Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Nov;85(10):1527–1534. doi: 10.1054/bjoc.2001.2089

Peptide HER2(776–788) represents a naturally processed broad MHC class II-restricted T cell epitope

R Sotiriadou 1, S A Perez 1, A D Gritzapis 1, P A Sotiropoulou 1, H Echner 2, S Heinzel 3,4, A Mamalaki 5, G Pawelec 3, W Voelter 2, C N Baxevanis 1, M Papamichail 1
PMCID: PMC2363935  PMID: 11720440

Abstract

HER2/neu-derived peptides inducing MHC class II-restricted CD4+ T helper lymphocyte (Th) responses, although critical for tumour rejection, are not thoroughly characterized. Here, we report the generation and characterization of CD4+ T cell clones specifically recognizing a HER-2/neu-derived peptide (776–788) [designated HER2(776–788)]. Such clones yielded specific proliferative and cytokine [gamma-interferon(IFN)-γ] responses when challenged with autologous dendritic cells (DCs) loaded with HER2(776–788). By performing blocking studies with monoclonal antibodies (MAbs) and by using DCs from allogeneic donors sharing certain HLA-DR alleles, we found that HER2(776–788) is a promiscuous peptide presented, at least, by DRB5*0101, DRB1*0701 and DRB1*0405 alleles. One TCRVbeta6.7+ clone recognized the HLA-DRB5*0101+ FM3 melanoma cell line transfected with a full length HER-2/neu cDNA. Moreover, this clone recognized the HER-2/neu+ SKBR3 breast cancer cell line induced to express HLA-DR, thus demonstrating that HER2(776–788) represents a naturally processed and presented epitope. Our data demonstrate that helper peptide HER2(776–788) represents a promiscuous epitope binding to at least three HLA-DR alleles, thus offering a broad population coverage. The use of antigenic peptides presented by major histocompatibility complex (MHC) class II in addition to those presented by class I may improve the therapeutic efficacy of active immunization.© 2001 Cancer Research Campaign  http://www.bjcancer.com

Keywords: HER-2/neu peptide, CD4+ T cell clones, MHC alleles, vaccines, cancer immunotherapy

Full Text

The Full Text of this article is available as a PDF (143.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. W., Kudelka A. P., Honda T., Pollack M. S., Gershenson D. M., Gillogly M. A., Murray J. L., Ioannides C. G. Induction of determinant spreading and of Th1 responses by in vitro stimulation with HER-2 peptides. Cancer Immunol Immunother. 2000 Nov;49(9):459–468. doi: 10.1007/s002620000143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baxevanis C. N., Spanakos G., Voutsas I. F., Gritzapis A. D., Tsitsilonis O. E., Mamalaki A., Papamichail M. Increased generation of autologous tumor-reactive lymphocytes by anti-CD3 monoclonal antibody and prothymosin alpha. Cancer Immunol Immunother. 1999 May-Jun;48(2-3):71–84. doi: 10.1007/s002620050550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baxevanis C. N., Voutsas I. F., Tsitsilonis O. E., Gritzapis A. D., Sotiriadou R., Papamichail M. Tumor-specific CD4+ T lymphocytes from cancer patients are required for optimal induction of cytotoxic T cells against the autologous tumor. J Immunol. 2000 Apr 1;164(7):3902–3912. doi: 10.4049/jimmunol.164.7.3902. [DOI] [PubMed] [Google Scholar]
  4. Busch R., Hill C. M., Hayball J. D., Lamb J. R., Rothbard J. B. Effect of natural polymorphism at residue 86 of the HLA-DR beta chain on peptide binding. J Immunol. 1991 Aug 15;147(4):1292–1298. [PubMed] [Google Scholar]
  5. Cheever M. A., Disis M. L., Bernhard H., Gralow J. R., Hand S. L., Huseby E. S., Qin H. L., Takahashi M., Chen W. Immunity to oncogenic proteins. Immunol Rev. 1995 Jun;145:33–59. doi: 10.1111/j.1600-065x.1995.tb00076.x. [DOI] [PubMed] [Google Scholar]
  6. Coppin H. L., Carmichael P., Lombardi G., L'Faqihi F. E., Salter R., Parham P., Lechler R. I., de Preval C. Position 71 in the alpha helix of the DR beta domain is predicted to influence peptide binding and plays a central role in allorecognition. Eur J Immunol. 1993 Feb;23(2):343–349. doi: 10.1002/eji.1830230207. [DOI] [PubMed] [Google Scholar]
  7. Demotz S., Barbey C., Corradin G., Amoroso A., Lanzavecchia A. The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. Eur J Immunol. 1993 Feb;23(2):425–432. doi: 10.1002/eji.1830230219. [DOI] [PubMed] [Google Scholar]
  8. Disis M. L., Calenoff E., McLaughlin G., Murphy A. E., Chen W., Groner B., Jeschke M., Lydon N., McGlynn E., Livingston R. B. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. 1994 Jan 1;54(1):16–20. [PubMed] [Google Scholar]
  9. Disis M. L., Cheever M. A. HER-2/neu protein: a target for antigen-specific immunotherapy of human cancer. Adv Cancer Res. 1997;71:343–371. doi: 10.1016/s0065-230x(08)60103-7. [DOI] [PubMed] [Google Scholar]
  10. Doherty D. G., Penzotti J. E., Koelle D. M., Kwok W. W., Lybrand T. P., Masewicz S., Nepom G. T. Structural basis of specificity and degeneracy of T cell recognition: pluriallelic restriction of T cell responses to a peptide antigen involves both specific and promiscuous interactions between the T cell receptor, peptide, and HLA-DR. J Immunol. 1998 Oct 1;161(7):3527–3535. [PubMed] [Google Scholar]
  11. Fisk B., Blevins T. L., Wharton J. T., Ioannides C. G. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med. 1995 Jun 1;181(6):2109–2117. doi: 10.1084/jem.181.6.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fisk B., Hudson J. M., Kavanagh J., Wharton J. T., Murray J. L., Ioannides C. G., Kudelka A. P. Existent proliferative responses of peripheral blood mononuclear cells from healthy donors and ovarian cancer patients to HER-2 peptides. Anticancer Res. 1997 Jan-Feb;17(1A):45–53. [PubMed] [Google Scholar]
  13. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  14. Halder T., Pawelec G., Kirkin A. F., Zeuthen J., Meyer H. E., Kun L., Kalbacher H. Isolation of novel HLA-DR restricted potential tumor-associated antigens from the melanoma cell line FM3. Cancer Res. 1997 Aug 1;57(15):3238–3244. [PubMed] [Google Scholar]
  15. Hemmer B., Pinilla C., Gran B., Vergelli M., Ling N., Conlon P., McFarland H. F., Houghten R., Martin R. Contribution of individual amino acids within MHC molecule or antigenic peptide to TCR ligand potency. J Immunol. 2000 Jan 15;164(2):861–871. doi: 10.4049/jimmunol.164.2.861. [DOI] [PubMed] [Google Scholar]
  16. Hung M. C., Lau Y. K. Basic science of HER-2/neu: a review. Semin Oncol. 1999 Aug;26(4 Suppl 12):51–59. [PubMed] [Google Scholar]
  17. Ioannides C. G., Freedman R. S., Platsoucas C. D., Rashed S., Kim Y. P. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells. J Immunol. 1991 Mar 1;146(5):1700–1707. [PubMed] [Google Scholar]
  18. Jäger E., Jäger D., Karbach J., Chen Y. T., Ritter G., Nagata Y., Gnjatic S., Stockert E., Arand M., Old L. J. Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101-0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J Exp Med. 2000 Feb 21;191(4):625–630. doi: 10.1084/jem.191.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Karr R. W., Panina-Bordignon P., Yu W. Y., Lanzavecchia A. Antigen-specific T cells with monogamous or promiscuous restriction patterns are sensitive to different HLA-DR beta chain substitutions. J Immunol. 1991 Jun 15;146(12):4242–4247. [PubMed] [Google Scholar]
  20. Keene J. A., Forman J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med. 1982 Mar 1;155(3):768–782. doi: 10.1084/jem.155.3.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kobayashi H., Wood M., Song Y., Appella E., Celis E. Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen. Cancer Res. 2000 Sep 15;60(18):5228–5236. [PubMed] [Google Scholar]
  22. Linehan D. C., Goedegebuure P. S., Peoples G. E., Rogers S. O., Eberlein T. J. Tumor-specific and HLA-A2-restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer. J Immunol. 1995 Nov 1;155(9):4486–4491. [PubMed] [Google Scholar]
  23. Martínez-Soria E., Steimle V., Burkhardt C., Beffy P., Tiercy J. M., Epplen J. T., Mach B., Irlé C. An HLA-DRB alpha-helix motif shared by DR11 and DR8 alleles is implicated in the pluriallelic restriction of peptide-specific T-cell lines. Hum Immunol. 1994 Aug;40(4):279–290. doi: 10.1016/0198-8859(94)90027-2. [DOI] [PubMed] [Google Scholar]
  24. McKinney J. S., Fu X. T., Swearingen C., Klohe E., Karr R. W. Individual effects of the DR11-variable beta-chain residues 67, 71, and 86 upon DR(alpha,beta 1*1101)-restricted, peptide-specific T cell proliferation. J Immunol. 1994 Dec 15;153(12):5564–5571. [PubMed] [Google Scholar]
  25. Pardoll D. M., Topalian S. L. The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol. 1998 Oct;10(5):588–594. doi: 10.1016/s0952-7915(98)80228-8. [DOI] [PubMed] [Google Scholar]
  26. Peoples G. E., Goedegebuure P. S., Smith R., Linehan D. C., Yoshino I., Eberlein T. J. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):432–436. doi: 10.1073/pnas.92.2.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peoples G. E., Yoshino I., Douville C. C., Andrews J. V., Goedegebuure P. S., Eberlein T. J. TCR V beta 3+ and V beta 6+ CTL recognize tumor-associated antigens related to HER2/neu expression in HLA-A2+ ovarian cancers. J Immunol. 1994 May 15;152(10):4993–4999. [PubMed] [Google Scholar]
  28. Reichert A., Heintz D., Echner H., Voelter W., Faulstich H. Identification of contact sites in the actin-thymosin beta 4 complex by distance-dependent thiol cross-linking. J Biol Chem. 1996 Jan 19;271(3):1301–1308. doi: 10.1074/jbc.271.3.1301. [DOI] [PubMed] [Google Scholar]
  29. Ridge J. P., Di Rosa F., Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998 Jun 4;393(6684):474–478. doi: 10.1038/30989. [DOI] [PubMed] [Google Scholar]
  30. Rongcun Y., Salazar-Onfray F., Charo J., Malmberg K. J., Evrin K., Maes H., Kono K., Hising C., Petersson M., Larsson O. Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol. 1999 Jul 15;163(2):1037–1044. [PubMed] [Google Scholar]
  31. Schoenberger S. P., Toes R. E., van der Voort E. I., Offringa R., Melief C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998 Jun 4;393(6684):480–483. doi: 10.1038/31002. [DOI] [PubMed] [Google Scholar]
  32. Schultz L. B., Weber B. L. Recent advances in breast cancer biology. Curr Opin Oncol. 1999 Nov;11(6):429–434. doi: 10.1097/00001622-199911000-00002. [DOI] [PubMed] [Google Scholar]
  33. Simpson E., Gordon R. D. Responsiveness to HY antigen Ir gene complementation and target cell specificity. Immunol Rev. 1977;35:59–75. doi: 10.1111/j.1600-065x.1977.tb00235.x. [DOI] [PubMed] [Google Scholar]
  34. Southwood S., Sidney J., Kondo A., del Guercio M. F., Appella E., Hoffman S., Kubo R. T., Chesnut R. W., Grey H. M., Sette A. Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol. 1998 Apr 1;160(7):3363–3373. [PubMed] [Google Scholar]
  35. Topalian S. L., Gonzales M. I., Parkhurst M., Li Y. F., Southwood S., Sette A., Rosenberg S. A., Robbins P. F. Melanoma-specific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J Exp Med. 1996 May 1;183(5):1965–1971. doi: 10.1084/jem.183.5.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tuttle T. M., Anderson B. W., Thompson W. E., Lee J. E., Sahin A., Smith T. L., Grabstein K. H., Wharton J. T., Ioannides C. G., Murray J. L. Proliferative and cytokine responses to class II HER-2/neu-associated peptides in breast cancer patients. Clin Cancer Res. 1998 Aug;4(8):2015–2024. [PubMed] [Google Scholar]
  37. Wang R. F., Rosenberg S. A. Human tumor antigens for cancer vaccine development. Immunol Rev. 1999 Aug;170:85–100. doi: 10.1111/j.1600-065x.1999.tb01331.x. [DOI] [PubMed] [Google Scholar]
  38. Yoshino I., Goedegebuure P. S., Peoples G. E., Parikh A. S., DiMaio J. M., Lyerly H. K., Gazdar A. F., Eberlein T. J. HER2/neu-derived peptides are shared antigens among human non-small cell lung cancer and ovarian cancer. Cancer Res. 1994 Jul 1;54(13):3387–3390. [PubMed] [Google Scholar]
  39. Zeliszewski D., Golvano J. J., Gaudebout P., Dorval I., Freidel C., Gebuhrer L., Betuel H., Borras-Cuesta F., Sterkers G. Implication of HLA-DR residues at positions 67, 71, and 86 in interaction between HLA-DR11 and peptide HA306-320. J Immunol. 1993 Dec 1;151(11):6237–6247. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES