Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Jul;85(2):293–296. doi: 10.1054/bjoc.2001.1896

The relationship between radiation-induced G1arrest and chromosome aberrations in Li-Fraumeni fibroblasts with or without germline TP53 mutations

J M Boyle 1, A Spreadborough 1, M J Greaves 1, J M Birch 2, J M Varley 1, D Scott 1
PMCID: PMC2364041  PMID: 11461092

Abstract

We previously showed that cultured fibroblasts from patients with the cancer-prone Li-Fraumeni (LF) syndrome, having heterozygous germline TP53 mutations, sustain less ionizing radiation-induced permanent G1 arrest than normal fibroblasts. In contrast, fibroblast strains from LF patients without TP53 mutations showed normal G1 arrest. We have now investigated the relationship between the extent of G1 arrest and the level of structural chromosome damage (mainly dicentrics, rings and acentric fragments) in cells at their first mitosis after G1 irradiation, in 9 LF strains with TP53 mutations, 6 without TP53 mutations and 7 normal strains. Average levels of damage in the mutant strains were 50% higher than in normals, whereas in non-mutant LF strains they were 100% higher. DNA double strand breaks (dsb) are known to act as a signal for p53-dependent G1 arrest and to be the lesions from which chromosome aberrations arise. These results suggest that a minimal level of dsb is required before the signal for arrest is activated and that p53-defective cells have a higher signal threshold than p53-proficient cells. Dsb that do not cause G1 blockage can progress to mitosis and appear as simple deletions or interact to form exchange aberrations. The elevated levels in the non-mutant strains may arise from defects in the extent or accuracy of dsb repair. In LF cells with or without TP53 mutations, the reduced capacity to eliminate or repair chromosomal damage of the type induced by ionising radiation, may contribute to cancer predisposition in this syndrome. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: Li-Fraumeni syndrome, p53, Chk2, ionizing radiation, G1arrest, chromosome aberrations, fibroblasts

