
Restoration of p16INK4A protein induces myogenic
differentiation in RD rhabdomyosarcoma cells
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Summar y p16INK4A (p16) tumour suppressor induces growth arrest by inhibiting function of cyclin-dependent kinase (CDK)4 and CDK6.
Homozygous p16 gene deletion is frequent in primary rhabdomyosarcoma (RMS) cells as well as derived cell lines. To confirm the
significance of p16 gene deletion in tumour biology of RMS, a temperature-sensitive p16 mutant (E119G) gene was retrovirally transfected
into the human RMS cell line RD, which has homozygous gene deletion of p16 gene. Decrease from 40°C (restrictive) to 34°C (permissive)
culture temperature reduced CDK6-associated kinase activity and induced G1 growth arrest. Moreover, RD-p16 cells cultured under
permissive condition demonstrated differentiated morphology coupled with expressions of myogenin and myosin light chain. These suggest
that deletion of p16 gene may not only facilitate growth but also inhibit the myogenic differentiation of RD RMS cells.
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Rhabdomyosarcoma (RMS) is a childhood malignant tumour
originating from immature mesenchymal cells that rarely demon-
strate myogenic differentiation (Carli et al, 1992). Alveolar
RMS has been associated with a characteristic translocation,
t(2;13)(q35;q14) (Turc-Carel et al, 1986), which juxtaposes the
PAX3 gene known to regulate transcription during early neuromus-
cular development to the FKHR gene, a member of the forkhead
family of transcription factors (Shapiro et al, 1993). Embryonal
RMS is associated with loss of heterozygosity (LOH) at the 11p15
locus (Scrable et al, 1987), which affects the expression of insulin-
like growth factor (IGF), a growth factor of RMS (El-Badry et al,
1990). Although much has been learned in the past decade
regarding molecular genetic alterations associated with the devel-
opment of RMS, exact mechanisms for aberrant growth without
muscle differentiation are still obscure.

p16INK4A (p16) gene induces dephosphorylation of pRB by
inhibiting binding of cyclin-dependent kinase (CDK)4 and CDK6
to cyclin D, resulting in G1 growth arrest (Serrano et al, 1993).
The discovery that p16 gene is mutated or deleted in a striking
proportion of human tumours raised the possiblity that abnormali-
ties in p16 might predispose to cancer development (Hirama et al,
1995). Of interest, homozygous deletion of p16 gene was observed
only in primary tumours of lymphoid malignancies (Ogawa et al,
1994; Hatta et al, 1995), although point mutations in p16 gene
were noted in many other kinds of tumours (Hussussian et al,
1994; Ranade et al, 1995). Moreover, p16 gene deletion is
frequently detected in primary tumours, whereas p16 point muta-
tions are associated with progressive cancer and established cell
lines rather than primary tumours (Hirama et al, 1995). Therefore,
p16 gene deletion might be related with tumorigenesis; on the
other hand, p16 gene point mutations may contribute to disease
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progression. Frequent p16 gene deletion has been reported in RMS
cells, including 100% of cell lines and 25% of primary tumours
(Iolascon et al, 1996), as in lymphoid malignancies, suggesting its
potential importance in tumorigenesis of RMS.

To confirm the significance of p16 gene deletion in tumour
biology of RMS, p16 gene was retrovirally transfected into the
human RMS cell line RD, which has homozygous gene deletion of
p16 gene. Since ectopic expression of p16 suppresses cell growth,
a temperature-sensitive p16 mutant (E119G) was used in this
experiment. Restoration of functional p16 protein induced not
only G1 growth arrest but also myogenic differentiation evidenced
by morphological changes and expressions of myogenin and
myosin light chain in RDÐRMS cells. Our data, therefore, suggest
that deletion of the p16 gene not only facilitates growth but also
inhibits myogenic differentiation of RDÐRMS cells.

MATERIALS AND METHODS

Cell line and culture

RD, a cell line established from a patient with embryonal RMS
(DeGiovanni et al, 1989), was purchased from American Type
Culture Collection (Rockville, MD, USA) and maintained in
DulbeccoÕs modified Eagle medium (DMEM; Gibco, Grand
Island, NY, USA) supplemented with 10% fetal bovine serum
(FBS; Gibco), 100 U mlÐ1 penicillin (Gibco), 20 mM L-glutamine,
and 100 µg mlÐ1 streptomycin (Gibco) in humidified air with 5%
dioxygen and 5% carbon dioxide at 37°C. For differentiation, RD
cells were cultured in 2% horse serum plus DMEM.

Polymerase chain reaction

DNA was isolated from RD cells as previously described
(Urashima et al, 1996a). Polymerase chain reaction (PCR) was
performed on an OmniGene Thermocycler (Marsh Biomedical,
Rochester, NY, USA) with 100 ng of genomic DNA, 40 pM of
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sense and antisense primers, 200 mM each of dNTP, 1 × amplifica-
tion buffer, 1.5 mM magnesium chloride 0.5 ml (2.5 units) Taq
polymerase and 10% dimethyl sulfoxide in a reaction volume of
25 µl.

Amplification consisted of 94°C for 2 min, followed by 30
cycles of denaturation at 94°C for 30 s, annealing at 55°C for 
1 min, and extension at 72°C for 1 min. Primers for amplifying p16
exon 2 were 5′-GCT TCC TTT CCG TCA TGCCG-3′ and 5′-
GGA CTG ATG ATC ATG GCT CCA CCT GCCTT-3′. As a
control, β-globin sequences were amplified using the following
oligonucleotides: sense primer 5′-AAC AGA CAC CAT GGT
GCA CC-3′, and antisense primer 5′-CTA AGG TGA AGG CTC
ATG GC-3′. The resulting PCR products were electrophoresed on
an ethidium bromide-stained 3.0% agarose gel. The size of p16 and
β-globin products are 393 base pairs (bp) and 362 bp, respectively.

Mutagenesis

The construction of p16 mutants was carried out with BioRad
Muta-gene Phagemid in vitro Mutagenesis System using full-
length p16 cDNA including exons 1α, 2 and 3 [provided by Dr
Geoffrey I. Shapiro, Dana-Farber Cancer Institute (DFCI), Boston,
MA, USA] Complementary DNA strand for mutated p16 gene
(E119G) was made using a synthetic oligonucleotide (5′GATG-
GCCCAGCTCGCCGGCCAGGTCCACGG3′) as primer, followed
by cloning into EcoRI/SalI site of pBabe-puro retroviral vector
(provided by Dr Mark Ewen, DFCI). Of the mutations attempted
in previous study, a mutation at position 119 (E119G) was found to
be restrictive at higher temperature and permissive at lower
temperature for binding to CDK4 and CDK6, inhibiting CDK4
and CDK6 complex kinase activities, decreasing phosphorylation
of pRB, and inhibiting growth (Urashima et al, 1997c).

Production of retrovirus and transfection

pBabe-puro (control) and pBabe-p16 mutated type (E119G) vector
were introduced into Bing packaging cells, obtained from Dr
Shapiro (DFCI), using standard calcium phosphate transfection
technique (Morgenstern and Land, 1990). Bing cells were cultured
for 1-day post-transfection in DMEM with 10% FBS, and super-
natant was exchanged with fresh media for an additional 2 days.
Retroviral supernatants were then harvested post-transfection, and
filtered through a 0.45 µm filter to remove living cells. RDÐRMS
cells were cultured on a 100 mm tissue culture plate for 18 h prior
to infection. Supernatant was exchanged with 3 ml infection
cocktail consisting of fresh retroviral-containing supernatant and
polybrene at a final concentration of 4.0 µg mlÐ1 (Sigma, St Louis,
MO, USA) for 3 h, followed by addition of fresh media (7 ml).
Selection for mutated p16gene transdused RD (RD-p16) cells and
control vector transfectant (RD-control) was performed by culture
with puromycin (2.0 µg mlÐ1)(Sigma) (Urashima et al, 1997a). A
colony expressing the highest level of p16 protein was selected at
2 weeks and amplified for a further 2 weeks at 40°C.

