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Summar y The acridone carboxamide derivative GG918 (N-{4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl}-9,10-
dihydro-5-methoxy-9-oxo-4-acridine carboxamide) is a potent inhibitor of MDR1 P-glycoprotein-mediated multidrug resistance. Direct
measurements of ATP-dependent MDR1 P-glycoprotein-mediated transport in plasma membrane vesicles from human and rat hepatocyte
canalicular membranes indicated 50% inhibition at GG918 concentrations between 8 nM and 80 nM using N-pentyl-[3H]quinidinium,
[14C]doxorubicin and [3H]daunorubicin as substrates. The inhibition constant Ki for GG918 was 35 nM in rat hepatocyte canalicular membrane
vesicles with [3H]daunorubicin as the substrate. Photoaffinity labelling of canalicular and recombinant rat Mdr1b P-glycoprotein by
[3H]azidopine was suppressed by 10 µM and 40 µM GG918. The high selectivity of GG918-induced inhibition was demonstrated in canalicular
membrane vesicles and by analysis of the hepatobiliary elimination in rats using [3H]daunorubicin, [3H]taurocholate and [3H]cysteinyl
leukotrienes as substrates for three distinct ATP-dependent export pumps. Almost complete inhibition of [3H]daunorubicin transport was
observed at GG918 concentrations that did not affect the other hepatocyte canalicular export pumps. The high potency and selectivity of
GG918 for the inhibition of human MDR1 and rat Mdr1b P-glycoprotein may serve to interfere with this type of multidrug resistance and
provides a tool for studies on the function of these ATP-dependent transport proteins.
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The phenomenon of multidrug resistance may be caused by
increased drug export mediated by adenosine 5′-triphosphate
(ATP)-dependent export pumps of the plasma membrane
(Gottesman and Pastan, 1993; Loe et al, 1996). The overexpres-
sion of the plasma membrane protein MDR1 P-glycoprotein
(MDR1 P-gp) is one important mechanism leading to drug resis-
tance (Juliano and Ling, 1976; Gottesman and Pastan, 1993). The
P-gps are products of the MDR (multidrug resistance) gene family,
but only the MDR1 protein in man (Roninson et al, 1986) and the
Mdr1b and Mdr1a proteins in rodents (Gros et al, 1988; Devault
and Gros, 1990) mediate ATP-dependent transport of cytotoxic
P-gp substrates (Gottesman and Pastan, 1993). These substrates
include several anticancer drugs that are hydrophobic and mostly
cationic compounds (Pearce et al, 1989). Inhibition of the ATP-
dependent export of the amphiphilic cationic anticancer drugs may
serve to circumvent this type of multidrug resistance. Various
drugs, including verapamil and other calcium channel blockers
(Tsuruo et al, 1981), cyclosporins (Twentyman, 1992), as well as
steroids (Yang et al, 1990) were found to enhance the intracellular
accumulation and cytotoxic action of MDR1 P-gp-transported
drugs (Ford and Hait, 1990). Most of these inhibitors bind to
MDR1 P-gp and are themselves substrates of this transporter.
Some of the MDR1 P-gp inhibitors used in clinical trials showed
side-effects that restrict their therapeutic usefulness, e.g. because
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of cardiac toxicity (Tsuruo et al, 1981; Ford and Hait, 1990;
Pennock et al, 1991) or immunosuppression (Twentyman, 1992).
Multidrug resistance reversal agents may also affect ATP-depen-
dent transporters in the liver. Cyclosporin A and its non-immuno-
suppressive derivative PSC 833 potently inhibit the bile salt export
pump in the canalicular plasma membrane of hepatocytes (B�hme
et al, 1993, 1994a, 1994b; Kadmon et al, 1993). The discovery of
new and efficient MDR1 P-gp inhibitors with fewer side-effects is
an important objective for future cancer chemotherapy. Effective
chemosensitizers should be drugs that interact with MDR1 P-gp
with high affinity and selectivity, thereby precluding its ability to
extrude the cytotoxic drugs. A multidrug resistance reversal
potency at nanomolar concentrations has been described for the
acridone carboxamide derivative GG918 (Hyafil et al, 1993) and,
more recently, for the cyclopropyldibenzosuberane modulator
LY335979 (Dantzig et al, 1996). Such compounds may allow for
an increased selectivity for inhibition of MDR1 P-gp-mediated
membrane transport.

