping gene PBGD served

Table 1 Synopsis of the oligonucleotides used

Sense primer Sequence Antisense primer Sequence T (1C) Bp

PBGD-for 50-attgctatgtccaccacagg-30 PBGD-rev 50-gcagggtttctagggtcttc-30 59 253
Tg-for 50-gccctctcttcagtggttgt-30 Tg-rev 50-ggaactccaaggaactggtc-30 59 405
TSH-R-for 50-tggggacagtgaagacatgg-30 TSH-R-rev 50-tgaagaaaccagccgtgttg-30 58 332
CK19-for 50-cagcattcacgggggctcc-30 CK19-rev 50-agcctgttccgtctcaaacttggt-30 64 421
hTERT-for 50-tgaacttgcggaagacagtg-30 hTERT-rev 50-gaggctgttcacctgcaaat-30 57 290
onfFN-for 50-tcttcatggaccagagatct-30 onfFN-rev 50-tatggtcttggcctatgcct-30 56 215
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as an internal positive control in each assay performed. A reaction
mixture contained 2.5 ml cDNA, 2 ml PBGD/onfFN primer
(10 pmol ml�1) (see Table 1), 2 ml FRET probes (4 pmol ml�1)
PBGD-FITC (tcctcctggcttcaccatcggagc-FITC), PBGD Cy5.5 (Cy5.5-
tctgcaagcgggaaaaccctcatg), onfFN-IIICS-FITC (ggtatgacactg
gaaatggtattcagct-FITC), onfFN-IIICS- Cy5.5 (Cy5.5-tggcacttctggt
cagcaacccag) (MWG), 2 ml Fast Start DNA Master Hybridization
Mix, 3.2 ml MgCl2 (25 mmol l�1) and 1 ml DMSO (Roche Diagnos-
tics). The mixture was adjusted to 20ml using DEPC-ddH2O. For
denaturation, a temperature of 951C was maintained for 12 min.
Amplification was performed at 95/59/721C for 15/12/10 s (PBGD:
50 cycles, onfFN: 38 cycles, slope: 201C s�1) without colour
compensation mode. A standard calibration curve was constructed
for each sequence after cloning of positive controls as described
previously (Lichtinghagen et al, 1995), and the assay sensitivity
was determined using dilutions of the positive controls. Reaction
mixtures either lacking template or containing RNA served as
negative controls. In order to determine the real-time PCR
sensitivity, an absolute quantification of PBGD and onfFN target
sequences was calibrated by use of cloned cDNA serial dilutions.
The standard curve started at 108 (onfFN)/107 (PBGD) initial
cDNA copies. After measurement of the relative fluorescence
intensity (channel F3/F1) for each sample, a proportional baseline
adjustment for sample quantification was carried out by second
derivative maximum calculation, and the amount of each mRNA
transcript was expressed as a threshold cycle (ct) value.

Resulting ct values were used for statistical analysis to determine
the significant differences of onfFN and PBGD mRNA expression
in PTCs and FTCs, respectively, using a two-sample t-test.

RESULTS

Illegitimate transcription of supposedly thyrocyte-specific
transcripts in leukocytes

Activated and resting leukocyte subgroups were analysed for
transcription patterns of thyroid-associated mRNA products by
RT–PCR analysis. Whereas each leukocyte subgroup tested
positive for transcripts of Tg, TSH-R, and PBGD, divergent
expression profiles of hTERT, CK 19, and onfFN were observed
in CD subgroups.

hTERT transcripts were not detected within resting CD4þ cells
and were found at only low levels within the CD8þ population.
Resting CD14þ cells as well as activated and resting CD19þ cells
lacked CK 19 transcripts. All other fractions expressed CK 19. The
weakest expression was demonstrated in the CD8þ group. No
leukocyte subgroup tested transcribed onfFN mRNA (Figure 1).

Nucleated peripheral blood cells of two patients without any
residual thyroid tissue following treatment for medullary thyroid
carcinoma were positive for Tg mRNA (Figure 2).