Immunoprecipitation and Western blotting

Immunoprecipitation (IP) and Western blotting (WB) were
performed as previously described (Urashima et al, 1996b). For IP,
cells (2 × 106 cells/sample) were washed thrice with phosphate-
buffered saline (PBS) and lysed for 30 min at 4°C in buffer: 1 mM
© Cancer Research Campaign 1999
Tris-HCl (pH 7.6), 150 mM sodium chloride, 0.5% Nonidet p-40, 
5 mM EDTA, 1 mM phenylmethylsulphonyl fluoride, sodium phos-
phate (v), aprotinin, and 1 mM NaF. Anti-p16 monoclonal antibody
(Ab) (Pharmigen, San Diego, CA, USA); anti-CDK6 polyclonal
Ab (Santa Cruz Biotechnology, Santa Cruz, CA, USA) were added
for 16 h at 4°C to immunoprecipitate protein complexes. Proteins
were collected using protein G sepharose (PGS). Aliquots of each
lysate were analysed by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDSÐPAGE). Proteins were transferred onto
PVDF membrane (NEN Dupont, Boston, MA, USA), and non-
specific binding was blocked by incubation with 5% skim milk.
The membrane was probed with Ab followed by anti-mouse or
anti-rabbit Ig Abs conjugated with horseradish peroxidase (HRP;
Amersham, Arlington Heights, IL, USA). Complexes were
detected using the enhanced chemiluminescence system
(Amersham). To characterize differential stage of RD cells, IP and
WB were performed using anti-p18, anti-p21, anti-myogenin poly-
clonal Abs (Santa Cruz Biotechnology); anti-Myo D monoclonal
Ab (Santa Cruz Biotechnology); anti-myosin light chain mono-
clonal Ab (Sigma).

Immune complex kinase assays

Immune complex kinase assays were performed as previously
described with modification (Urashima et al, 1997b). Briefly, cells
(1 × 107 mlÐ1) were suspended in lysis buffer, centrifuged, and
supernatants precipitated for 16 h at 4°C with PGS plus rabbit anti-
CDK6 polyclonal Ab. Immunoprecipitated proteins on PGS were
washed thrice with 1 ml of lysis buffer and twice with 50 mmol lÐ1

HEPES (pH 7.5) containing 1 mmol l dithiothreitol and suspended
in 30 µl of kinase buffer (50 mmol lÐ1 HEPES, 10 mmol lÐ1

MgCl2, 1Ð1 mmol l dithiothreitol) containing substrate and 
2.5 mmol lÐ1 EGTA, 10 mmol lÐ1 β-glycerophosphate 0.1 mmol lÐ1

sodium orthovanadate, 1 mmol lÐ1 NaF, 20 µmol lÐ1 adenosine 5′-
triphosphate (ATP), and 10 µCi of γ-32P-ATP (NEN Dupont,
Boston, MA, USA). For CDK6 kinase assays, 1 µg of soluble
glutathione S-transferase (GST)ÐRB fusion protein (Santa Cruz
Biotechnology) was used as the substrate. After incubation for 30
min at 30°C with occasional mixing, the samples were boiled in
polyacrylamide gel sample buffer and separated by SDS elec-
trophoresis. Phosphorylated proteins were visualized by auto-
radiography of the dried slab gels.

Cell cycle analysis

Cell cycle distribution of RD cells was examined using propidium
iodide (PI; Sigma) staining and FACS analysis, as in a previous
report (Urashima et al, 1997c). Briefly, cells were collected and
suspended in 0.5 ml of 3.4 mM sodium citrate, 10 mM NaCl, 0.1%
NP-40 and 50 ng mlÐ1 PI to stain nuclear DNA. Cell cycle distribu-
tion for each sample (> 10 000 cells) was determined using the flow
cytometer (Ortho-Clinical Diagnostics KK, Koto-ku, Tokyo, Japan).

RESULTS

Homozygous deletion of p16 gene and ectopic
expression of p16 protein in RD RMS cells

We first confirmed homozygous deletion of the p16gene (exon 2)
in RDÐRMS cells using mixed primers for exon 2 of the p16gene
and β-globin gene in a PCR assay. As can be seen in Figure 1, p16
exon 2 was not detectable in genomic DNA of RDÐRMS cells by
British Journal of Cancer (1999) 79(7/8), 1032–1036
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Figure 1 Homozygous deletion of p16 gene in RMS cells. PCR was
performed using extracted DNA from control placenta and RD cells with
amplification using primers for p16 exon 2 and β-globin genes. The resulting
products were electrophoresed on an ethidium bromide-stained 3.0%
agarose gel. The sizes of p16 and β-globin PCR products were 393 bp and
362 bp, respectively
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Figure 2 Ectopic expression of p16 protein in RMS cells and effects of
culture temperature on CDK6. RD cells were transfected with control vector
or mutated p16 gene, and transfectants were selected by culture with
puromycin for 4 weeks. Expressions of p16 protein and CDK6 in RD–control
(cont.) cells and RD–p16 cells cultured at 40°C or 34°C for 24 h, were
evaluated by IP and WB. Cell lysates were precipitated for 16 h with PGS
plus anti-CDK6 Ab. Immunoprecipitated proteins on PGS were resuspended
in kinase buffer after washing. GST–RB fusion protein was used as a
substrate for assay of CDK6-associated kinase activity
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Figure 3 Effect of ectopic p16 expression on proliferation of RD cells. 
(A) RD–control (cont.) cells (1 × 105 cells/ml) and RD–p16 cells (1 × 105

cells/ml) incubated with puromycin (2 µg ml–1) for 4 weeks were cultured in
fresh media including puromycin (2 µg ml–1) either at 40°C or 34°C for 72 h.
Cell cycle distribution was determined using PI staining followed by flow
cytometric analysis. (B) RD-control cells were cultured at either 40°C (■) or
34°C (▲▲) and RD–p16 cells were cultured at either 40°C (●) or 34°C (▲) for
96 h. Viable cell number was assessed by trypan blue staining
PCR, whereas it was present in control cells from placenta. The
β-globin gene served as control.

Once we confirmed homozygous deletion of p16 gene in RD
cells, a temperature-sensitive mutated p16 gene (E119G) was
ectopically expressed in RD cells by retroviral transfection. p16
protein was expressed in the p16 gene transfected RD (RDÐp16)
cells at either 40°C or 34°C, but it was not detectable within
control vector transfected RD (RDÐcontrol) cells at either 40°C or
34°C (Figure 2). Expression of CDK6 protein was equivalent in
these cells. However, activity of CDK6 was inhibited in cell
lysates of RD-p16 cells cultured at 34°C compared with RD-
control cells and RDÐp16 cells cultured at 40°C.

Effect of functional p16 protein on proliferation of RD
cells

RD-control and RD-p16 cells were cultured for 72 h at either 40°C
or 34°C, and cell cycle distribution was determined by PI staining
(Figure 3A). At 40°C, the percentage of cells in G1 phase was
British Journal of Cancer (1999) 79(7/8), 1032–1036
similar in RDÐcontrol cells (47%) and RDÐp16 cells (51%). In
contrast, the percentage of RD-p16 cells in G1 phase at 34°C
increased to 73%, although cell cycle distribution of RDÐcontrol
cells did not significantly vary with culture temperature.
Moreover, sub G0 population including apoptotic and dead cells
was not observed in all conditions. Viable cell number did not
© Cancer Research Campaign 1999
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Figure 4 Effect of functional p16 expression on morphology of RD cells.
RD–control (cont.) and RD–p16 cells were cultured at either 40°C or 34°C for
7 days. As a control, RD cells cultured in differentiation medium (2% horse
serum) for 7 d (RD (d)) at 37°C. Morphological changes were observed
under phase contrast microscopy. Original magnification was × 100
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Figure 5 Effect of ectopic p16 expression on differentiation of RD cells.
Expressions of p18, p21, Myo D, myogenin, and myosin light chain protein in
RD–control (cont.) and RD–p16 cells cultured at either 40°C or 34°C for 7
days as well as RD cells cultured in differentiation medium (2% horse serum)
for 7 days (RD (d)) were determined by IP and WB
increase in RDÐp16 cells cultured at 34°C, but increased in
RDÐcontrol cells cultured at 40°C and 34°C and RDÐp16 cells
cultured at 40°C (Figure 3B). Percentages of dead cells counted
with trypan blue were less than 10% in all conditions.
© Cancer Research Campaign 1999
Effect of functional p16 protein on morphology and
differentiation of RD cells

Under phase contrast microscopy, RDÐp16 cells cultured at 
34°C demonstrated a differentiated morphology, with elongated
myotube-formation and multinuclei, whereas RDÐp16 cells
cultured at 40°C, as well as RDÐcontrol cells cultured at 40°C and
34°C, demonstrated round form or fibroblastic morphology
(Figure 4). Although RD cells cultured in differentiation medium
(2% horse serum) at 37°C showed differentiation tendency (Figure
4), effect of active p16 expression at 34°C did not enhance the
differentiation phenotype significantly (data not shown).