For studies on the selectivity of MDR1 P-gp inhibitors, the
measurement of ATP-dependent transport by hepatocyte canalic-
ular plasma membrane vesicles provides most useful approach
(B�hme et al, 1993, 1994a). P-gps have been localized to the
canalicular membrane of hepatocytes (Thiebaut et al, 1987;
Kamimoto et al, 1989). Additional ATP-dependent export pumps
that have been identified in this hepatocyte membrane domain
include the ATP-driven bile salt export pump (BSEP), which
secretes bile salts such as taurocholate (TC) into bile (Gerloff et al,
1998), and the ATP-dependent conjugate export pump encoded 
by the MRP2 (cMOAT) gene which transports glutathione,
glucuronate and sulfate conjugates of various exogenous and
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Figure 1 Structure of the acridone carboxamide derivative GG918
endogenous lipophilic substances (reviewed by Keppler and
K�nig, 1997).

In the present study we determined the selectivity of the MDR1
P-gp inhibitor GG918 with respect to these different ATP-depen-
dent transport systems in the hepatocyte canalicular membrane.
The potency of GG918 was investigated in plasma membrane
vesicles from human and rat. The inhibition of photoaffinity
labelling by [3H]azidopine in the presence of GG918 was demon-
strated with recombinant rat Mdr1b P-gp. Moreover, GG918 was a
very selective inhibitor for the in vivo hepatobiliary excretion of
the MDR1/Mdr1b P-gp substrate [3H]daunorubicin, whereas the
excretion of [3H]taurocholate and N-[3H]acetyl-leukotriene E4,
which are substrates for the BSEP and MRP2, respectively, was
not significantly affected.

MATERIALS AND METHODS

Materials

[3H]Daunorubicin (57 GBq mmolÐ1), [3H]taurocholate (74 GBq
mmolÐ1), and [14,15,19,20-3H4]leukotriene (LT)C4 (6.4 TBq mmolÐ1)
were purchased from Du Pont NEN, Bad Homburg, Germany. N-
[3H]Acetyl-LTE4 (1.85 GBq mmolÐ1) was synthesized in our labora-
tory using a chemical N-acetylation procedure (Guhlmann et al,
1995). N-(n-Pentyl)-[3H]quinidinium was synthesized in our labora-
tory as described (M�ller et al, 1994a). [14C]Doxorubicin (211 GBq
mmolÐ1), [3H]azidopine (1.96 TBq mmolÐ1), and unlabelled LTC4

were from Amersham Buchler, Braunschweig, Germany. GG918,
formerly also designated GF120918, is an acridone carboxamide
derivative (Hyafil et al, 1993) (Figure 1), was kindly provided by Dr F
Hyafil from the GLAXO laboratories, Les Ulis, France. Ketamine
was from Parke-Davis, Berlin, Germany. Xylazine was purchased
from Bayer, Leverkusen, Germany. ATP, 5′-AMP, creatine phosphate
potassium salt and unlabelled taurocholate were purchased from
Sigma, Deisenhofen, Germany. Creatine kinase and reduced
glutathione were obtained from Boehringer Mannheim, Mannheim,
Germany. Percoll and NICK spin columns filled with Sephadex G-50
fine were from Pharmacia-LKB, freiburg, Germany. Glass microfibre
filters (type GF/F, pore size ³ 0.7 µm) were purchased from Whatman
International Ltd., Maidstone, UK. Nitrocellulose filters (0.2 µm pore
size) were from Schleicher & Schuell, Dassel, Germany. Scintillation
fluids (Filter Count and Ultima Gold) were from Canberra Packard,
Warrenville, IL, USA. Membranes of the recombinant mdr1b-BV-
infected Sf9-cells were produced in our laboratory and kindly
provided by Dr K Mittenb�hler (M�ller et al, 1994b).

Animals

Male Wistar rats (200Ð250 g) were from the Charles River Wiga,
Sulzfeld, Germany. Animals were maintained on an Altromin Nr.
1320 diet with free access to food and water.
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Human liver

Liver samples were obtained perioperatively from excised hepatic
tissue from a patient suffering from primary hepatocellular carci-
noma. Pathological tissue was removed, as estimated by macro-
scopic inspection, and only normal tumour-free liver tissue was
further processed.

Preparation and characterization of canalicular
membranes

Membrane fractions enriched in the hepatocyte canalicular
membrane domain were prepared and characterized from rat and
human liver as described (Meier and Boyer, 1990; Kadmon et al,
1993; B�hme et al, 1994b).