Tissue samples

Total RNA was extracted from 48 PTCs, 13 FTCs, and five
oxyphilic follicular thyroid carcinomas (oxyFTCs) – often
synonymously designated as Huerthle cell carcinomas – and four
nonmalignant thyroid tissue samples. RT–PCR for PBGD, hTERT,
onfFN, and CK 19 was performed and analysed by PAGE. As
expected, PBGD expression was detectable in all tumours
examined. Half of the FTC samples and 29% of the PTC tumours
were negative for hTERT. High levels of hTERT were observed in
34/33% (FTC/PTC), intermediate levels in 6/31%, and a low level of
expression occurred in 11% of each tumour group. Detectable
levels of onfFN transcripts were present in 78/98% (FTC/PTC). The
FTC samples revealed high expression in 11% of the tumours,
whereas a high expression of onfFN was observed in 60% of PTCs.
Intermediate and low levels (17%) of onfFN were detected in one-

half of the FTC samples. A quarter of all PTC tumours displayed
intermediate and low (13%) onfFN signals. All tumour tissues
transcribed CK 19 at a relatively high level (66% for FTCs; 88% for
PTCs). Intermediate and low levels were measured in 17% of FTCs

PBGD 

TSH-R 

Tg 

hTERT 

CK 19 

onfFN 

CD14+
r CD4+

r CD4+
a CD8+

r CD8+
a CD19+

r CD19+
a

Figure 1 Tg, TSH-R, the low-abundance house-keeping gene PBGD,
hTERT, CK 19, and onfFN mRNA transcripts were PCR-amplified using
cDNA from different leukocyte subgroups. Amplicons were visualised by
PAGE, followed by silver staining. The subscripts (r and a) indicate resting
or activated status, respectively, for each subgroup.

MTC patient 2 MTC patient 1 

200 bp

300 bp 

400 bp 

M 

500 bp 

1 2 3 4 

Figure 2 In the study of minimal residual disease in DTC, two thyrocyte-
depleted individuals – suffering from medullary thyroid carcinoma and
treated with thyroidectomy as well as with radio-iodine therapy – served as
negative controls (MTC patients 1 and 2). RT–PCR amplification for Tg
(lanes 1þ 3, product size: 405 bp) and PBGD (lanes 2þ 4, product size:
253 bp) transcripts was carried out following harvest of nucleated
peripheral blood cells by density gradient centrifugation (M¼ 100 bp
DNA ladder). A notable expression of the supposedly thyrocyte-specific Tg
is shown (PAGE, silver staining).
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and 6% of PTCs examined (Figure 3). There was no specific
expression pattern detectable discerning oxyFTCs from FTCs
without oxyphilic histomorphology. Nonmalignant thyroid tissue
samples were only analysed for onfFN mRNA expression and were
found to be negative.

Quantification

In order to determine the real-time PCR sensitivity, an absolute
quantification of PBGD and onfFN target sequences was calibrated
by use of cloned cDNA serial dilutions. Sensitivity of the assay
was determined to be 103 (onfFN)/104 (PBGD) cDNA molecules
per reaction. The correlation coefficient was R¼ 0.99 for onfFN as
well as for PBGD.

In order to determine the inter-assay precision, two samples of
both onfFN and PBGD standards of different concentrations were
cycled eight times in a row. Amplification of 106 cDNA copies
(onfFN and PBGD) revealed a mean ct value of 19.75 (s.d.70.16,
CV¼ 0.8%) for onfFN, and 22.08 (s.d.70.56, CV¼ 9.2%) for
PBGD, respectively. Amplification of a lower concentration
(onfFN: 103, PBGD: 105) proved a mean ct value of 25.84
(s.d.72.39, CV¼ 9.2%) for onfFN and 24.9 (s.d.70.22,
CV¼ 0.9%) for PBGD.

PBGD and onfFN transcripts of 18 FTC and 48 PTC samples
were then quantified by real-time PCR using the calibration curve
made of diluted cloned controls. Calculation was performed by
second derivative maximum analysis and the quantity of each
transcript was expressed as ct values. A mean PBGD ct was
observed at 25.9570.73 for FTC samples and 24.5575.43 for PTC
tumours, demonstrating no significant difference (P¼ 0.2878).
onfFN ct were calculated at 25.4873.15 and 21.4473.44 for FTC
and PTC samples, respectively. The expression difference between
both tumour groups was significant (*P¼ 0.0001) (Figure 4).

Peripheral blood from patients with confirmed FTC or PTC
metastases tested positive for onfFN mRNA expression in six out
of nine cases using the established assay. The signal was
significantly (*P¼ 0.015) higher in patients (mean: 1.7� 104, s.d.:
8.6� 103 (arbitrary units)) compared to controls (n¼ 8) (mean:

7.1� 103, s.d.: 2.0� 103 (arbitrary units)). A cutoff value
(3� s.d.þmean¼ 1.3� 104 (arbitrary units)) was applied to
identify positive samples (Figure 5). The results were confirmed
three times with a high reproducibility.

Using a thyroid carcinoma cell line dilution model, we found
one tumour cell in 106 mononuclear cells (data not shown).
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Figure 3 Tissue samples of 18 FTCs and 48 PTCs were subjected to
RT–PCR-based semiquantitative expression analysis for PBGD, hTERT,
onfFN, and CK 19, respectively. Following PAGE and silver staining, band
intensities were estimated and illustrated.
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Figure 4 Results of a real-time PCR quantification of PBGD and onfFN
transcripts performed on cDNA from 18 FTC and 48 PTC samples are
given using ct values after second derivative maximum analysis.
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Figure 5 Quantitative real-time PCR data are shown in a box plot graph.
Based on an unspecific background signal obtained in healthy controls
(n¼ 8), we calculated a cutoff value (3� s.d.þmean). onfFN transcripts
were detected in the peripheral blood in 67% of patients (n¼ 9) suffering
from DTC metastatic disease. Expression rates of both groups are
presented in arbitrary units based on copy numbers of a recombinant
onfFN standard, leading to a better inter-assay precision in daily routine
diagnostic.
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DISCUSSION

In the recent past years, a considerable number of papers reporting
tissue-specific or cell-specific gene expression analyses for diagnosis
of minimal residual disease in DTCs following total thyroidectomy
were published. Some laboratories focused on Tg mRNA as a
thyroid-associated gene product in detecting DTC cells in peripheral
blood; however, Tg expression analysis produced ambiguous and
diverse results (Ditkoff et al, 1996; Tallini et al, 1998; Ringel et al,
1999; Wingo et al, 1999; Bojunga et al, 2000; Bugalho et al, 2001;
Takano et al, 2001; Eszlinger et al, 2002; Grammatopoulos et al,
2003). A recently published review concluded that Tg mRNA
measurement is an invalid approach in the postoperative care of
patients with DTC due to illegitimate expression of this marker in
peripheral blood cells, although RT–PCR concepts in general are
worthy of further investigations (Verburg et al, 2004). However, two
other studies demonstrated results opposite to the conclusions
drawn in this review, and reported a high specificity of Tg or TSH-R
mRNA for thyroid cancer, hence promoting their application in
DTC detection (Chinnappa et al, 2004; Li et al, 2004). Therefore, the
experimental usefulness of Tg transcripts and the potential clinical
relevance of this marker are still under debate.

A somewhat different method capable of detecting circulating
thyroid carcinoma cells was first described by Ditkoff et al (1996).
In their study, Tg mRNA was present in the peripheral blood of
all patients with metastatic cancer, but absent in controls and in
almost all individuals in disease remission. Investigators subse-
quently interpreted their observations to be correlated with
extrathyroidal disease. Others reported a previously Tg mRNA
negative control group revealing positive results following
extended PCR amplification. The same was true for 10 human
cell lines tested (Tallini et al, 1998). Healthy individuals who
revealed circulating Tg mRNA transcripts in the peripheral blood
were also described by Ringel et al (1998) using the RT–PCR
technique. They interpreted their findings with a putative pool of
circulating normal thyrocytes which produced Tg mRNA.

Refuting, we studied the peripheral blood of two patients lacking
any residual thyroid tissue whatsoever because they underwent not
only thyroidectomy for medullary thyroid carcinoma (originating
from intrathyroidal C-cells and not from thyrocytes) but also – as
an unusual additional treatment – radio-iodine therapy after
surgery. The leukocyte fraction of these two individuals separated
by density gradient centrifugation notedly revealed Tg mRNA
expression (Figure 2). In addition, we have clearly demonstrated an
ectopic transcription of Tg and TSH-R mRNA in all nucleated cell
fractions of the peripheral blood using a highly sensitive two-step
RT–PCR method (Figure 1). These findings strongly support the
hypothesis that lymphocytes, monocytes and granulocytes express
markers illegitimately, which were reported to be thyrocyte-
specific. This phenomenon leads to a significant thyrocyte-
independent PCR background signal, which interferes with assays
using Tg and TSH-R mRNA. Based on these data, one can conclude
that the hypothesis of circulating thyrocytes in healthy individuals
as the source of peripheral Tg transcripts proposed by Ringel et al
is improbable (Bojunga et al, 2000; Bugalho et al, 2001; Takano
et al, 2001; Eszlinger et al, 2002). Experimental trials or future
clinical applications dealing with Tg or TSH-R mRNA transcripts
should be wary of false-positive results. Chelly et al (1989) reported
that illegitimate transcription corresponds with a low expression
level of spliced transcripts from specific genes in cells that are

nonspecific for these transcripts. Due to identical promoter
elements in specific and nonspecific cells, illegitimate or ectopic
transcription is likely to be a result of a low promoter activity
leading to nontranslated transcripts. The significance and wide-
spread appearance of this phenomenon still need to be elucidated.
A general tolerance of low-level promoter activity might be
energetically advantageous for cellular metabolism rather than
resting at complete promoter quiescence (Chelly et al, 1991).

Concluding, in detection of minimal residual disease in DTC,
either time-consuming, sophisticated carcinoma cell harvesting or
detection of circulating cancer cell via nonillegitimately tran-
scribed sequences is feasible. In our opinion, the latter approach is
preferable because it is more sensitive, specific, cost-effective and
subject to routine laboratory automation.

As long as no thyrocyte-specific master genes are available, the
amplification of minor genes not primarily involved in thyroid
function but abnormally expressed in certain stages of tumori-
genesis – due to gene deregulation and disturbances in molecular
networks – is currently the only approach for detection of minimal
residual disease in thyroid carcinoma.

In order to establish a single marker-based tumour cell detection
assay, a consistently high expression of the chosen target mRNA
sequence by the malignant tissue is required. Thus, we studied
expression rates of the potential target sequences hTERT, CK 19,
and onfFN in PTCs, FTCs, nonmalignant thyroid tissue, as well
as in leukocyte subgroups. Our results demonstrate the complete
absence of onfFN transcripts in each CD population associated with
a high expression rate in DTC samples (Figures 1 and 3), suggesting
that the onfFN transcript is a useful target sequence for thyroid
carcinoma cell detection within the peripheral blood. Additionally,
a significant difference in onfFN mRNA expression between PTCs
and FTCs was shown (Figure 4), whereas the nonmalignant thyroid
tissue samples lacked onfFN transcripts (data not shown). In
further support of our results, Giannini et al (2003) assessed onfFN
and galectin-3 mRNA in thyroid malignancies, and reported onfFN
mRNA transcripts in almost 98% of PTCs.

Importantly, the analysis of peripheral blood from patients with
known DTC metastatic disease revealed an onfFN mRNA
expression in six out of nine patients identified by a well-defined
cutoff value (Figure 5). This finding indicates the technical
feasibility, reliability and potential clinical utility of this approach.

In summary, we have developed and optimised a specific,
sensitive real-time RT–PCR assay using FRET technology in order
to quantify absolute amounts of onfFN templates. A high
expression rate of onfFN transcripts in DTCs was demonstrated,
while onfFN mRNA was not found to be illegitimately transcribed
by peripheral blood cells, but patients with DTC metastatic disease
could be identified. These results may lead to a specific tool for
monitoring micrometastases in the context of minimal residual
disease or for assessing tumour response to therapy. The assay of
onfFN-specific transcripts is a promising approach and worthy of
further assessment in clinical trials.

