Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;79(11-12):1709–1716. doi: 10.1038/sj.bjc.6690272

Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy

E L Hull 3, D L Conover 1, T H Foster 1,2,3
PMCID: PMC2362819  PMID: 10206281

Abstract

We have evaluated the ability of steady-state, radially-resolved, broad-band near infrared diffuse reflectance spectroscopy to measure carbogen-induced changes in haemoglobin oxygen saturation (SO2) and total haemoglobin concentration in a rat R3230 mammary adenocarcinoma model in vivo. Detectable shifts toward higher saturations were evident in all tumours (n = 16) immediately after the onset of carbogen breathing. The SO2 reached a new equilibrium within 1 min and remained approximately constant during 200–300 s of administration. The return to baseline saturation was more gradual when carbogen delivery was stopped. The degree to which carbogen increased SO2 was variable among tumours, with a tendency for tumours with lower initial SO2 to exhibit larger changes. Tumour haemoglobin concentrations at the time of peak enhancement were also variable. In the majority of cases, haemoglobin concentration decreased in response to carbogen, indicating that increased tumour blood volume was not responsible for the observed elevation in SO2. We observed no apparent relationship between the extent of the change in tumour haemoglobin concentration and the magnitude of the change in the saturation. Near infrared diffuse reflectance spectroscopy provides a rapid, non-invasive means of monitoring spatially averaged changes in tumour haemoglobin oxygen saturation induced by oxygen modifiers. © 1999 Cancer Research Campaign

Keywords: oxygen, tumour oxygenation, carbogen, haemoglobin, diffuse reflectance spectroscopy, radiotherapy

Full Text

The Full Text of this article is available as a PDF (169.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benesch R. E., Benesch R. The mechanism of interaction of red cell organic phosphates with hemoglobin. Adv Protein Chem. 1974;28:211–237. doi: 10.1016/s0065-3233(08)60231-4. [DOI] [PubMed] [Google Scholar]
  2. Brizel D. M., Scully S. P., Harrelson J. M., Layfield L. J., Bean J. M., Prosnitz L. R., Dewhirst M. W. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996 Mar 1;56(5):941–943. [PubMed] [Google Scholar]
  3. Brizel D. M., Sibley G. S., Prosnitz L. R., Scher R. L., Dewhirst M. W. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997 May 1;38(2):285–289. doi: 10.1016/s0360-3016(97)00101-6. [DOI] [PubMed] [Google Scholar]
  4. Ceckler T. L., Gibson S. L., Kennedy S. D., Hill R., Bryant R. G. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy. Br J Cancer. 1991 Jun;63(6):916–922. doi: 10.1038/bjc.1991.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grau C., Horsman M. R., Overgaard J. Improving the radiation response in a C3H mouse mammary carcinoma by normobaric oxygen or carbogen breathing. Int J Radiat Oncol Biol Phys. 1992;22(3):415–419. doi: 10.1016/0360-3016(92)90844-8. [DOI] [PubMed] [Google Scholar]
  6. HILF R., MICHEL I., BELL C., FREEMAN J. J., BORMAN A. BIOCHEMICAL AND MORPHOLOGIC PROPERTIES OF A NEW LACTATING MAMMARY TUMOR LINE IN THE RAT. Cancer Res. 1965 Apr;25:286–299. [PubMed] [Google Scholar]
  7. Hill R. P., Bush R. S. Dose fractionation studies with a murine sarcoma under conditions of air or carbogen (95% O2 + 5% CO2) breathing. Int J Radiat Oncol Biol Phys. 1977 Sep-Oct;2(9-10):913–919. doi: 10.1016/0360-3016(77)90189-4. [DOI] [PubMed] [Google Scholar]
  8. Horsman M. R., Chaplin D. J., Brown J. M. Tumor radiosensitization by nicotinamide: a result of improved perfusion and oxygenation. Radiat Res. 1989 Apr;118(1):139–150. [PubMed] [Google Scholar]
  9. Hull E. L., Nichols M. G., Foster T. H. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys Med Biol. 1998 Nov;43(11):3381–3404. doi: 10.1088/0031-9155/43/11/014. [DOI] [PubMed] [Google Scholar]
  10. Höckel M., Vorndran B., Schlenger K., Baussmann E., Knapstein P. G. Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol. 1993 Nov;51(2):141–149. doi: 10.1006/gyno.1993.1262. [DOI] [PubMed] [Google Scholar]
  11. Okunieff P., Hoeckel M., Dunphy E. P., Schlenger K., Knoop C., Vaupel P. Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone. Int J Radiat Oncol Biol Phys. 1993 Jul 15;26(4):631–636. doi: 10.1016/0360-3016(93)90280-9. [DOI] [PubMed] [Google Scholar]
  12. Olive P. L., Inch W. R. Effect of inhaling oxygen-carbon dioxide mixtures on oxygenation and cure by x-rays of C3HBA mouse mammary carcinoma. Radiology. 1973 Mar;106(3):673–678. doi: 10.1148/106.3.673. [DOI] [PubMed] [Google Scholar]
  13. Robinson S. P., Rodrigues L. M., Ojugo A. S., McSheehy P. M., Howe F. A., Griffiths J. R. The response to carbogen breathing in experimental tumour models monitored by gradient-recalled echo magnetic resonance imaging. Br J Cancer. 1997;75(7):1000–1006. doi: 10.1038/bjc.1997.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stone H. B., Brown J. M., Phillips T. L., Sutherland R. M. Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19-20, 1992, at the National Cancer Institute, Bethesda, Maryland. Radiat Res. 1993 Dec;136(3):422–434. [PubMed] [Google Scholar]
  15. THOMLINSON R. H. An experimental method for comparing treatments of intact malignant tumours in animals and its application to the use of oxygen in radiotherapy. Br J Cancer. 1960 Sep;14:555–576. doi: 10.1038/bjc.1960.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vaupel P., Schlenger K., Knoop C., Höckel M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 1991 Jun 15;51(12):3316–3322. [PubMed] [Google Scholar]
  17. Voûte P. A., van der Kleij A. J., De Kraker J., Hoefnagel C. A., Tiel-van Buul M. M., Van Gennip H. Clinical experience with radiation enhancement by hyperbaric oxygen in children with recurrent neuroblastoma stage IV. Eur J Cancer. 1995;31A(4):596–600. doi: 10.1016/0959-8049(95)00073-r. [DOI] [PubMed] [Google Scholar]
  18. Wray S., Cope M., Delpy D. T., Wyatt J. S., Reynolds E. O. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta. 1988 Mar 30;933(1):184–192. doi: 10.1016/0005-2728(88)90069-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES