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Over the last two decades, technical advances in molecular
biology have led to a vast increase in our understanding of cancer.
In particular, the discovery of two types of genes, proto-oncogenes
and tumour suppressor genes (TSGs), have underpinned our
expanding comprehension of the abnormalities that distinguish
cancer cells from their normal counterparts. Broadly speaking,
proto-oncogenes direct cells towards proliferation and prolonged
survival, whereas tumour suppressor genes tend to inhibit, or keep
in check, cell growth and survival. During normal development,
tissue homeostasis requires a fine balance between these proces-
ses, whereas the equilibrium in tumour cells is disturbed, with the
growth imperative taking over. Although proto-oncogenes and
TSGs constitute only a small part of the cell’s genetic repertoire,
their pivotal role in cell propagation mark them as primary targets
for mutations and deletions in cancer. Our ability to detect these
changes at the molecular level has provided us with the vital blue-
prints for cancer genetics.

In addition to the catalogue of qualitative defects such as muta-
tions and deletions which have been unravelled by the genetic
dissection of cancers, subtle modifications of the nucleotide back-
bone leading to deregulation of gene expression have recently
been emphasized as further distinguishing features of cancer cells.
Specifically, these changes consist of variations of the DNA
methylation patterns that overlay the primary structure of the
genome, and, logically, the study of this field has been termed
epigenetics, the prefix ‘epi-’ meaning ‘upon’, or ‘in addition to’.
As discussed below, DNA methylation is strongly associated with
transcriptional repression and is linked with chromosomal archi-
tecture. The advent of epigenetics has therefore necessitated the
conceptual refinement of the genetic blueprint, requiring a sense of
genomic topography, with regions of the genome being segregated
as transcriptionally active or inactive.

In order to assess the implications of epigenetic deregulation in
cancer, this article will first summarize some biochemical aspects
of DNA methylation. We will then consider examples of genes
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whose expression is altered in cancer cells and the possible conse-
quences for the cell.

DNA methylation occurs at CpG islands

Mammalian cells are endowed with the possibility of a ‘fifth base’,
namely 5-methylcytosine which can be formed and maintained
enzymatically at any CpG dinucleotide in the genome. Sequence
regions where there is a high density of CpG residues are termed
CpG islands, and are loosely defined as being sequences of 200-
plus base pairs with a G+C content of greater than 50% and a
CpG/GpC ratio of > 0.6 (Gardiner-Garden and Frommer, 1987).
These CpG islands are associated with gene promoters in approxi-
mately 50% of genes (Antequera and Bird, 1993) and are generally
maintained in an unmethylated state, possibly via protection by
transcription factors such as Sp1 (Brandeis et al, 1994). The
notable exceptions for the purposes of this review are tumour-
specific CpG island hypermethylation of TSGs, and imprinted
genes which display parental-specific allelic gene expression in
conjunction with differential methylation of alleles.

Three major cellular enzymic activities associated with DNA
methylation have been characterized to date, including two
subtypes of DNA methyltransferases, DNMT1 and DNMT3
(Okano et al, 1999; Robertson et al, 1999), and a DNA de-
methylase (Bhattacharya et al, 1999). DNMT1 is considered as a
maintenance methyltransferase, this role being dramatically
demonstrated in DNMT1 knockout mice which die before birth,
and in which genomically imprinted genes show inappropriate
methylation in tandem with altered gene expression in the fetus (Li
et al, 1993). This results in either complete loss of expression, or
biallelic expression which is, of course, tantamount to overexpres-
sion. DNMT3 enzymes possess a de novo methylation activity
(Okano et al, 1999) and their expression, together with that of
DNMT1 has been shown to be increased in some tumour cells
(Robertson et al, 1999). Although tumour-specific elevation of
DNMTs appeals as a causative step in cases of TSG hypermethyl-
ation observed in, for example, colorectal cancers (Issa et al,
1993), recent investigations along these lines have been equivocal,
showing a lack of correlation between CpG island hypermethyl-
ation and DNMT overexpression (Eads et al, 1999). In fact a recent
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Table 1 Epigenetically altered genes in human cancers

Silenced gene Function Tumour type Reference

VHL Promoter of angiogenesis Clear cell renal Herman et al, 1994
p16INK4A Cyclin dependent kinase inhibitor Many solid tumours, lymphomas Herman et al, 1995
p15INK4A CDK inhibitor Haematological malignancies Batova et al, 1997
Rb Cell cycle regulator Retinoblastoma Ohtani-Fujita et al, 1997
BRCA1 Transcriptional regulator Breast and ovarian Estellar et al, 2000
E-cadherin (CDH1) Cell adhesion molecule Gastric, breast and prostate Grady et al, 2000
TIMP-3 Matrix metalloproteinase inhibitor Brain, colon and kidney Bachman et al, 1999
hMLH1 Mismatch repair gene Colon and gastric Kane et al, 1997
O6-MGMT DNA repair Brain, colon lung and lymphoma Estellar et al, 1999
Cyclooxygenase 2 (COX2) Prostaglandin metabolism Colon Toyota et al, 2000
Caspase 8 (CASP8) Apoptotic protease Neuroblastoma Teitz et al, 2000
14-3-3σ (stratifin) Cell cycle regulator Breast Ferguson et al, 2000
HOXA5 Transcription factor Breast Raman et al, 2000
RASSF1A RAS signalling? Lung Dammann et al, 2000

Imprinted genes
IGF2 Growth factor Wilms’ tumour (WT) many others Joyce and Schofield 1998
IGF2-AS Regulatory RNA? WT Okutsu et al, 2000
H19 Regulatory RNA? WT Feinberg, 1999
CDKN1C/p57KIP2 CDK inhibitor WT Feinberg, 1999
BWR1A Apoptotic signal mediator? WT, breast, lung Feinberg, 1999
BWR1C Apoptotic signal mediator? WT Schwienbacher et al, 2000
WT1-AS Regulatory RNA? WT Malik et al, 2000
ARHI Growth regulator Breast and ovarian Xu et al, 2000
ZAC1 Apoptotic regulator Breast and ovarian Kamiya et al, 2000
p73 p53 homologue Renal cell carcinoma and others Mai et al, 1998
report has shown that methylation and silencing of TSGs is main-
tained in cancer cells in which the DNMT1 gene has been
completely disrupted by homologous recombination, although
some satellite regions do show demethylation (Rhee et al, 2000).
This suggests that regional specificities exist for DNMTs. Also,
other as yet unidentified DNMTs may remain to be discovered,
and perhaps the balance of cellular DNMT and DNA demethylase
activity (of which little is known as yet) may be crucial in
determining the epigenotype of the cancer cell.

Mechanisms for methylation-mediated gene repression

The ability of the DNA methylation inhibitor 5-azacytidine to re-
activate genes turned off by promoter methylation provides direct
evidence that methylation of DNA can repress transcription (see
for example Dammann et al, 2000). There are two main mecha-
nisms by which nucleotide methylation is proposed to lead to tran-
scriptional silencing of genes. Firstly, methylation of CpGs within
transcription factor binding sites in promoters may block their
binding and inhibit gene expression. For example, in retinoblas-
tomas, binding-sites for trans-activating factors in the RB
promoter were suggested to be inactivated by methylation
(Ohtani-Fujita et al, 1997), and similarly a putative cAMP-respon-
sive element binding-site (CREB) in the BRCA1 promoter was
compromised by methylation in breast and ovarian tumours
(Mancini et al, 1998). The second repression mode uses the CpG
methyl groups as tags that, via methyl binding domain (MBD)
proteins such as MeCP2, recruit complexed histone deacetylases
(HDACs). The targeted nucleosomal histone deacetylation medi-
ated by HDACs leads to a condensed chromosomal architecture
that is not conducive to the formation of transcription activating
complexes at promoters. The association of MeCP2/HDAC with
transcriptional repression suggests that methylation changes are
potentially causative rather than merely a secondary consequence
of tumorigenesis. Several MBD/HDAC complexes have been
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identified recently (Li, 1999), and these represent exciting candi-
dates for modulators of various methylation signals. Interestingly,
both pRB and BRCA1 proteins, whose expression has been shown
to be silenced by hypermethylation, have also been found in
complexes with chromatin remodelling activity (Brehm et al,
1998; Bochar et al, 2000). This raises the possibility that transcrip-
tional deregulatory cascades might result from an initial genetic or
epigenetic lesion.

Silencing of TSGs by hypermethylation

Although methylation changes in cancer cells were recognized
over a decade ago, it is only over the last 6 years that a detailed
understanding of the phenomenon has emerged. The first part of
Table 1 presents a cross-section of genes whose activity is silenced
in various malignancies, including classic tumour suppressor
genes known to be mutated in familial cancers, and subsequently
shown to be epigenetically silenced in sporadic cancers. In the
case of the p16INK4A gene (Herman et al, 1995), the entire spectrum
of gene disruption, genetic and epigenetic, is apparent in a wide
variety of cancers, making it one of the most frequently inactivated
tumour suppressor genes More recent examples of genes severely
compromised in specific cancers include 14-3-3σ (stratifin), a facil-
itator of G2 arrest that is silenced by hypermethylation in over 90%
of breast cancers (Ferguson et al, 2000), and caspase 8 (CASP8), a
component of apoptotic proteolytic cascades that is silenced in
approximately 60% of neuroblastomas (Teitz et al, 2000).

An obvious caveat to assessing hypermethylation changes is
whether the epigenetic defects are secondary events, rather than the
primary cellular insult in tumorigenesis. In colorectal cancers,
various genes have been shown to be epigenetically silenced (see
Table 1), and a CpG island methylator phenotype (CIMP) which
predisposes cells to gene silencing has been described (Toyota et al,
1999). One possible route to selecting a hypermethylation pheno-
type has been suggested by Breivik and Gaudernack (1999) based
© 2000 Cancer Research Campaign
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on the formation of O6-methylguanine adducts by bile acids in the
proximal colon. These adducts may be inefficiently repaired by O6-
methylguanine-DNA methyltransferase (O6-MGMT) due to epige-
netic silencing of this gene (Estellar et al, 1999), and thereafter, cells
bearing this mutation are locked in to an ineffectual cycle of
attempted mismatch repair and ultimately death. Epigenetic
silencing of the mismatch repair gene hMLH then allows cells to
progress; thus natural selection forces a hypermethylator phenotype,
facilitating the silencing of other genes in colorectal cancer. As this
hypothesis illustrates, the initiating event in tumorigenesis might
easily be plural in nature, and subsequent events, in view of the
genes targeted, are likely to be important in tumorigenesis and also
provide important markers for cancer. DNA repair genes silenced
through promoter methylation, such as O6-MGMT and hMLH, may
therefore be envisaged as conducting elements between mutation
and epimutation. Recent evidence for the causative nature of epige-
netic lesions is available from studies of the gene encoding E-
cadherin (CDH1) in hereditary diffuse gastric cancer (HDGC).
Patients with germline mutations in CDH1 and not exhibiting loss of
the remaining allele were shown to inactivate the remaining allele
by promoter hypermethylation (Grady et al, 2000), fulfilling
Knudson’s two-hit hypothesis with a primary genetic hit and a
secondary epigenetic hit. Another variation of a compound epige-
netic/genetic lesion possible in cancer was suggested by the work of
Raman et al (2000). Although the mutation rate of p53 is relatively
low in sporadic breast cancer, levels of the protein are discernibly
lower in breast tumour cells relative to normal epithelium. Lowered
p53 paralleled a decreased HOXA5 expression, a transactivator of
the p53 promoter. The HOXA5 promoter region was shown to be
silenced by extensive methylation, and epigenetic silencing of the
HOXA5 gene can therefore alter p53 activity and thereby compro-
mise cellular defence against malignant transformation.

It remains to be elucidated as to whether other cancers can be
subgrouped according to their epiphenotypes, and it will be of
great interest to see whether, for example, HOXA5 and 14-3-3σ
hypermethylation in breast cancers occurs concurrently.

Multiple expression modes regulated by DNA
methylation

As discussed above, most gene-associated CpG islands are main-
tained in the unmethylated state, and it is therefore unsurprising
that there are few reports of oncogene activation by hypomethyl-
ation. Imprinted genes are an exception to the general hypomethyl-
ated CpG island profile as they bear an epigenetic mark applied
during gametogenesis, which results in the expression of only one
parental allele (monoallelic expression). DNA methylation acts as
an essential (though not necessarily the primary) epigenetic signal
(Feil and Khosla, 1999), and DNMT1 knockout mice show inap-
propriate methylation accompanied by either complete loss of
expression, or biallelic expression, of imprinted genes (Li et al,
1993). Methylation of the parental alleles occurs differentially at
specific sites (differentially methylated regions; DMRs), and can
correlate with expression or non-expression of that allele. This
distinction from TSG silencing by promoter hypermethylation is
attributable to the existence of multiple CpG-rich regulatory
elements and mechanisms of transcriptional control for imprinted
genes. An example of a DNA regulatory region that acts as a posi-
tive and negative regulator of gene expression is the imprinting-
control region (ICR) at the IGF2-H19 locus. These genes display
© 2000 Cancer Research Campaign
reciprocal allelic expression, IGF2 from the paternal allele and
H19 from the maternal allele.

Methylation of a paternal allele DMR 5′ of the H19 gene (the
imprinting control region) inactivates a chromatin boundary
between IGF2 and H19, by blocking binding of the CTCF protein.
This in turn allows the IGF2 gene preferential access to a set of
enhancers shared by the two genes, which leads to IGF2 expres-
sion from the paternal allele (Reik and Murrell, 2000). Thus,
whereas methylation of the paternal allele ICR inactivates H19
expression, it facilitates IGF2 expression, the ICR acting as a
chromatin boundary element. Other epigenetic pathways for IGF2
regulation which are not contingent on the ICR are also suggested
by detailed methylation analysis of the IGF2 region in Wilms’
tumours (WTs) by sequencing of bisulphite-modified DNA
(Sullivan et al, 1999). Using this method, which assesses methyl-
ation at all CpG dinucleotides by the selective conversion of
unmethylated cytosines to uracil, with methylated cytosines
remaining unaltered (Olek et al, 1996), a novel DMR was identi-
fied in the IGF2 gene. Whereas the IGF2 promoters and other CpG
islands exhibited no methylation changes paralleling the
imprinting status of samples, the new DMR displayed an absence
of methylation in WTs in which IGF2 imprinting became biallelic,
implicating this region in tumour-specific deregulation.

Genomic imprinting changes in cancer

One of the earliest links between imprinting and cancer came with
the discovery that loss of heterozygosity (LOH) at chromosome
11p always involved the loss of the maternal allele in WTs. This
preferential allele loss can be interpreted as being driven either by
the necessity in tumours to lose a maternally expressed growth
inhibitory gene, or to retain a paternally expressed growth factor
(Reik and Surani, 1989). A dense cluster of imprinted genes has
subsequently been uncovered at 11p15, containing both the pater-
nally expressed growth factor insulin-like growth factor 2 (IGF2),
and the maternally expressed growth inhibitory genes H19 and
CDKN1C (p57KIP2) (Feinberg, 1999). This suggests that the loss of
the maternal allele at 11p15 leads to the retention of expression of
a growth-promoting gene, IGF2, and the loss of expression of
growth inhibitory genes (H19 and CDKN1C).

Examination of WTs not showing 11p15 LOH revealed consis-
tent biallelic expression of IGF2; this has been termed ‘relaxation
of imprinting’ (ROI) or ‘loss of imprinting’ (LOI) (Rainier et al,
1993). Biallelic expression of IGF2 in WTs is associated with the
loss of expression of the tightly linked H19 gene, and with the
hypermethylation of an associated ICR on the normally unmethyl-
ated maternal allele (Moulton et al, 1994; Reik and Murrell, 2000).
The IGF2 maternal allele that is normally silent becomes active,
thereby leading to an increase in IGF2-gene dosage (Hastie, 1994).
In addition to the somatic epigenetic changes in WT, altered
imprinting of the 11p15 region is involved in a tumour suscepti-
bility syndrome, the Beckwith–Wiedemann syndrome (BWS).
BWS is a fetal overgrowth syndrome, exhibiting organomegaly
and increased risk of childhood cancer, especially WT. Familial
cases of BWS map to 11p15, and some sporadic cases have chro-
mosomal abnormalities involving the same region. Each of these
genetic abnormalities exhibits parent-of-origin effects: preferential
maternal transmission of inherited BWS, and in sporadic cases
uniparental disomy, paternally derived chromosome duplications,
and maternally derived chromosome translocations (Maher and
Reik, 2000). This suggested that imprinting defects might underlie
British Journal of Cancer (2000) 83(12), 1583–1588
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BWS, and indeed, constitutional biallelic expression of IGF2 was
found in several BWS patients, implicating relaxed imprinting of
this fetal mitogen as the primary cause of the disease (Weksberg et
al, 1993). The increased dosage effect of uniparental disomy in
BWS is functionally comparable to tumours showing LOH of
chromosome 11p15 in that LOH is accompanied by duplication of
the remaining (paternal, non-imprinted) copy of the gene (Hastie,
1994).

Since the original reports, loss of IGF2 imprinting has been
found in a large number of different types of both childhood and
adult cancers, including breast and hepatocellular cancers. While
IGF2 cannot be regarded as a classic proto-oncogene as no acti-
vating somatic mutations have been detected in cancer, its over-
expression may serve to give a proliferative advantage to tumour
cells in many different tissues (Joyce and Schofield, 1998). In a
mouse model of multistage carcinogenesis where tumours are
produced by SV40 T-antigen expression in the pancreas, loss of
IGF2 imprinting is an early event in tumour development
(Christofori et al, 1995). This is supported by the demonstration of
LOI of IGF2 in the normal colonic mucosa of patients with
colorectal cancer (Cui et al, 1998). Epigenetic lesions in H19 are
also detectable in normal kidney tissue adjacent to WTs, and in
premalignant lesions (nephrogenic rests) (Moulton et al, 1994;
Okamoto et al, 1997). Taken together, this suggests that imprinting
changes can be an early event in tumorigenesis.

Interestingly, Cui et al (1998) also demonstrate a strong associa-
tion of IGF2 loss of imprinting with colorectal cancers with
microsatellite instability, which is linked to epigenetic silencing of
the mismatch repair gene hMLH (Kane et al, 1997). Silencing of
hMLH does not, however, occur in normal colonic mucosa
suggesting that sequential epigenetic defects contribute to the
development of the microsatellite instability tumour phenotype.

Other notable imprinted genes on chromosome 11p15 include
BWR1A which shows low levels of somatic mutation in a variety
of cancers (Feinberg, 1999) and BWR1C (Schwienbacher et al,
2000). BWR1C is expressed from the maternal allele in fetal
kidney, but not in adult kidney or other adult tissues. Expression of
the gene is specifically down-regulated in WTs irrespective of
their LOH status by an as yet unidentified mechanism, with no
variation in promoter methylation being apparent. As WTs arise
from the developing kidney by the abnormal proliferation of renal
stem cells (metanephric blastema), they bear many oncofetal
characteristics, such as high expression of IGF2 and WT1 (Hastie,
1994). Therefore it is of particular interest that BWR1C, which has
homology to pro-apoptotic proteins, is turned off in a tumour-
specific manner. Some imprinted genes such as the mouse insulin-
like growth factor 2 receptor (Igf2r) have been shown to be
allelically silenced through oppositely imprinted antisense tran-
scripts (Wutz et al, 1997), and it will be of interest to examine
whether BWR1C is regulated by an antisense transcript.
Alternatively, cis-acting elements such as those at the IGF2-H19
locus may be epigenetically altered near the BWR1C gene.

In addition to the 11p15 gene cluster, several other imprinted
loci implicated in diverse malignancies have been reported
recently (see Table 1). We have recently demonstrated relaxation
of imprinting in WT of an antisense transcript (WT1-AS) from
the WT1 gene on chromosome 11p13, which correlated with
hypomethylation of an intronic DMR. In contrast to genetic
changes at 11p13, which occur in approximately 20% of WTs, we
found this epigenetic modification in 80% of WTs with no LOH at
11p13 (Malik et al, 2000). The WT1 antisense transcript is
British Journal of Cancer (2000) 83(12), 1583–1588
imprinted in normal kidney, whereas the sense RNA is not,
although WT1 sense transcripts show polymorphic and mosaic
imprinting in other tissues (Hastie, 1994). Therefore, WT1-AS
does not act as an allelic silencer in kidney, and although the func-
tion of WT1-AS is unclear, we have shown that it can modulate
WT1 protein levels in vitro and that it is co-expressed with WT1
sense RNA and protein in vivo (Moorwood et al, 1998). The anti-
sense RNA may act to stabilize the sense transcript in a manner
analogous to the translocation-specific bcl2-IgH antisense tran-
script found in human follicular lymphoma cells and suggested to
up-regulate bcl-2 expression (Capaccioli et al, 1996). As inappro-
priate WT1 expression has been associated with increased tumori-
genic potential (Menke et al, 1996), we have hypothesized that
WT1-AS/WT1 may be oncogenic when expressed inappropriately
(Malik et al, 2000). However, it remains to be determined when
ROI takes place, and it will clearly be of great interest to investi-
gate epigenetic events in nephrogenic trests. Recently, coordinate
overexpression of an imprinted antisense IGF2 transcript
(IGF2AS/PEG8) and IGF2 has also been shown in WT (Okutsu et
al, 2000), although IGF2AS overexpression is not as a result of
LOI. These studies emphasize the need for a fuller assessment of
antisense RNA regulation and its role in normal development and
tumorigenesis.

Two novel imprinted loci on the short arm of chromosome 1
have recently been described. These include the NOEY2/ARHI
tumour suppressor gene at 1p31 (Yu et al, 1999), a maternally
imprinted gene undergoing deletion of the non-imprinted
(expressing) allele in over 40% of breast and ovarian cancers.
Transgenic mice overexpressing the ARHI gene exhibit decreased
growth and development (Xu et al, 2000). In contrast, the p73
gene, a p53 homologue, at 1p36 shows loss of imprinting leading
to biallelic expression in renal cell carcinoma, implying oncogenic
activity (Mai et al, 1998).

Finally, the ZAC1/LOT1 gene was identified via its loss on
transformation (hence LOT) in an ovarian tumour model
(Abdollahi et al, 1997). It is located on chromosome 6q24–25, a
region frequently deleted in many solid tumours, and the gene
product has been shown to inhibit growth and induce apoptosis,
suggesting TSG activity (Varrault et al, 1998). The gene has
recently been shown to be maternally imprinted (Kamiya et al,
2000), but tumour-specific epigenetic changes remain to be
characterized.

Conclusion

The epigenetic dissection of normal and tumour cell genomes
represents perhaps the most immediately fecund post-genome
initiative. However, although targets for silencing by promoter
hypermethylation may be relatively easy to assess, it is clear from
our discussion that we are only beginning to understand more
complex regulatory elements, molecules and pathways, such as
chromatin boundary elements and antisense/non-coding RNAs.
By employing a combinatorial approach examining both gene
expression and DNA methylation profiling, it should become
possible to obtain a detailed comprehension of the cancer cell’s
transcriptome and its cognate regulatory apparatus. Our under-
standing of epigenetics and its associated marker, DNA methyl-
ation, provides a crucial cornerstone for future explorations. In
contrast to classical mutations, epigenetic changes are potentially
reversible by pharmaceutical intervention. As there is increasing
evidence that epigenetic lesions are causative in nature, the
© 2000 Cancer Research Campaign
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benefits of epigenetics research are potentially high, including
methods for cancer prognosis, diagnosis, and ultimately treatment.
Modulators of general methylation (5-azacytidine) and histone
deacetylation (trichostatin, butyrate) may provide useful templates
and adducts for more specific cancer therapies.
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