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Phosphorothioate oligonucleotides, suramin and heparin inhibit
DNA-dependent protein kinase activity
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Phosphorothioate oligonucleotides and suramin bind to heparin binding proteins including DNA polymerases, and inhibit their
functions. In the present study, we report inhibition of DNA-dependent protein kinase activity by phosphorothioate
oligonuclectides, suramin and heparin. Inhibitory effect of phosphorothioate oligonucleotides on DNA-dependent protein
kinase activity was increased with length and reached a plateau at 36-mer. The base composition of phosphorothioate
oligonucleotides did not affect the inhibitory effect. The inhibitory effect by phosphorothioate oligodeoxycytidine 36-mer can
be about 200-fold greater than that by the phosphodiester oligodeoxycytidine 36-mer. The inhibitory effect was also observed
with purified DNA-dependent protein kinase, which suggests direct interaction between DNA-dependent protein kinase and
phosphorothioate oligonucleotides. DNA-dependent protein kinase will have different binding positions for double-stranded
DNA and phosphorothioate oligodeoxycytidine 36-mer because they were not competitive in DNA-dependent protein
kinase activation. Suramin and heparin inhibited DNA-dependent protein kinase activity with ICso of 1.7 uM and 0.27 pug ml ™'
respectively. DNA-dependent protein kinase activities and DNA double-stranded breaks repair in cultured cells were
significantly suppressed by the treatment with suramin in vivo. Our present observations suggest that suramin may possibly
result in sensitisation of cells to ionising radiation by inactivation of DNA-dependent protein kinase and the impairment of

double-stranded breaks repair.
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Phosphorothioate oligonucleotide (S-oligo) is an analogue of phos-
phodiester oligonucleotide having modified internucleotide
linkages that make it more stable to nucleases than phosphodiester
oligonucleotide (Wagner, 1995). Antisense S-oligo is designed to
have the complementary base sequence for binding the target
mRNA specifically. However, the ability of S-oligo to bind non-
specifically to a variety of proteins has been well documented
(Yakubov et al, 1993; Stein 1995). Such proteins include heparin-
binding proteins such as basic fibroblast growth factor (bFGF), acid
fibroblast growth factor (aFGF), Kaposi’s growth factor (FGF-4)
(Guvakova et al, 1995), and DNA polymerases (Gao et al, 1992).
S-oligo also inhibits the functions of other proteins such as CD4
(Yakubov et al, 1993), gp120 (Stein et al, 1991), Mac-1 (Benimets-
kaya et al, 1997), RNase H (Gao et al, 1992), human
immunodeficiency virus type 1 (HIV-1) reverse transcriptase
(Marshall et al, 1992), herpes simplex virus (HSV) type 2-induced
DNA polymerase (Gao et al, 1989), and HIV-1 integrase (Tramon-
tano et al, 1998).
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Suramin has been used as an anti-cancer agent and an anti-HIV
agent (Stein, 1993). The structure of suramin is shown in Figure 1.
Potential mechanisms of the anti-tumour effect are inhibition of
heparin binding growth factors. Suramin binds to PDGEF, basic
fibroblast growth factor (bFGF) and other growth factors, and it
prevents the binding of growth factors to their corresponding
receptors (Hosang, 1985; Coffey et al, 1987; Stein, 1993). Potential
mechanisms of the anti-HIV effect are inactivation of reverse tran-
scriptase and DNA polymerases (Mitsuya et al, 1984; Spigelman et
al, 1987; Stein, 1993). Suramin is also an inhibitor of Protein
kinase C and DNA topoisomerase II (Mahoney et al, 1990; Boja-
nowski et al, 1992).

Thus both S-oligo and suramin act as heparin mimetics and
they inhibit HIV-1 integration into host DNA (Stein et al, 1993;
Benimetskaya et al, 1995). In the present study, we investigated
the effects of S-oligo, suramin and heparin on activity of DNA-
dependent protein kinase (DNA-PK) because DNA-PK is thought
to be a heparin binding protein (Lees-Miller and Anderson,
1991) and because it is involved in the retroviral integration into
host DNA (Daniel et al, 1999). We demonstrate that S-oligo, sura-
min and heparin inhibit DNA-PK activity. DNA-dependent protein
kinase activities and DNA-double stranded breaks (DSBs) repair of
cultured cells were significantly suppressed by the treatment with
suramin. Our present observations suggest that suramin may possi-
bly result in sensitisation of cells to ionising radiation by
inactivation of DNA-PK and the impairment of DSBs repair.
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Figure | Structure of suramin. The hexasodium salt is shown. The molecular weight of suramin is 1429.