Measurement of ATP-dependent daunorubicin and
doxorubicin transport into canalicular membrane
vesicles

The [14C]doxorubicin and [3H]daunorubicin transport was
measured by centrifugation of the vesicles through a gel matrix
(B�chler et al, 1994). NICK spin columns (0.2 g Sephadex G-
50/3.3 ml), rinsed with 250 mM sucrose, 10 mM Tris-HCl, pH 7.4,
were centrifuged at 400 g for 4 min at 4°C. Membrane vesicles (30
µg protein) were incubated in the presence of 4 mM ATP, 10 mM

magnesium chloride, 10 mM creatine phosphate, 100 µg mlÐ1 crea-
tine kinase, and the labelled substrate in 250 mM sucrose and 
10 mM Tris-HCl (pH 7.4) at 37°C. The final volume was 110 µl.
The standard substrate concentration was 20 µM. At the indicated
time points, 20 µl aliquots were taken and diluted in 80 µl ice-cold
Tris buffer (250 mM sucrose, 10 mM Tris-HCl, pH 7.4) and imme-
diately loaded on Sephadex G-50 columns. The columns were
eluted with 100 µl ice-cold Tris buffer and centrifuged at 400 g for
4 min at 4°C. The membrane vesicle-containing effluent was
collected in scintillation vials and counted for radioactivity. In
control experiments ATP was replaced by 5′-AMP. Transport rates
were calculated by subtracting the values in the presence of 5′-
AMP from those in the presence of ATP.

Measurement of ATP-dependent N-pentyl-quinidinium
transport into canalicular membrane vesicles

The transport of N-(n-pentyl)-[3H]quinidinium was measured by
the rapid filtration technique using glass microfibre filters (pore
size ³ 0.7 µm) (M�ller et al, 1994a). The filters were presoaked in
Tris-buffered saline (pH 7.4). This filtration was performed at a
pressure of 850 mbar. Membrane vesicles were incubated in the
standard incubation mixture as described above for [3H]dauno-
rubicin. The concentration of N-pentyl-[3H]quinidinium was 1 µM.
Samples of 20 µl were taken at the indicated time-points and
diluted in 950 µl of ice-cold Tris-buffered saline (pH 7.4). This
solution was applied to the microfibre filters and immediately
rinsed with 5 ml of ice-cold Tris-buffered saline (pH 7.4)
containing 0.05% (v/v) Tween 20 and 5 ml of Tris-buffered saline
(pH 7.4). Vesicle-associated radioactivity retained on the filters
was assessed by liquid scintillation counting.

Measurement of ATP-dependent taurocholate transport
into canalicular membrane vesicles

Transport of [3H]taurocholate was measured by a rapid filtration
technique using nitrocellulose filters (0.2 µm pore size) presoaked
© Cancer Research Campaign 1999
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Figure 2 Inhibition by GG918 of the ATP-dependent N-pentyl-
[3H]quinidinium transport by human canalicular membrane vesicles. The
vesicles were incubated as described under Materials and methods at
different inhibitor concentrations for 3 min at 37°C. In the blank assays ATP
was replaced by 5′-AMP. The concentration of N-pentyl-[3H]quinidinium was
1 µM; the structure of this substrate (Müller et al, 1994a) is shown in the
upper right corner. The data for each inhibitor concentration represent
percentage inhibition of transport as compared to controls in the absence of
inhibitor. Each point represents the mean of four measurements

Figure 3 Inhibition of the Mdr1 P-gp-mediated ATP-dependent transport by
GG918 in rat hepatocyte canalicular membrane vesicles. The vesicles were
incubated with 20 µM [14C]doxorubicin and 1 µM N-pentyl-[3H]quinidinium in
the presence of the inhibitor, at the concentrations indicated, for 3 min at
37°C. The data for each inhibitor concentration represent percentage
inhibition of transport as compared to controls in the absence of inhibitor. The
values represent the mean of four determinations
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in 250 mM sucrose, 10 mM Tris-HCl (pH 7.4) (B�hme et al, 1993).
Membrane vesicles (30 µg of protein) were incubated as described
above for the MDR1 P-gp substrates. Aliquots (20 µl) were taken
at the indicated time-points, diluted in 1 ml of ice-cold incubation
buffer and applied to the nitrocellulose filters. The filters were
rinsed with 5 ml washing buffer containing 1 mM unlabelled tauro-
cholate, 250 mM sucrose, 10 mM Tris-HCl (pH 7.4) and 5 ml
buffer consisting of 250 mM sucrose, 10 mM Tris-HCl (pH 7.4). 
In control experiments ATP was replaced by 5′-AMP. Vesicle-
associated radioactivity retained on the filters was assessed by
liquid scintillation counting.

Measurements of ATP-dependent LTC 4 transport into
canalicular membrane vesicles

[3H]LTC4 transport was determined as described recently (Keppler
et al, 1998). The rinsing buffer consisted of 250 mM sucrose and
10 mM Tris-HCl (pH 7.4). Reduced glutathione was added to the
incubation at a final concentration of 5 mM to prevent binding of
[3H]LTC4 to membrane-bound glutathione S-transferase and to
inhibit degradation of [3H]LTC4 to [3H]LTD4 by the canalicular
membrane γ-glutamyltransferase.

Photoaffinity labelling with [ 3H]azidopine

Membrane vesicle suspensions (75Ð100 µg protein) were diluted
in 250 mM sucrose, 10 mM Tris-HCl (pH 7.4) and incubated with
[3H]azidopine (74 kBq, 1.2 µM) at 25°C for 25 min in the presence
of 0.5% fetal calf serum. The membrane solution was irradiated at
254 nm for 2 min on ice. For the competition studies, vesicle
suspensions were pre-incubated with 10 µM or 40 µM of GG918
for 25 min at 25°C. The labelled membranes were pelleted by
© Cancer Research Campaign 1999
centrifugation for 30 min at 100 000 g at 4°C. The pellet was
resuspended in Laemmli buffer (Laemmli, 1970) and subjected to
sodium dodecyl sulphate polyacrylamide gel electrophoresis
(SDS-PAGE) (7.5% acrylamide gel). After electrophoresis the gels
were cut into slices of 2 mm thickness and dissolved in 0.5 ml of
the tissue solubilizer Biolute-S (Zinsser Analytic, Frankfurt,
Germany). Radioactivity was measured in a liquid scintillation
counter.

In vivo elimination of daunorubicin, taurocholate and 
N-acetyl-leukotriene E 4 into bile

Rats were anaesthetized by intraperitoneal injection of ketamine
(80 mg kgÐ1) and xylazine (12 mg kgÐ1). The cannulation of the
common bile duct and of the superior vena cava through the
jugular vein was performed while rats were under general anaes-
thesia. The bile flow was allowed to reach a steady-state for 
30 min and the experiment was started by intravenous injection of
2.2 mg kgÐ1 body weight (4.0 µmol kgÐ1) of GG918. The stock
solution of GG918 was 4 mg/m (dissolved in PEG 400/H2O 1:1;
v/v) corresponding to a 7.1 mM solution. The inhibitor was diluted
twofold in pyrogen-free distilled water and slowly injected over a
1-min period. [3H]Daunorubicin (185 kBq kgÐ1; 3.2 nmol kgÐ1

body weight), [3H]taurocholate (148 kBq kgÐ1; 2 nmol kgÐ1 body
weight), or N-[3H]acetyl-LTE4 (185 kBq kgÐ1; 100 nmol kgÐ1 body
weight) were injected as a bolus 10 min later. Bile was collected in
5-min fractions for 90 min, and the radioactivity in these samples
was determined by diluting aliquots of bile in 100% methanol.
Supernatants of the methanol extract were dissolved in 10 ml of
scintillation fluid and counted for radioactivity. In the control
group, GG918 was replaced by a corresponding volume of the
vehicle (PEG 400/H2O 1:1; v/v; diluted as described above).
British Journal of Cancer (1999) 79(7/8), 1053–1060
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Figure 4 Inhibition of ATP-dependent [3H]daunorubicin transport into rat
hepatocyte canalicular membrane vesicles by GG918. Bile canalicular
membranes (30 µg) were preincubated in the presence of 30 nM GG918 (●)
or the corresponding volume of the solvent (■) for 1 min at 37°C with 0.5%
fetal calf serum. Transport was started by the addition of 4 mM ATP (or 5′-
AMP in the control experiment), 10 mM creatine phosphate, 10 mM

magnesium chloride and varying [3H]daunorubicin concentrations. Double
reciprocal plot according to Lineweaver and Burk. Mean values ± SD from
three measurements