RDÐp16 cells were cultured under either restrictive (40°C) or
permissive (34°C) condition for 7 d and RD cells were cultured in
differentiation media for 7 d to examine for expressions of p18,
p21, Myo D, myogenin, and myosin light chain proteins (Figure
5). Expressions of p18, p21, and Myo D proteins were unchanged
in RDÐcontrol cells and RDÐp16 cells cultured at either 40°C or
34°C, and were lower than in RD cells cultured in differentiation
medium. On the other hand, expression level of myogenin protein
was low in RDÐcontrol cells cultured at either 40°C or 34°C and
RDÐp16 cells cultured at 40°C, whereas it was significantly higher
in RDÐp16 cells cultured at 34°C and in RD cells cultured in
differentiation medium. Myosin light chain protein was also
strongly expressed in RDÐp16 cells cultured at 34°C and RD cells
cultured in differentiation medium, whereas it was not detectable
in RDÐcontrol cells cultured at either 40°C or 34°C and RDÐp16
cells cultured at 40°C.

DISCUSSION

In the present report, we demonstrated that lack of p16gene may
both facilitate cell proliferation and inhibit myogenic differentia-
tion using RDÐRMS cells. We first confirmed homozygous
deletion of p16 gene exon 2 in RD cells by PCR, and lack of 
p16 protein by IP and WB. An alternative RNA transcript for p16
(p16 β) has been identified (Mao et al, 1995; Stone et al, 1995),
and is composed of exon 1β, upstream from exon 1α of p16,
spliced onto the remaining exons 2 and 3 of p16. Although p16β
transcript was not studied in this experiment, homozygous dele-
tion of p16 exon 2 may suggest lack of the p16β transcript. Next
p16 protein was expressed ectopically in RDÐRMS cells using
retroviral transfection in order to investigate the role of homozy-
gous deletion of p16 gene in growth and differentiation of RMS
cells. However, growth inhibition in RD cells ectopically
expressing p16, coupled with the outgrowth of clones that express
low levels of this protein, complicate this approach. To overcome
this limitation, we attempted to create p16 temperature-sensitive
mutants (Urashima et al, 1997c).

In previous reports, function of p16 is believed to associate with
growth inhibition, cell mortality and senescence (Serrano et al,
1996, 1997). However, in this study, restoration of functional p16
protein in RD cells also induced myogenic differentiation, associ-
ated with morphological changes and with expression of myosin
light chain protein, which is specifically expressed in differenti-
ated myocytes and syncytial myotubules but not in proliferating
myoblasts (Andres and Walsh, 1996). Moreover, p21 is expressed
low in proliferating myoblasts but high in differentiated myocytes
(Havery et al, 1995; Parker et al, 1995). In this study, p21 and
p18 expression increased slightly in RD cells cultured in differen-
tiation medium, whereas they were not altered in RD cells with
British Journal of Cancer (1999) 79(7/8), 1032–1036
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activated p16. In a normal murine myoblast model, myogenic
differentiation was inhibited by forced expression of cyclin D1; in
contrast, myoblast differentiation was enhanced by transfection
with p16 (Skapek et al, 1995). p16, therefore, may be associated
with normal myogenesis and lack of p16 gene may contribute to
development of RMS cells. Retinoblastoma protein, which is a
specific target of p16, interacts with Myo D family to induce
myogenic differentiation (Gu, 1993). In addition, myotubes from
retinoblastoma gene (Ð/Ð) cells cannot withdraw from cell cycle
(Schneider et al, 1994), suggesting retinoblastoma gene product
is required for permanent withdrawal from cell cycle and late stage
of muscle differentiation (Novitch et al, 1996). Lack of p16 in
RMS cells may lead to inactivation of retinoblastoma protein,
resulting in aberrant growth and defect of terminal differentiation.
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