MATERIALS AND METHODS

Cell lines

LM217 is an SV-40 transformed human fibroblast cell line derived
from HS27 (Murnane, 1986), and it was obtained from Dr JP
Murnane. A human glioblastoma cell line T98G, and a human
acute lymphoblastic leukaemia cell line MOLT-4 were obtained
from the ATCC (Rockville, MD, USA).

Chemicals

Suramin was purchased from Calbiochem-Novabiochem Co. (La
Jolla, CA, USA). Oligonucleotides were synthesised by standard
phosphoramidite chemistry (Hokkaido System Science Co.,
Sapporo, Japan). The oligonucleotides were base-deblocked in
30% ammonium hydroxide at 55°C for 8 h and purified by
reversed phase high pressure liquid chromatography (HPLC)
(0.1 M triethylamine). The oligonucleotides were detritylated in
80% acetic acid, lyophilised and resuspended in 50% diethyl ether.
The aqueous phase was recovered and the oligonucleotides were
precipitated. Oligonucleotide concentrations were determined by
spectroscopy. The sizes of oligonucleotides were confirmed by
polyacrylamide gel electrophoresis. Phosphorothioate oligodeoxycy-
tidine with different chain length (S-dCn), phosphorothioate
oligodeoxyguanosine 36-mer (S-dGss), phosphorothioate oligo-
deoxythymidine 36-mer (S-dT;s), phosphorothioate oligodeoxy-
adenosine 36-mer (S-dAse), and phosphodiester oligodeoxycytidine
36-mer (dCss) were synthesised.

Digestion of S-dCs¢

For digestion of S-dCjg, it was incubated in 2N HCI at 95°C for
1 h. After incubation, pH of the solution was adjusted to pH 7.2
using NaOH. The effect of the HCl-treatment was confirmed by
polyacrylamide gel electrophoresis and no obvious band was
observed.

DNA-PK purification

DNA-dependent protein kinase was purified as described
previously (Matsumoto et al, 1997). MOLT-4 cell nuclei were
prepared from 2-5x10° cells as described by Dignam et al
(1983). The nuclei were resuspended in buffer A (20 mMm
HEPES-NaOH, pH 7.9; 400 mm KCl; 1 mM EDTA; 1 mMm EGTA;
0.02% Tween 20; 10% glycerol; 1 mMm dithiothreitol (DTT);
1 mM  phenylmethylsulfonyl fluoride (PMSF); 1 ugml™' of
leupeptin, pepstatin and antipain, respectively) and agitated with
a stirring bar for 30 min followed by centrifugation at 100000 g
for 60 min. The supernatant nuclear extract was passed through
the first DEAE Bio-Gel A (Bio-Rad Laboratories, Hercules, CA,
USA) column and dialysed against buffer B (20 mM Tris-HCI,
pH 7.5 1 mM EDTA; 10% glycerol; 50 mm NaCl; 1 mm DTT;
1 mMm PMSF; 1ugml™' leupepting 1 pugml ' pepstatin;
1 ug ml™" antipain). Dialysate was applied to the second DEAE
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Bio-Gel A and eluted with buffer B with increasing NaCl concen-
tration linearly from 0.05 to 0.3 M. DNA-dependent protein kinase
was eluted with 0.14-0.17 M NaCl. The DNA-PK fractions were
passed through NAP-25 column (Amersham Pharmacia Biotech,
Uppsala, Sweden) equilibrated with buffer C (20 mm HEPES-
NaOH, pH 7.2; 1 mm MgCly; 15% glycerol; 200 mM NaCl; 1 mM
DTT; 1 mM PMSF; 1 ug ml~' leupeptin; 1 ug ml™' pepstatin,
1 ug ml~" antipain) and finally loaded to a native DNA-cellulose
column (Amersham Pharmacia Biotech). Absorbed protein was
eluted into 12 fractions (1 ml each) by stepwise increase of NaCl
concentration in buffer C. We used 0.6 M NaCl eluate as the puri-
fied DNA-PK holoenzyme. Final protein concentration of purified
DNA-PK solution was 0.4 mg ml .

DNA-PK activity measurement

DNA-dependent protein kinase activity was assayed as previously
described using a synthetic peptide (EPPLSQEAFADLWKK)
(Hosoi et al, 1998b). Whole cell extracts were prepared as described
previously (Hosoi et al, 1998a). The cell extracts were incubated in
20 ul of kinase buffer (20 mM HEPES-NaOH, pH 7.2; 100 mM
KCl; 5 mM MgCl,; 1 mm DTT; 0.5 mMm NaF; 0.5 mMm f-glycero-
phosphate; 0.2 mm ATP; 10 pCi ml ! [y—32P]ATP in the
presence of 0.5 ug ml~' Poly(dG-dC)-Poly(dG-dC) (Amersham
Pharmacia Biotech) and 0.5 mg ml™' substrate peptide) at 37°C
for 15 min. The final protein concentration in the reaction buffer
was 0.15 mg ml~'. In DNA-PK activity measurement using the
purified DNA-PK solution, 0.25 pl of the solution was used in each
reaction. The reactions were stopped by the addition of 20 ul of
30% acetic acid and spotted onto P81 paper disks (Whatman Inter-
national Ltd., Maidstone, UK). The disks were washed four times
in 15% acetic acid. Radioactivity in the paper disks was measured
in a liquid scintillation counter. The DNA-PK activity is defined as
the amount of P transferred from ATP to the synthetic peptide in
the reaction. The specific activities of the cell extracts from
LM217 cells, those from T98G cells and the purified DNA-PK solu-
tion were 19.0+2.7, 72.31+9.48 and 2316.0+128.9 pmol /,Lgf1
protein respectively.

Preparation of plug and irradiation

Cells in dishes were irradiated on ice using an X-ray machine
SHIMADZU HF350C (Shimadzu Corporation, Kyoto, Japan) at
200 kV, 20 mA with a 0.5 mm Cu and 1.0 mm Al filter at a dose
rate of 1.5 Gy min !, and then incubated in a CO, incubator at
37°C for repair. At each paoin, cells were trypsinised and washed
two times with cold PBS, and the resulting cell pellet was
embedded in 0.75% agarose (Low Melt Preparative Grade Agarose,
Bio-Rad Laboratories). These agarose sample plugs were immersed
in ice-cold lysis solution (0.5 M EDTA; 0.01 M Tris; 2% Sarcosyl;
0.2 mg ml™" proteinase K) for 1 h and then incubated at 50°C
for 48 h. After lysis, sample plugs were washed for 1 h at room
temperature in a buffer containing 10 mm Tris (pH 8.0) and
0.1 M EDTA and then treated for 1 h at 37°C in the same buffer
with 0.1 mg ml™' RNase A (Wang et al, 2001). For the initial time
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(0 h), cells were embedded in agarose and irradiated in ice-cold
PBS followed by an immediate lysis as described (Okayasu et al,
1998).

Pulsed-field gel electrophoresis (PFGE)

Sample plugs were electrophoresed in 0.5x TBE buffer (45 mm
Tris; 45 mM boric acid; 1.5 mMm EDTA, pH 8.2) in a clamped
homogenous electric field (CHEF) gel box (CHEF-DR™ III System,
Bio-Rad Laboratories) in 0.8% agarose gel (SeaKem GTG® agar-
ose, Bio Whittaker Molecular Applications, ME, USA) at 14°C.
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The voltage applied was 6.0 V/cm with a 60-s pulse time for the
first 9 h followed by 120-s pulse time for the last 15 h (total run
time 24 h) (Okayasu et al, 1998). After electrophoresis, the gels
were stained with ethidium bromide (1.0 mg ml™ ), detained in
deionised distilled water (Longo et al, 1997). The images were
acquired under UV light using Printgraph AE-6910CX and Image-
Saver AE-6905C (ATTO Corporation, Tokyo, Japan) and analysed
by NIH image. Fraction of DNA in the lane (FDL) was calculated
as [(average density in the lane) x (area of the lane)]/[(average
density in the lane) x (area of the lane)+(average density in the
well) x (area of the well)]. The background FDL, which corre-
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Figure 2 Effect of oligonucleotides on DNA-PK activity. (A) Effect of S-dCg, S-dC5, S-dCps, S-dCsq, S-dCug, and S-dCgp on DAN-PK activity. Whole cell
extract prepared from LM217 was used. (B) Effect of S-dC3¢ on DNA-PK activity. Whole cell extract prepared from T98G was used. (C) Effect of S-dCs,
S-dGsg, S-dAze, S-dT3¢, and dCs¢ on DNA-PK activity. Whole cell extract prepared from LM217 was used. (D) Effect of S-dC3¢ and dCs¢ on DNA-PK
activity. Purified DNA-PK was used. (E) Effect of HCl-treated S-dCs¢ and untreated S-dCsq on DNA-PK activity. Whole cell extract prepared from
LM217 was used. Salt concentration of untreated S-dCs¢ was adjusted to that of HCl-treated S-dCs.. DNA-PK activities are expressed as values relative
to that of control, which is set to a value of |. The data represents the means+s.d. (n=3).
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sponds to FDL without irradiation, was subtracted from each
point.

RESULTS

Inhibition of DNA-PK activity was dependent on the chain
length of S-dCn

DNA-dependent protein kinase activity was measured in the
presence of S-dCn with different chain lengths. DNA-dependent
protein kinase activity was inhibited by S-dCn depending on the
concentration of S-dCn and the number of phosphorothioate
linkages (Figure 2A). Inhibitory concentration 50 (ICsy) of S-dCn
is shown in Figure 3. The ICs, value decreased from 975 nM to
13 nM with the increased chain length from 12 to 36. The ICs
value reached a plateau with the 36-mer. To confirm whether this
inhibitory effect was specific for LM217, the effect of S-dCs¢ on
DNA-PK activity was investigated using whole cell extract derived
from T98G. The ICs, in a T98G cell extract was almost the same as
that in a LM217 cell extract (Figure 2B).

Inhibition of DNA-PK activity was independent of the base
composition

Next, effect of base composition on inhibition of DNA-PK activity
was investigated. Effect of S-dCss, S-dGse, S-dAsze or S-dTs on
DNA-PK activity is shown in Figure 2C. Inhibition of DNA-PK
activity was not affected by the base composition of phosphor-
othioate 36-mer oligonucleotides.

Direct interaction between oligonucleotides and DNA-PK,
and comparison between the effect of phosphodiester
oligonucleotides on DNA-PK and that of phosphorothioate
oligonucleotides

In order to confirm whether inhibition of DNA-PK activity by S-
oligos is mediated by direct interaction with DNA-PK, purified
DNA-PK was used. S-dCss inhibited purified DNA-PK activity
with the same ICs, as cell extracts, which is suggesting direct inter-
action between S-dCs¢ and DNA-PK (Figure 2D). Next, the effect
of dCss on DNA-PK was compared with the effect of S-dCse.
DNA-dependent protein kinase activity was inhibited by dCse
(Figure 2C). However, dCss showed much less inhibition than S-
dCs6. The ICsy of dCs¢ was about 200 times higher than that of
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Figure 3 Dose-response curve after treatment with S-dCn. ICso was cal-
culated from the data used for Figure 2A.
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S-dCse. Similar inhibition was observed with purified DNA-PK
(Figure 2D).

Inhibition of DNA-PK activity by S-dC;4 was not due to
chemical contaminants

The ICsy of S-dCn was not linearly proportional to the chain
length (Figure 3), which suggests that the inhibition was not due
to contaminants in the purified phosphorothioate oligonucleotides.
To confirm this, S-dC;¢ was digested with HCI treatment at 95°C
for 1 h and the effect of digested S-dCs;s on DNA-PK was investi-
gated. HCl-treatment decreased the ICs, value, which is indicating
that the inhibition was not due to chemical contaminants (Figure
2E).

S-dC;¢ did not compete with dsDNA for inhibition of
DNA-PK activity

Single-stranded DNA has been reported to inhibit DNA-PK activity
by binding to DNA-PK at a different site from the dsDNA-binding
site (Leuther et al, 1999). To gain insight into whether the S-dCs4-
binding site differs from the dsDNA-binding site, we investigated
whether dsDNA competes with S-dC;s in DNA-PK activation.
DNA-dependent protein kinase activation by dsDNA reached its
maximal level at a concentration of 0.5 ug ml™!, remaining
unchanged as the concentration increased up to 5 ug ml~ ' (Figure
4). Inhibition of DNA-PK activity by 50 nm S-dCs¢ was unaffected
by change in dsDNA concentration (Figure 4). This non-competi-
tive inhibition suggests that the S-dCs¢-binding site is distinct from
the dsDNA-binding site.