Figure 5 [3H]Azidopine binding of the 140 kDa Mdr1b P-gp in membranes
of recombinant BV-infected Sf9 insect cells identified by photoaffinity labelling
and its suppression by the inhibitor GG918. The distribution of the
[3H]azidopine-derived radioactivity was studied after SDS-PAGE of the
photoaffinity labelled membranes. For the labelling the membranes (75 µg of
protein) of Mdr1b-expressing cells (control Mdr1b; ■■) were incubated with 
74 kBq [3H]azidopine as described in Materials and Methods. In addition, the
[3H]azidopine labelling of Mdr1b containing membranes was performed in the
presence of 40 µM GG918 (+ 40 µM GG; ▲). The top lane shows the
immunodetection of the recombinant Mdr1b after SDS-PAGE using the C219
antibody
RESULTS

Kinetic characterization of the inhibition by GG918 of
transport of MDR1 and Mdr1b P-gp substrates in
human and rat hepatocyte canalicular membrane
vesicles

Initial experiments compared the inhibitory effect of GG918 on
ATP-dependent transport in canalicular membranes isolated from
human and rat liver . N-(n-Pentyl)-[3H]quinidinium, a quinidinium
compound with a permanently charged nitrogen atom, which
served as a high affinity substrate for MDR1 P-gp-mediated
transport (M�ller et al, 1994a, 1994b). The IC50 value for GG918
in human hepatocyte canalicular membranes was 70 nM at a N-(n-
pentyl)-[3H]quinidinium concentration of 1 µM (Figure 2). The
ATP-dependent N-(n-pentyl)-[3H]quinidinium transport was
reduced to 36% by 100 nM GG918. In rat hepatocyte canalicular
membranes the half-maximal inhibition of N-pentyl-[3H]quini-
dinium transport by GG918 was observed at a concentration of 
8 nM (Figure 3) indicating a more potent inhibition of the rat liver
transporter as compared to human MDR1 P-gp (Figure 2).
Concentrations of 100 nM and 10 nM GG918 suppressed ATP-
dependent transport of N-pentyl-[3H]quinidinium by 98% and
42%, respectively (Figure 2). [14C]Doxorubicin transport,
measured at a substrate concentration of 20 µM, was half-
maximally inhibited by 80n M GG918 (Figure 3).

Transport of [3H]daunorubicin into inside-out oriented vesicles
from rat hepatocyte canalicular membranes was inhibited by
GG918 in a competitive manner (Figure 4). The kinetic constants
for the ATP-dependent daunorubicin transport were determined by
LineweaverÐBurk plots and yielded an apparent Km of 33 µM and a
British Journal of Cancer (1999) 79(7/8), 1053–1060
Vmax of 721 pmol mgÐ1 minÐ1. The Ki value for GG918 was 35 nM

for [3H]daunorubicin transport (Figure 4).

Photoaffinity labelling with [ 3H]azidopine

Membranes of recombinant Mdr1b-expressing Sf9 insect cells were
used to show the specific affinity of azidopine to P-gp in
photoaffinity labelling experiments. Membrane vesicles of recombi-
nant mdr1b-BV-infected Sf9 cells were exposed to [ 3H]azidopine
and revealed one major band at 140 kDa after irradiation and
consecutive separation by SDS-PAGE (Figure 5). As shown by
C219 anti-P-gp antibody detection of this membrane preparation the
labelled protein co-migrated with recombinant Mdr1b. Photoaf finity
labelling in the presence of 40 µM GG918 caused an 80% reduction
of [3H]azidopine incorporation into the Mdr1b protein. In these
insect membranes we observed a very low unspecific binding of
[3H]azidopine. In contrast, in rat canalicular membranes several
[3H]azidopine-labelled proteins were detected (Figure 6). Only the
incorporation of radioactivity in the 145 kDa protein, which corre-
sponds to a C219 antibody-detectable P-gp, was decreased by pre-
incubation with GG918 in a dose-dependent manner (Figure 6). The
presence of 10 µM and 40 µM GG918 reduced the [3H]azidopine
labelling of rat P-gp by 38% and 78%, respectively.
© Cancer Research Campaign 1999
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Figure 6 [3H]Azidopine labelling of Mdr1 P-gp in rat canalicular membranes
and its suppression by GG918. Hepatocyte canalicular membranes (100 µg
of protein) were incubated with 74 kBq [3H]azidopine in the absence (control
BCM, ■■) or presence of 10 µM (10 µM GG, ●) or 40 µM (40 µM GG, ▲)
GG918 at 25°C for 25 min. The samples were photoaffinity labelled as
described in Materials and methods and separated by SDS-PAGE using a
7.5% acrylamide gel. The peak at 145 kDa corresponds to the C219
antibody-detected Mdr P-gp. Arrows on the right of the 145 kDa peak indicate
the decreased labelling of the 145 kDa protein by [3H]azidopine in the
presence of 10 µM GG918 and 40 µM GG918

Figure 7 Inhibition by GG918 of the ATP-dependent [3H]daunorubicin
(DAU), [3H]LTC4 and [3H]taurocholate (TC) transport in rat hepatocyte
canalicular membrane vesicles. The concentrations of TC (■), LTC4 (▲) and
DAU (●) were 5 µM, 50 nM and 20 µM, respectively. Uptake into plasma
membrane vesicles (30 µg protein) was measured in the presence of 4 mM

ATP. Vesicles were pre-incubated at 37°C for 1 min (30 s in case of TC as the
transport substrate) in the presence of varying GG918 concentrations and
0.5% fetal calf serum before the addition of the labelled substrate. Each point
represents the mean from three measurements
In vitro inhibition of three different ATP-dependent
export pumps in hepatocyte canalicular membranes by
GG918

In inside-out oriented vesicles of rat canalicular membranes
[3H]LTC4 transport was not significantly inhibited at GG918
concentrations up to 20 µM. The ATP-dependent BSEP, deter-
mined with [3H]taurocholate as substrate, was inhibited by 50% at
a GG918 concentration of about 3 µM. The high selectivity of the
inhibitor for Mdr1b P-gp was indicated by a half-maximal inhibi-
tion at about 20 nM GG918 at a [3H]daunorubicin concentration of
20 µM (Figure 7).

Effect of GG918 on the hepatobiliary excretion of
substrates for different ATP-dependent export pumps
in vivo

The excretion of intravenously administered [3H]daunorubicin,
[3H]taurocholate and N-[3H]acetyl-LTE4 was determined by
analyses in bile. The bile flow was not affected by GG918 at a
dose of 4 µmol kgÐ1 body weight. The biliary recovery of
© Cancer Research Campaign 1999
[3H]daunorubicin (administered at a dose of 3.2 nmol kgÐ1 body
weight) after 90 min was 9.7 ± 1.6% (n = 4; mean ± SD) in control
experiments without GG918 (Figure 8). GG918 pretreatment 10
min before tracer injection reduced this biliary excretion of
[3H]daunorubicin to 29% of the control. The cumulative biliary
elimination of this tracer after GG918 pretreatment was 2.8 ± 0.3%
of the injected dose. In a single experiment (data not shown) the
dose of the inhibitor was raised from 4 to 14 µmol kgÐ1 body
weight. This resulted within the initial 30 min in a complete
suppression of the [3H]daunorubicin elimination into bile. After 90
min the cumulative secretion of [3H]daunorubicin was reduced to
13% of control corresponding to a total recovery of 1.3% of the
administered radioactivity after the high dose of GG918. In addi-
tion, [14C]doxorubicin (175 pmol kgÐ1 body weight; 37 kBq kgÐ1)
was injected to rats with or without GG918 (14 µmol kgÐ1 body
weight; data not shown). The biliary recovery of [14C]doxorubicin
was 11.4% after 60 min in untreated animals. GG918 reduced the
recovery to 3.0 ± 0.5% (n = 4; mean ± SD) of the injected dose
corresponding to a suppression of the [14C]doxorubicin elimination
to 27%.

N-Acetyl-LTE4 is the major metabolite of endogenous cysteinyl
leukotrienes in rat bile (Denzlinger et al, 1985) and a substrate for
the ATP-dependent conjugate export pump MRP2 in the hepato-
cyte canalicular membrane (Ishikawa et al, 1990). N-[3H]acetyl-
LTE4 was therefore chosen in our experiments as the substrate for
this export pump. No significant inhibition of N-[3H]acetyl-
LTE4 secretion was observed after administration of GG918 
(4 µmol kgÐ1). The biliary recovery of intravenously administered
N-[3H]acetyl-LTE4 (100 nmol kgÐ1 body weight) was 93 ± 4% (n =
4; mean ± SD) of the biliary secretion in animals without GG918.
Moreover, the injection of GG918 (4 µmol kgÐ1 body weight) did
not affect the biliary excretion of [3H]taurocholate (2 nmol kgÐ1

body weight) as the major substrate of the BSEP (Figure 8).
British Journal of Cancer (1999) 79(7/8), 1053–1060
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Figure 8 Cumulative biliary recovery of the intravenously injected tracer
doses of [3H]taurocholate (TC; ●), N-[3H]acetyl LTE4 (LTE4NAc; ■) and
[3H]daunorubicin (DAU; ▲) after 4 µmol GG918 per kg body weight over 
90 min. The recovery is given as percent recovery compared to the
corresponding control without GG918. The time of tracer administration is
indicated by the arrow. Each point represents the mean of four experiments.
The mean biliary recovery of [3H]TC, N-[3H]acetyl LTE4, and [3H]DAU in
GG918-treated animals was 107, 93 and 30% of the untreated controls,
respectively
DISCUSSION

The ability to reverse one important type of multidrug resistance in
cancer patients by inhibition of MDR1 P-gp-mediated drug trans-
port by chemosensitizing agents is limited by the extent of toxic
side-effects and by the selectivity of the MDR1 P-gp-inhibitor.
Verapamil and cyclosporin A are well characterized examples of
MDR1 P-gp-modulating compounds (Watanabe et al, 1995).
However, verapamil has cardiac side-effects and lowers the blood
pressure (Pennock et al, 1991), and the use of cyclosporin A is
limited by its immunosuppressive action (Twentyman, 1992) and
by its inhibition of ATP-dependent export pumps other than
MDR1 P-gp (B�hme et al, 1993, 1994a, 1994b; Kadmon et al,
1993). In the present study we have determined the potency of the
acridone carboxamide derivative GG918 for inhibition of three
different ATP-dependent export pumps in the hepatocyte canalic-
ular membrane:

1. The rat mdr1bgene-encoded multidrug resistance export pump
2. The BSEP, encoded by the so called sister of P-glycoprotein

(spgp; Gerloff et al, 1998)
3. The MRP2 (cMRP/cMOAT)gene-encoded conjugate export

pump (Keppler and K�nig 1997).

Among these ATP-dependent transporters for daunorubicin, as
substrate for Mdr1b P-gp (Kamimoto et al, 1989), taurocholate as
substrate for the BSEP (Adachi et al, 1991; M�ller et al, 1991;
Nishida et al, 1991; Gerloff et al, 1998), and LTC4 as well as
N-acetyl-LTE4, as substrates for Mrp2 (Ishikawa et al, 1990;
British Journal of Cancer (1999) 79(7/8), 1053–1060
Keppler and K�nig, 1997), the Mdr1b P-gp export pump exhibited
the highest susceptibility to inhibition by GG918 in vitro and in
vivo (Figures 7 and 8). In comparison to the previously reported
MDR1 P-gp inhibitors, except for the recently described modu-
lator LY335979 (Dantzig et al, 1996), inhibition of the ATP-
dependent transport of several structurally different MDR1 P-gp
substrates was observed at a lower concentration of GG918, and
half-maximal inhibition was detected between 8 nM and 80 nM

(Figures 2, 3 and 7). This was shown for daunorubicin and doxo-
rubicin as well as for the more hydrophilic N-pentyl-quinidinium.
The different IC50 values for the substrate N-pentyl-[3H]quini-
dinium in human (70 nM) and rat liver canalicular membranes (8
nM) may be due to the species difference of the MDR1 and Mdr1b
transporters with an amino acid sequence identity of 81% (Brown
et al, 1993). Cyclosporin A is less specific as a MDR1 P-gp
inhibitor and affects other ATP-dependent export pumps, particu-
larly the ATP-dependent BSEP (B�hme et al, 1993). In the rat, the
inhibition of the latter pump by cyclosporin A induces intrahepatic
cholestasis (B�hme et al, 1994a, 1994b). PSC 833, a non-immuno-
suppressive cyclosporin A derivative (Boesch et al, 1991) also
inhibits several other ATP-dependent export pumps (B�hme et al,
1993, 1994a) and is not as potent as GG918 with respect to inhibi-
tion of MDR1/Mdr1b P-gp (Figures 2Ð4). The inhibitory effi-
ciency estimated by the Km/Ki ratio was 942 for GG918 when
daunorubicin was used as the substrate. This value is 14-fold
higher than the ratio for PSC 833 and 70-fold higher than this ratio
for cyclosporin A (B�hme et al, 1993). GG918 does not seem to
cause cytotoxicity in the concentrations required for modulation of
multidrug resistance and unspecific toxic side-effects have not
been observed at concentrations which were 100-fold above those
necessary for specific MDR1 P-gp inhibition (Hyafil et al, 1993).

Many modulators of the MDR1 P-gp-mediated multidrug resis-
tance are lipophilic and heterocyclic compounds with a basic
nitrogen atom at physiological pH (Ford et al, 1989; Pearce et al,
1989; Hait and Aftab, 1992). The acridone carboxamide derivative
GG918 exhibits these properties as well (Figure 1) and shows a high
potency for inhibition of N-pentyl-quinidinium and daunorubicin
transport (Figures 2Ð4). The different IC50 values of GG918 for three
different ATP-dependent export pumps of the canalicular membrane
offers the possibility to inhibit the MDR1 P-gp export pump at a
concentration of GG918 at which the conjugate and bile salt export
pumps are not or only little affected. Our studies in vitro are in line
with our in vivo studies in the rat where GG918 at the dose of 
2 mg kgÐ1 influenced only the Mdr1b P-gp-mediated excretion into
bile (Figures 7 and 8). The similar bile flow rates of control and
GG918-treated animals indicate that the processes involved in bile
formation are not affected by this dose of the inhibitor. A higher
dose of GG918 (8 mg kgÐ1) caused a nearly complete suppression of
the [3H]daunorubicin secretion into bile during the initial 30 min
after injection of GG918. This dose is in a range similar as the one
which increased the survival time of tumour-bearing mice under-
going chemotherapy (Hyafil et al, 1993).

In photoaffinity labelling studies with [3H]azidopine we demon-
strated an inhibition of the labelling by GG918 that is consistent
with the high affinity of GG918 to Mdr1b P-gp in hepatocyte
canalicular membranes (Figure 6). GG918 also competed with
[3H]azidopine for binding to the rat Mdr1b P-gp overexpressed in
Sf9 cells (Figure 5). The low level of non-specific labelling in
membranes from Sf9 cells shows the suitability of such
membranes for these experiments. On the other hand, hepatocyte
canalicular membranes showed non-specific binding of
© Cancer Research Campaign 1999
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[3H]azidopine to several proteins that was not competed for by
GG918 (Figure 6). Our kinetic studies indicated a competitive
inhibition of [3H]daunorubicin transport by GG918 (Figure 4).
These results are compatible with the assumption that GG918
binds with high affinity to the substrate binding site of Mdr1b P-
gp. The concentration of GG918 required for potent competition
with [3H]azidopine photoaffinity labelling was at least 100-fold
higher than the concentration necessary for potent inhibition of
substrate transport by Mdr1b P-gp. While it is not possible to
compare the kinetic processes during photoaffinity labelling with
the kinetics of ATP-dependent membrane transport, it should be
noted that suppression of photoaffinity labelling usually requires
much higher concentrations than inhibition of transport. This may
be exemplified by the suppression of photoaffinity labelling by
[3H]LTC4 with the potent transport inhibitor MK571 (Nicholson et
al, 1992; Leier et al, 1994), or by the competitive photoaffinity
labelling of intestinal bile salt binding sites using 7, 7-azo-tauro-
cholate (Lin et al, 1990).

Highly potent inhibition of MDR1/Mdr1b P-gp may cause an
impaired detoxification of substances in non-malignant P-gp-
expressing tissues. As shown for the mdr1agene knock-out mice,
a total loss in Mdr1a function may lead to an entry of toxic
substances into normal tissues such as the brain (Schinkel et al,
1994). Accordingly, potent inhibition of MDR1 P-gp in the
bloodÐbrain barrier may be followed by an action of toxic and
non-toxic compounds on the brain that is prevented under normal
conditions by the function of MDR1 P-gp. Such inhibition may be
desirable, however, not only during chemotherapy of brain
tumours, but also during antibacterial chemotherapy with
substances that are substrates for MDR1 P-gp in the bloodÐbrain
barrier. The high potency and selectivity of a compound like
GG918 for MDR1 P-gp not only offers a chance to reverse this
type of multidrug resistance but also to study the physiological
role of P-gp in several species.
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