ACKNOWLEDGEMENTS

We are grateful to B Luens, F Dsiosa and Z Korkmaz for their
constant technical assistance, and we thank DJ McCormick for the
critical review of the manuscript.

REFERENCES

Biscolla RP, Cerutti J, Maciel RM (2000) Detection of recurrent thyroid cancer
by sensitive nested reverse transcription–polymerase chain reaction of
thyroglobulin and sodium/iodide symporter messenger ribonucleic acid
transcripts in peripheral blood. J Clin Endocrinol Metab 85: 3623 – 3627

Bojunga J, Roddiger S, Stanisch M, Kusterer K, Kurek R, Renneberg H,
Adams S, Lindhorst E, Usadel KH, Schumm-Draeger PM (2000) Molecular
detection of thyroglobulin mRNA transcripts in peripheral blood of
patients with thyroid disease by RT– PCR. Br J Cancer 82: 1650 – 1655

Oncofoetal fibronectin in thyroid carcinoma

E Hesse et al

569

British Journal of Cancer (2005) 93(5), 565 – 570& 2005 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



Bugalho MJ, Domingues RS, Pinto AC, Garrao A, Catarino AL, Ferreira T,
Limbert E, Sobrinho L (2001) Detection of thyroglobulin mRNA
transcripts in peripheral blood of individuals with and without thyroid
glands: evidence for thyroglobulin expression by blood cells. Eur J
Endocrinol 145: 409 – 413

Burchill SA, Bradbury MF, Pittman K, Southgate J, Smith B, Selby P (1995)
Detection of epithelial cancer cells in peripheral blood by reverse
transcriptase – polymerase chain reaction. Br J Cancer 71: 278 – 281

Chelly J, Concordet JP, Kaplan JC, Kahn A (1989) Illegitimate transcription:
transcription of any gene in any cell type. Proc Natl Acad Sci USA 86:
2617 – 2621

Chelly J, Hugnot JP, Concordet JP, Kaplan JC, Kahn A (1991) Illegitimate
(or ectopic) transcription proceeds through the usual promoters.
Biochem Biophys Res Commun 178: 553 – 557

Chinnappa P, Taguba L, Arciaga R, Faiman C, Siperstein A, Mehta AE,
Reddy SK, Nasr C, Gupta MK (2004) Detection of thyrotropin-receptor
messenger ribonucleic acid (mRNA) and thyroglobulin mRNA tran-
scripts in peripheral blood of patients with thyroid disease: sensitive
and specific markers for thyroid cancer. J Clin Endocrinol Metab 89:
3705 – 3709

Datta YH, Adams PT, Drobyski WR, Ethier SP, Terry VH, Roth MS (1994)
Sensitive detection of occult breast cancer by the reverse-transcriptase
polymerase chain reaction. J Clin Oncol 12: 475 – 482

de Kok JB, Zendman AJ, van de Locht LT, Ruers TJ, van Muijen GN,
Mensink EJ, Swinkels DW (1999) Real-time hTERT quantification: a
promising telomerase-associated tumor marker. Lab Invest 79: 911 – 912

Ditkoff BA, Marvin MR, Yemul S, Shi YJ, Chabot J, Feind C, Lo Gerfo PL
(1996) Detection of circulating thyroid cells in peripheral blood. Surgery
120: 959 – 964, (discussion 964 – 965)

Elisei R, Vivaldi A, Agate L, Molinaro E, Nencetti C, Grasso L, Pinchera A,
Pacini F (2004) Low specificity of blood thyroglobulin messenger
ribonucleic acid assay prevents its use in the follow-up of differentiated
thyroid cancer patients. J Clin Endocrinol Metab 89: 33 – 39

Eltahir EM, Mallinson DS, Birnie GD, Hagan C, George WD, Purushotham
AD (1998) Putative markers for the detection of breast carcinoma cells in
blood. Br J Cancer 77: 1203 – 1207

Eszlinger M, Neumann S, Otto L, Paschke R (2002) Thyroglobulin mRNA
quantification in the peripheral blood is not a reliable marker for the
follow-up of patients with differentiated thyroid cancer. Eur J Endocrinol
147: 575 – 582

Giannini R, Faviana P, Cavinato T, Elisei R, Pacini F, Berti P, Fontanini G,
Ugolini C, Camacci T, De Ieso K, Miccoli P, Pinchera A, Basolo F (2003)
Galectin-3 and oncofetal-fibronectin expression in thyroid neoplasia as
assessed by reverse transcription – polymerase chain reaction and
immunochemistry in cytologic and pathologic specimens. Thyroid 13:
765 – 770

Grammatopoulos D, Elliott Y, Smith SC, Brown I, Grieve RJ, Hillhouse EW,
Levine MA, Ringel MD (2003) Measurement of thyroglobulin mRNA in
peripheral blood as an adjunctive test for monitoring thyroid cancer. Mol
Pathol 56: 162 – 166

Guller S, Ma Y, Raju U, Kadner S, Thung SF, Colasacco L, Malek A,
Schneider H (2003) Release of oncofetal fibronectin from human
placenta. Placenta 24: 843 – 850

Holt SE, Shay JW (1999) Role of telomerase in cellular proliferation and
cancer. J Cell Physiol 180: 10 – 18

Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello
GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of
human telomerase activity with immortal cells and cancer. Science 266:
2011 – 2015

Li D, Butt A, Clarke S, Swaminathana R (2004) Real-time quantitative PCR
measurement of thyroglobulin mRNA in peripheral blood of thyroid
cancer patients and healthy subjects. Ann N Y Acad Sci 1022: 147 – 151

Lichtinghagen R, Diedrich-Glaubitz R, von Horsten B (1994) Identification
of Bordetella pertussis in nasopharyngeal swabs using the polymerase
chain reaction: evaluation of detection methods. Eur J Clin Chem Clin
Biochem 32: 161 – 167

Lichtinghagen R, Helmbrecht T, Arndt B, Boker KH (1995) Expression
pattern of matrix metalloproteinases in human liver. Eur J Clin Chem
Clin Biochem 33: 65 – 71

Mazzaferri EL (2000) Long-term outcome of patients with differentiated
thyroid carcinoma: effect of therapy. Endocr Pract 6: 469 – 476

Musholt PB, Imkamp F, von Wasielewski R, Schmid KW, Musholt TJ (2003)
RET rearrangements in archival oxyphilic thyroid tumors: new insights
in tumorigenesis and classification of Hurthle cell carcinomas? Surgery
134: 881 – 889, (discussion 889)

Parker SL, Tong T, Bolden S, Wingo PA (1997) Cancer statistics, 1997.
CA Cancer J Clin 47: 5 – 27

Pedersen IB, Knudsen N, Jorgensen T, Perrild H, Ovesen L, Laurberg P
(2003) Thyroid peroxidase and thyroglobulin autoantibodies in a
large survey of populations with mild and moderate iodine deficiency.
Clin Endocrinol (Oxf) 58: 36 – 42

Ringel MD, Balducci-Silano PL, Anderson JS, Spencer CA, Silverman J,
Sparling YH, Francis GL, Burman KD, Wartofsky L, Ladenson PW,
Levine MA, Tuttle RM (1999) Quantitative reverse transcription –
polymerase chain reaction of circulating thyroglobulin messenger
ribonucleic acid for monitoring patients with thyroid carcinoma. J Clin
Endocrinol Metab 84: 4037 – 4042

Ringel MD, Ladenson PW, Levine MA (1998) Molecular diagnosis of
residual and recurrent thyroid cancer by amplification of thyroglobulin
messenger ribonucleic acid in peripheral blood. J Clin Endocrinol Metab
83: 4435 – 4442

Soria JC, Gauthier LR, Raymond E, Granotier C, Morat L, Armand JP,
Boussin FD, Sabatier L (1999) Molecular detection of telomerase-positive
circulating epithelial cells in metastatic breast cancer patients. Clin
Cancer Res 5: 971 – 975

Span PN, Sleegers MJ, van den Broek WJ, Ross HA, Nieuwlaat WA, Hermus
AR, Sweep CG (2003) Quantitative detection of peripheral thyroglobulin
mRNA has limited clinical value in the follow-up of thyroid cancer
patients. Ann Clin Biochem 40: 94 – 99

Spencer CA, Takeuchi M, Kazarosyan M, Wang CC, Guttler RB, Singer PA,
Fatemi S, LoPresti JS, Nicoloff JT (1998) Serum thyroglobulin
autoantibodies: prevalence, influence on serum thyroglobulin measure-
ment, and prognostic significance in patients with differentiated thyroid
carcinoma. J Clin Endocrinol Metab 83: 1121 – 1127

Takano T, Matsuzuka F, Liu G, Miyauchi A, Yokozawa T, Kuma K, Amino
N (1999) Analysis of splice variants of the fibronectin gene in thyroid
carcinomas by reverse transcription – polymerase chain reaction: in-
creased expression of oncofetal fibronectin mRNA in papillary
carcinomas is not caused by the alternation in splicing. J Endocrinol
Invest 22: 18 – 22

Takano T, Matsuzuka F, Sumizaki H, Kuma K, Amino N (1997) Rapid
detection of specific messenger RNAs in thyroid carcinomas by reverse
transcription – PCR with degenerate primers: specific expression of
oncofetal fibronectin messenger RNA in papillary carcinoma. Cancer
Res 57: 3792 – 3797

Takano T, Miyauchi A, Matsuzuka F, Kuma K, Amino N (2000) Expression
of oncofetal fibronectin messenger ribonucleic acid in fibroblasts in the
thyroid: a possible cause of false positive results in molecular-based
diagnosis of thyroid carcinomas. J Clin Endocrinol Metab 85: 765 – 768

Takano T, Miyauchi A, Yoshida H, Hasegawa Y, Kuma K, Amino N (2001)
Quantitative measurement of thyroglobulin mRNA in peripheral blood
of patients after total thyroidectomy. Br J Cancer 85: 102 – 106

Tallini G, Ghossein R, Emanuel J, Gill J, Kinder B, Dimich AB, Costa J,
Robbins R, Burrow GN, Rosai J (1998) Detection of thyroglobulin,
thyroid peroxidase, and RET/PTC1 mRNA transcripts in the peripheral
blood of patients with thyroid disease. J Clin Oncol 16: 1158 – 1166

Trummer A, Kadar J, Arseniev L, Petersen D, Ganser A, Lichtinghagen R
(2000) Competitive cytokeratin 19 RT – PCR for quantification of breast
cancer cells in blood cell suspensions. J Hematother Stem Cell Res 9:
275 – 284

Verburg FA, Lips CJ, Lentjes EG, de Klerk JM (2004) Detection of
circulating Tg-mRNA in the follow-up of papillary and follicular thyroid
cancer: how useful is it? Br J Cancer 91: 200 – 204

Weber T, Lacroix J, Weitz J, Amnan K, Magener A, Holting T, Klar E,
Herfarth C, von Knebel Doeberitz M (2000) Expression of cytokeratin 20
in thyroid carcinomas and peripheral blood detected by reverse
transcription polymerase chain reaction. Br J Cancer 82: 157 – 160

Wingo ST, Ringel MD, Anderson JS, Patel AD, Lukes YD, Djuh YY,
Solomon B, Nicholson D, Balducci-Silano PL, Levine MA, Francis GL,
Tuttle RM (1999) Quantitative reverse transcription – PCR measurement
of thyroglobulin mRNA in peripheral blood of healthy subjects. Clin
Chem 45: 785 – 789

Oncofoetal fibronectin in thyroid carcinoma

E Hesse et al

570

British Journal of Cancer (2005) 93(5), 565 – 570 & 2005 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s