Inhibition of DNA-PK activity by suramin and heparin

Effects of suramin and heparin on DNA-PK activity in cell extracts
are shown in Figure 5A,B. Suramin and heparin supPressed DNA-
PK activity with IC5o of 1.7 uM and 0.27 ug ml™ " respectively.
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0.8 o
I
0.6 -

0.4 4

Relative DNA-PK activity

dsDNA concentration (ug mi-1)

@ DNA-PK without S-dCyq
O DNA-PK with 50 nm S-dC

Figure 4 Effect of dsDNA concentration on inhibition of DNA-PK activ-
ity by $-dCse. Concentrations of dsDNA ranged from 0.05 ug ml~' to
5 ug mi~'. Whole cell extract prepared from LM217 was used. Details
are the same as shown in Figure 2. Figure 5. Effect of suramin (A) and he-
parin (B) on DNA-PK activity. Whole cell extract prepared from LM217
was used. Details are the same as shown in Figure 2.

© 2002 Cancer Research UK



1.2+

0.8

0.6

Relative DNA-PK activity

0.4

0.2 ~

0 ~frmy Ty
0.01 0.1 1 10 100

Suramin concentration (pm)

LERLAALLLS T T T

1.2 7

0.8

0.6 1

Relative DNA-PK activity

0.4 4

0.2

0 AL |

LERERLLLL TTTTTT

T 171 Il"Tl
0.01 0.1 1 10

Heparin concentration (ug mi-1)

100

Figure 5 Effect of suramin (A) and heparin (B) on DNA-PK activity.
Whole cell extract prepared from LM217 was used. Details are the same
as shown in Figure 2.

Next, we investigated effects of suramin on DNA-PK activity in
cultured cells. LM217 cells at growth phase were treated with
1 mM suramin for 20 h. After treatment, cells were washed with
PBS three times, total cell extracts were prepared, and DNA-PK
activities were measured. DNA-PK activities were significantly
suppressed by the treatment with suramin to 80.7+8.7% of the
control value (P=0.045). The treatment with 1 mM suramin for
24 h did not affect the plating efficiency of LM217 cells (data
not shown).

Inhibition of DNA repair by suramin

Because treatment with 1 mM suramin in vivo suppressed DNA-PK
activity to 80.7% of the control value, we investigated the effect of
suramin on DNA-repair after irradiation. After 20 h treatment with
1 mM suramin, LM217 cells were irradiated with 50 Gy, and DSBs
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repair was analysed by PFGE. The FDL is reported to be propor-
tional to the ratio of fragmented double-stranded DNA (Okayasu
et al, 1998). Although the initial DSBs (0 h) with 50 Gy irradiation
was statistically identical for suramin-treated and untreated cells,
the significant inhibition of DSBs repair was observed in samples
treated with suramin (Figure 6).

DISCUSSION

S-oligos bind sequence-independently to a variety of proteins and
inhibit their functions (Stein, 1995). S-oligos act as heparin
mimetics and they bind to heparin binding proteins such as bFGF
(Benimetskaya et al, 1995). Furthermore, S-oligos inhibit HIV-1
DNA integration (Matsukura et al, 1987; Agrawal et al, 1988). In
these respects, S-oligos resemble such polyanions as suramin and
pentosan polysulphate (Stein, 1995). Suramin and pentosan poly-
sulphate also bind to heparin binding proteins and inhibit HIV-1
DNA integration (Mitsuya et al, 1984; Zugmaier et al, 1992; Stein,
1993). In the present study, we demonstrated that both S-oligos
and suramin show the same effects on DNA-PK activity.

Binding of S-oligos to heparin binding proteins is sequence-
independent but is dependent on the chain length of S-oligos. It
has been reported that S-oligos with a chain length longer than
15 could bind and inhibit the proteins, and that the inhibitory
effect reached a plateau level with a chain length of 28 (Gao et
al, 1992; Marshall et al, 1992). In the present study, we reported
that the inhibitory effect of S-oligos on DNA-PK activity is
sequence-independent and is dependent on the chain length. The
inhibitory effect reached a plateau level with a chain length of
36, which is almost the same length as previously reported.
Marshall et al (1992) reported that the inhibitory effect of oligonu-
cleotides on HIV-1 reverse transcriptase could be at least 30-fold
greater with phosphorodithioate oligonucleotides, which have two
sulphur at each site of internucleotide linkages, than with phos-
phorothioate oligonucleotides. Benimetskaya et al (1995) reported
that binding of phosphorothioate oligonucleotides to proteins is
independent on P-chirality at the internucleotide linkage sites.

Fraction of DNA in the lane

0 0.5 1 15 2
Time after irradiation (h)

@ Absence or suramin
O Presence of suramin

Figure 6 Kinetics of DNA double strand breaks after 50 Gy irradiation in
exponentially growing LM217 cells in the presence or absence of | mMm
suramin. Cells were treated with suramin 20 h before irradiation and the
drug was kept in the medium during the post-irradiation repair period.
The data represent the means+s.d. (n=3). *P<0.05.
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These results may suggest that substances having the similar struc-
ture to polyanions with sulphur bind heparin-binding proteins and
inhibit their functions (Zugmaier et al, 1992; Guvakova et al,
1995).

Phosphorothioate oligonucleotides contain a sulphur atom at
each phosphorus atom. Each n-mer phosphorothioate oligonucleo-
tide has (n-1)-centres of asymmetry at phosphorous because each
linkage can occur as either the Rp- of Sp-diastereomer (Benimets-
kaya et al, 1995). Phosphorothioate oligonucleotides used in this
experiment contained a random mixture of diastereomers that
would have a variety of three-dimensional structure. Benimetskaya
et al (1995) reported that binding of phosphorothioate oligonu-
cleotides to basic fibroblast growth factor, recombinant soluble
CD4, laminin and fibronectin is P-chirality independent. It is
unknown what effect the three-dimensional structure may have
on the interactions of phosphorothioate oligonucleotides with
DNA-PK.

Both S-oligos and suramin inhibit the binding of HIV-1 gp120
to CD40 and the enzyme activity of DNA polymerases, RNase H
and HIV-1 integrase (Gao et al, 1989, 1992; Stein et al, 1991,
1993; Tramontano et al, 1998). All of these function and enzymes
are related to HIV-1 infection and integration into host DNA.
Recently, DNA-PK was reported to be involved in the retroviral
integration into host DNA (Daniel et al, 1999). S-oligos and sura-
min will be potent anti-HIV-1 agents. In addition, it is interesting
that most of the steps of HIV-1 integration into the host DNA are
inhibited by S-oligos and suramin.

The mechanisms of DNA-PK inactivation by S-oligos and sura-
min are not known. Hammarsten and Chu (1998) reported that
single-stranded DNA (ssDNA) did not inhibit the binding of
dsDNA to Ku but it inhibits the binding of dsDNA to DNA-PK.
The structure of DNA-PK was revealed by electron crystallography
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(Chiu et al, 1998; Leuther et al, 1999). Chiu et al (1998) reported
that DNA-PKcs protein has an open, cage-like structure, which
may allow the insertion of two DNA ends from the two opposing
faces of the protein. Leuther et al (1999) reported that structure of
DNA-PKcs protein contains an open channel, similar to those seen
in other double-stranded DNA-binding proteins, and a cavity
which is large enough to accommodate ssDNA. They suggest that
ssDNA binds to the enclosed cavity and inhibit DNA-PK activity.
These reports suggest that ssDNA binds to DNA-PK at a position
different from where dsDNA binds to DNA-PK. In the present
study, we reported that inhibition of DNA-PK activity by S-oligos
is not competitive with dsDNA, suggesting that the binding posi-
tion of S-oligos is different from that of dsDNA. Further
experiments are required to elucidate this point.

Cells lacking DNA-PK activity due to defects in DNA-PK
components show hypersensitivity to ionising radiation because
of an important role of DNA-PK in the repair of DNA double-
strand breaks (Jeggo et al, 1995). A phosphatidylinositol 3-kinase
(PI3-kinase) inhibitor, wortmannin, inhibits DNA-PK activity,
DSBs repair and sensitises cells to ionising radiation (Rosenzweig
et al, 1997; Hosoi et al, 1998b). Suramin is reported to be located
in the nucleus of cells exposed to suramin (Bojanowski et al, 1992).
In the present study, we demonstrated that suramin suppressed
DNA-PK activity and DSBs repair in vivo. Our present observations
suggest that suramin may possibly result in sensitisation of cells to
ionising radiation by inactivation of DNA-PK and the impairment
of DSBs repair.
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