Full Text

The Full Text of this article is available as a PDF (55.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell D. W., Varley J. M., Szydlo T. E., Kang D. H., Wahrer D. C., Shannon K. E., Lubratovich M., Verselis S. J., Isselbacher K. J., Fraumeni J. F. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999 Dec 24;286(5449):2528–2531. doi: 10.1126/science.286.5449.2528. [DOI] [PubMed] [Google Scholar]
  2. Boyle J. M., Greaves M. J., Camplejohn R. S., Birch J. M., Roberts S. A., Varley J. M. Radiation-induced G1 arrest is not defective in fibroblasts from Li-Fraumeni families without TP53 mutations. Br J Cancer. 1999 Apr;79(11-12):1657–1664. doi: 10.1038/sj.bjc.6690265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyle J. M., Mitchell E. L., Greaves M. J., Roberts S. A., Tricker K., Burt E., Varley J. M., Birch J. M., Scott D. Chromosome instability is a predominant trait of fibroblasts from Li-Fraumeni families. Br J Cancer. 1998 Jun;77(12):2181–2192. doi: 10.1038/bjc.1998.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyle J. M., Spreadborough A., Greaves M. J., Birch J. M., Scott D. Chromosome instability in fibroblasts derived from Li-Fraumeni syndrome families without TP53 mutations. Br J Cancer. 2000 Nov;83(9):1136–1138. doi: 10.1054/bjoc.2000.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Camplejohn R. S., Perry P., Hodgson S. V., Turner G., Williams A., Upton C., MacGeoch C., Mohammed S., Barnes D. M. A possible screening test for inherited p53-related defects based on the apoptotic response of peripheral blood lymphocytes to DNA damage. Br J Cancer. 1995 Sep;72(3):654–662. doi: 10.1038/bjc.1995.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chehab N. H., Malikzay A., Appel M., Halazonetis T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 2000 Feb 1;14(3):278–288. [PMC free article] [PubMed] [Google Scholar]
  7. Ford J. M., Baron E. L., Hanawalt P. C. Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res. 1998 Feb 15;58(4):599–603. [PubMed] [Google Scholar]
  8. Lane D. P. Cancer. p53, guardian of the genome. Nature. 1992 Jul 2;358(6381):15–16. doi: 10.1038/358015a0. [DOI] [PubMed] [Google Scholar]
  9. Lee J. M., Abrahamson J. L., Kandel R., Donehower L. A., Bernstein A. Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice. Oncogene. 1994 Dec;9(12):3731–3736. [PubMed] [Google Scholar]
  10. Little J. B., Nagasawa H. Effect of confluent holding on potentially lethal damage repair, cell cycle progression, and chromosomal aberrations in human normal and ataxia-telangiectasia fibroblasts. Radiat Res. 1985 Jan;101(1):81–93. [PubMed] [Google Scholar]
  11. Little J. B., Nagasawa H., Keng P. C., Yu Y., Li C. Y. Absence of radiation-induced G1 arrest in two closely related human lymphoblast cell lines that differ in p53 status. J Biol Chem. 1995 May 12;270(19):11033–11036. doi: 10.1074/jbc.270.19.11033. [DOI] [PubMed] [Google Scholar]
  12. Mitchell E. L., Scott D. G2 chromosomal radiosensitivity in fibroblasts of ataxia-telangiectasia heterozygotes and a Li-Fraumeni syndrome patient with radioresistant cells. Int J Radiat Biol. 1997 Oct;72(4):435–438. doi: 10.1080/095530097143202. [DOI] [PubMed] [Google Scholar]
  13. Parshad R., Price F. M., Pirollo K. F., Chang E. H., Sanford K. K. Cytogenetic response to G2-phase X irradiation in relation to DNA repair and radiosensitivity in a cancer-prone family with Li-Fraumeni syndrome. Radiat Res. 1993 Nov;136(2):236–240. [PubMed] [Google Scholar]
  14. Pfeiffer P., Goedecke W., Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000 Jul;15(4):289–302. doi: 10.1093/mutage/15.4.289. [DOI] [PubMed] [Google Scholar]
  15. Schwartz J. L., Jordan R., Sedita B. A., Swenningson M. J., Banáth J. P., Olive P. L. Different sensitivity to cell killing and chromosome mutation induction by gamma rays in two human lymphoblastoid cell lines derived from a single donor: possible role of apoptosis. Mutagenesis. 1995 May;10(3):227–233. doi: 10.1093/mutage/10.3.227. [DOI] [PubMed] [Google Scholar]
  16. Schwartz J. L., Jordan R. Selective elimination of human lymphoid cells with unstable chromosome aberrations by p53-dependent apoptosis. Carcinogenesis. 1997 Jan;18(1):201–205. doi: 10.1093/carcin/18.1.201. [DOI] [PubMed] [Google Scholar]
  17. Tominaga K., Morisaki H., Kaneko Y., Fujimoto A., Tanaka T., Ohtsubo M., Hirai M., Okayama H., Ikeda K., Nakanishi M. Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulation by p53. J Biol Chem. 1999 Oct 29;274(44):31463–31467. doi: 10.1074/jbc.274.44.31463. [DOI] [PubMed] [Google Scholar]
  18. Varley J. M., Chapman P., McGown G., Thorncroft M., White G. R., Greaves M. J., Scott D., Spreadborough A., Tricker K. J., Birch J. M. Genetic and functional studies of a germline TP53 splicing mutation in a Li-Fraumeni-like family. Oncogene. 1998 Jun 25;16(25):3291–3298. doi: 10.1038/sj.onc.1201878. [DOI] [PubMed] [Google Scholar]
  19. Wang L., Cui Y., Lord B. I., Roberts S. A., Potten C. S., Hendry J. H., Scott D. Gamma-ray-induced cell killing and chromosome abnormalities in the bone marrow of p53-deficient mice. Radiat Res. 1996 Sep;146(3):259–266. [PubMed] [Google Scholar]
  20. Williams A. C., Miller J. C., Collard T., Browne S. J., Newbold R. F., Paraskeva C. The effect of different TP53 mutations on the chromosomal stability of a human colonic adenoma derived cell line with endogenous wild type TP53 activity, before and after DNA damage. Genes Chromosomes Cancer. 1997 Sep;20(1):44–52. doi: 10.1002/(sici)1098-2264(199709)20:1<44::aid-gcc7>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  21. Williams K. J., Boyle J. M., Birch J. M., Norton J. D., Scott D. Cell cycle arrest defect in Li-Fraumeni Syndrome: a mechanism of cancer predisposition? Oncogene. 1997 Jan 23;14(3):277–282. doi: 10.1038/sj.onc.1200838. [DOI] [PubMed] [Google Scholar]
  22. Williams K. J., Heighway J., Birch J. M., Norton J. D., Scott D. No defect in G1/S cell cycle arrest in irradiated Li-Fraumeni lymphoblastoid cell lines. Br J Cancer. 1996 Sep;74(5):698–703. doi: 10.1038/bjc.1996.424. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES