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    Introduction 
 Rac1 is among the most extensively characterized members of 

the Rho family of small GTPases. Like all GTPases, Rac1 func-

tions as a molecular switch regulated by GTP/GDP exchange. 

Rac1 regulates a wide variety of cellular functions including ac-

tin remodeling for cell ruffl ing, adherens junction formation, 

cell motility, and polarity. Other functions of Rac1 include tran-

scriptional activation and regulation of the NADPH oxidase 

( Jaffe and Hall, 2005 ). Rac1 has also been implicated in cellular 

transformation and may promote cell cycle progression through 

induction of cyclin D1 ( Westwick et al., 1997 ). 

 Rac1 is regulated by numerous guanine nucleotide ex-

change factors (GEFs) and several GTPase-activating proteins 

(GAPs) and signals by interacting with a large set of effectors 

( Jaffe and Hall, 2005 ). The specifi cities of the several GEFs and 

GAPs and numerous effectors that interact with Rac1 may ex-

plain its myriad functions. However, differential regulation of 

signaling by Rac1 in different contexts is poorly understood. 

Increasing evidence suggests that subcellular localization plays 

a major role in regulating the signaling output of promiscuous 

regulatory proteins such as Rac1 ( Mor and Philips, 2006 ). 

 Like all Rho proteins, Rac1 is targeted within cells by 

posttranslational modifi cation of a C-terminal CAAX motif by 

prenylation, proteolysis, and carboxyl methylation and by as-

sociation with a cytosolic chaperone, Rho guanosine nucleo-

tide dissociation inhibitor (RhoGDI;  Michaelson et al., 2001 ). 

In resting cells, Rac1 is found in the cytosol as a soluble 1:1 

complex with RhoGDI. Upon activation, Rac1 is discharged 

from RhoGDI and displays affi nity for the plasma membrane 

( Michaelson et al., 2001 ). This affi nity can be explained by the 

geranylgeranyl modifi cation of the Rac1 C terminus that func-

tions in conjunction with a strong polybasic region immedi-

ately adjacent to the prenylcysteine ( Michaelson et al., 2001 ). 

In its plasma membrane – binding capacity, Rac1 behaves like 

K-Ras4B, which also has a strong polybasic region. The poly-

basic region binds via electrostatic interactions with the nega-

tively charged inner leafl et of the plasma membrane ( Yeung 

et al., 2006 ). Recently, we have shown that the plasma mem-

brane localization of Rac1 is modulated during phagocytosis 

by loss of the negative charge on the inner leafl et of the mem-

brane ( Yeung et al., 2006 ). 

 In addition to the cytosol and plasma membrane, GFP-Rac1 

has been localized to the nuclear envelope ( Kraynov et al., 2000 ; 

 Michaelson et al., 2001 ) and nucleoplasm ( Michaelson et al., 2001 ; 
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type, we studied the distribution of these proteins in multiple 

cell lines including MDCK, COS-1, and porcine aortic endo-

thelial (PAE) cells ( Fig. 1, B and C ) and ECV304 human blad-

der carcinoma, HeLa, and NIH 3T3 (not depicted). GFP-Rac1 

ranged from 5  ±  2% nuclear in MDCK cells to 30  ±  5% nu-

clear in COS-1 cells ( Fig. 1 C ). Constitutively GTP-bound 

GFP-Rac1L61 was distributed in a pattern similar to that of 

wild-type GFP-Rac1 in each of the cell types. Moreover, GFP 

extended with the 11 C-terminal amino acids of Rac1 showed 

a higher degree of nuclear localization relative to the full-

length protein in all cell lines studied. These observations sug-

gest that the polybasic 11 – amino acid C-terminal sequence 

contains an NLS and that the GTP-binding state of the mole-

cule does not affect the NLS. 

 Because the canonical NLS of the polyomavirus large 

T antigen begins with a diproline, we sought to determine if the 

unusual triproline motif immediately upstream of the polybasic 

region in the Rac1 C terminus contributes to the NLS. GFP ex-

tended with the C-terminal 21 amino acids of Rac1 that in-

cluded the triproline sequence was signifi cantly more nuclear 

that either GFP extended with the 11 – amino acid tail or full-

length Rac1 in all cell types ( Fig. 1 C ). Indeed, in PAE cells, 

this construct was nuclear in 80  ±  5% of cells. In contrast, 

when a 21 – amino acid tail was used in which the triproline 

motif was mutated to trialanine, the sequence was no more po-

tent in directing GFP into the nucleus than was the 11 – amino 

acid tail. Thus, the triproline motif immediately N-terminal to 

the polybasic sequence contributes signifi cantly to the NLS of 

Rac1. Neither GFP-Rac2 nor GFP-Rac3 was observed in the 

nucleus ( Michaelson et al., 2001 ;  Chan et al., 2005 ). The for-

mer has a PQP motif upstream of the polybasic region and the 

later retains the same triproline sequence as Rac1. However, 

both have weak polybasic sequences relative to that of Rac1. 

Substitution of the K-Ras4B polybasic region (KKKKKKSKTK) 

for that of Rac1 (VKKRKRK) did not reconstitute the NLS, 

despite retention of the triproline sequence ( Fig. 1 D ). Thus, a 

polyproline sequence does not confer NLS activity upon all poly-

basic sequences and there appears to be specificity in the 

polybasic sequence of Rac1 that is preceded by a hydrophobic 

valine and has a net charge of +6. 

 Most striking was the nuclear localization of GFP-Rac1 

that could not be prenylated because the CAAX cysteine was 

mutated to serine (SAAX mutant). Whether in a wild-type or 

constitutively active background, these constructs were virtu-

ally entirely nuclear such that under fl uorescence microscopy, 

the nuclei were the only structures apparent ( Fig. 1 B ). GFP-

tagged Rac1 with a three – amino acid C-terminal truncation 

(GFP-Rac1 � AAX) that, like the SAAX mutant, cannot be 

posttranslationally processed, also displayed a nuclear-only 

pattern (see  Fig. 8 B ). These observations suggest that the NLS 

of Rac1 is intrinsically as strong as that of nuclear proteins 

such as SV40 large T antigen but is weakened by prenylation. 

This conclusion is concordant with the results of Wong and 

 Isberg ( 2005 ), who found GFP-Rac1 in the nucleus of cells in-

fected with  Yersinia  strains that produce YopT, an endoprotease 

that removes prenylcysteine residues. To confi rm that prenyl-

ation inhibits the NLS, we determined the effect of compactin 

 Lanning et al., 2003 ).  Lanning et al., (2003, 2004)  identifi ed the 

polybasic sequence of the Rac1 hypervariable region as a nu-

clear localization sequence (NLS), raising the question of how 

a single motif can target a protein to two distinct compartments, 

the plasma membrane and the nucleus. These investigators 

also found that the NLS of Rac1 was partially responsible 

for the accumulation in the nucleus of the armadillo repeat 

proteins smgGDS and p120 catenin ( Lanning et al., 2003 ) and 

was required for efficient proteosomal degradation of Rac1 

( Lanning et al., 2004 ). In these studies, a constitutively GTP-

bound form of Rac1 was slightly more effi cient in nuclear entry 

( Lanning et al., 2003, 2004 ). Rac1, in association with MgcRac-

GAP, has also been implicated in the nuclear import of STAT5 

( Kawashima et al., 2006 ). Spatiotemporal studies of Rac1 acti-

vation in live cells using fl uorescence resonance energy transfer 

(FRET)-based biosensors have revealed confl icting results with 

regard to the activation state of nuclear Rac1.  Kraynov et al., 

(2000 ) found a large pool of GFP-Rac1 in the nucleoplasm that 

remained inactive. In contrast, Wong and Isberg ( 2005 ) detected 

active GFP-Rac1 in the nucleus but only in cells infected with 

 Yersinia  strains that secrete YopT, a prenylcysteine endoprote-

ase that relocated Rac1 to the nucleus.  Yoshizaki et al., (2003 ) 

used an intramolecular FRET probe that assesses the balance 

of GEFs and GAPs for Rac1 in cells undergoing mitosis and 

found that the balance favored inactive Rac1 in the region of the 

mitotic spindle. 

 We have studied the structure and regulation of the Rac1 

NLS and the basis for the seemingly stochastic nature of its en-

gagement. We show for the fi rst time that a pool of endogenous 

Rac1 is nuclear. We fi nd that a triproline motif adjacent to the 

polybasic sequence contributes to the NLS and that the NLS is 

cryptic in the sense that it is inhibited by the adjacent geranyl-

geranyl modifi cation. Despite the inhibitory effect of prenyl-

ation on the NLS, we found that endogenous nuclear Rac1 is 

lipidated. We found that the distinct populations of cells with 

and without nuclear expression of Rac1 could be explained by a 

cell cycle dependence on nuclear import: Rac1 accumulated in 

the nucleus in late G2 and was excluded from this compartment 

in early G1. Although nuclear-targeted GTP-bound Rac1 accel-

erated cell division, GTP-bound Rac1 restricted to the cyto-

plasm had the opposite effect. Thus, Rac1 cycles in and out of 

the nucleus and thereby plays a role in cell division. 

 Results 
 Rac1 has a strong C-terminal NLS 
inhibited by prenylation 
 To better defi ne the NLS at the C terminus of Rac1, we studied 

the subcellular localization of GFP extended with full-length 

Rac1, mutants thereof, or isolated C-terminal sequences of 

various lengths ( Fig. 1 A ). GFP alone and small GFP fusion 

proteins are well known to accumulate in the nucleoplasm as 

well as the cytoplasm. However, the pattern of nuclear GFP-

Rac1 could be easily distinguished from that of GFP alone in 

most cell types by a much higher degree of contrast between 

the nuclear and cytoplasmic fl uorescence ( Fig. 1 B ). Because 

the extent of nuclear localization appeared to depend on cell 
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plasma membrane of untreated cells. The chimera was mislocal-

ized in cells treated with compactin in a fashion identical to 

that of GFP-K-Ras4B. Rather than accumulating exclusively in 

the nucleus like GFP-Rac1, the chimera was distributed in a 

homogeneous pattern in the cytosol and nucleoplasm ( Fig. 1 D ) 

indistinguishable from the pattern of GFP alone ( Fig. 1 B ). 

This demonstrates that the Rac1 polybasic region is distinct 

from that of K-Ras4B in functioning as a strong NLS that is 

inhibited by prenylation. 

on nuclear localization of Rac1. This agent is an HMG-CoA 

reductase inhibitor that blocks prenylation by reducing the 

availability of farnesyl and geranylgeranyl pyrophosphates. 

GFP-Rac1 was entirely nuclear in cells treated with compactin 

( Fig. 1 D ). As a control, we studied the effect of compactin on 

a chimeric protein consisting of GFP followed by the fi rst 181 

amino acids of Rac1 that precede the polybasic region, followed 

by the 14 – amino acid polybasic region of K-Ras4B (GFP-Rac1K-

tail). This construct was localized, like GFP-K-Ras4B, to the 

 Figure 1.    The Rac1 NLS consists of the polybasic 
region in the C terminus, is strengthened by a fl anking 
triproline motif, and is inhibited by geranylgeranyl-
ation.  (A) Description of constructs used. (B) Represen-
tative distribution patters of the GFP-tagged constructs 
in live COS-1 and PAE cells with the percentage of 
cells showing the represented phenotype indicated. 
(C) Percentage of cells showing nuclear fl uorescence 
greater than cytoplasmic fl uorescence for the indicated 
constructs in MDCK, PAE, and COS-1 cells (mean  ±  
SEM;  n   ≥  4). (D) Distribution of fl uorescence in COS-1 
cells expressing GFP-Rac1 or GFP-Rac1/Ktail with or 
without treatment with 10  μ M compactin. Only the 
nucleus is visible in cells expressing GFP-Rac1 treated 
with compactin. Bars, 10  μ m.   
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(Fig. S1 A, available at http://www.jcb.org/cgi/content/full/

jcb.200801047/DC1). Unlike GFP-Rac1 expression, which was 

nuclear in a subset of transfected cells, when anti-Rac1 anti-

bodies revealed nuclear staining, they did so for the entire popu-

lation of cells. This incongruity and the overall variability of the 

assay raised doubts about the specifi city of the antibodies. We 

therefore performed IF staining with each anti-Rac1 antibody 

on mouse embryonic fi broblasts from mice homozygous for a 

fl oxed  Rac1  allele ( Walmsley et al., 2003 ). We stained cells 

after infection with an adenovirus directing expression of Cre 

recombinase or  � -galactosidase. Immunoblots revealed that Rac1 

expression was completely lost in cells infected with adeno-Cre 

(Fig. S1 B). The IF staining pattern was identical in cells with or 

without Rac1 (Fig. S1 C). We conclude that none of the com-

mercially available antibodies reliably reports the subcellular 

localization of endogenous Rac1 in fi xed cells. 

 Because the antibodies that proved unreliable in IF stain-

ing are unequivocally specifi c in immunoblots, we turned to 

subcellular fractionation to determine if there is a nuclear pool 

of endogenous Rac1. The nuclei and nonnuclear compartments 

of COS-1 were separated by standard methods and each frac-

tion was analyzed for Rac1 and control proteins by immuno-

blots quantifi ed using [ 125 I]protein A and phosphorimaging ( Fig. 2 ). 

Ras and RhoGDI were detected almost exclusively in the non-

nuclear fraction and  > 80% of RhoA and RhoB were also de-

tected in this fraction. In contrast,  > 80% of each of fi ve known 

nuclear proteins was detected in the nuclear fraction. 40% of 

Ran, a non-CAAX GTPase that shuttles in and out of the nu-

cleus via nuclear importins, was detected in the nuclear fraction 

of subconfl uent cells. Rac1 had a profi le similar to Ran, with 

recoveries of 39  ±  3% in the nuclear fraction. Similar results 

were obtained for NIH 3T3 and PAE cells (unpublished data). 

We conclude that a portion of endogenous Rac1 is nuclear. 

 Endogenous Rac1 in the nucleus 
is prenylated 
 Our observation that geranylgeranylation inhibits the NLS of Rac1 

suggested that the nuclear pool of Rac1 may not be prenylated. 

 One explanation for prenylation-dependent exclusion of 

Rac1 from the nucleus is that binding to its cytosolic chaper-

one RhoGDI, a process known to be prenylation-dependent 

( Michaelson et al., 2001 ), blocks the NLS. However, because 

the 11 –  and 21 – amino acid tail constructs that cannot bind 

RhoGDI were only partially nuclear, RhoGDI cannot be the 

only mechanism of inhibiting the NLS. To test the idea that the 

inhibitory effect of the geranylgeranyl group on the NLS was 

related to its hydrophobicity, we studied GFP-Rac1-CVLS in 

which the native CAAX motif (CLLL) was substituted for 

CVLS, which directs modifi cation by a 15-carbon farnesyl iso-

prenoid rather than a 20-carbon geranylgeranyl lipid. We have 

previously shown that farnesylation rather than geranylgeranyl-

ation of Rac1 does not affect binding to RhoGDI ( Michaelson 

et al., 2001 ). GFP-Rac1-CVLS was observed to be nuclear in 

each cell line with twice the frequency as that of GFP-Rac1 

( Fig. 1 C ). This suggests that the hydrophobicity of the prenyl 

modifi cation inhibits the action of the NLS. Collectively, our 

data reveal that the polybasic region of the Rac1 C terminus in 

conjunction with the triproline motif immediately adjacent pro-

vides a strong NLS that is cryptic in that it is inhibited by pre-

nylation of the CAAX cysteine. This reveals a new role for 

geranylgeranylation of Rac1: in addition to providing a mem-

brane anchor and mediating RhoGDI binding, the lipid modifi -

cation also blocks a strong NLS. 

 Endogenous Rac1 is in the nucleus 
 To date, only overexpressed, epitope-tagged Rac1 has been ob-

served in the nucleus. To determine if endogenous Rac1 is lo-

calized in the nucleus, we performed indirect immunofl uorescent 

(IF) staining. However, we were unsuccessful because we could 

not fi nd a suitable anti-Rac1 antibody. We tried three commer-

cially available anti-Rac1 antibodies each with three fi xation/

permeabilization methods (paraformaldehyde/Triton X-100, 

paraformaldehyde/saponin, and methanol/acetone) on each of 

fi ve cell types (COS-1, MDCK, NIH 3T3, PAE, and HeLa). 

We found a wide variety of fl uorescence staining patterns, in-

cluding those that clearly showed prominent nuclear staining 

 Figure 2.    Endogenous Rac1 is in the nucleus.  COS-1 cells 
were separated into nuclear and nonnuclear fractions as de-
scribed in Materials and methods. Equal cell equivalents of 
each fraction were analyzed by SDS-PAGE and immunoblots 
(inset) for the indicated proteins. Immunoprecipitated pro-
teins were detected and quantifi ed with [ 125 I]protein A and 
phosphorimaging, and the percentage of total protein in the 
nuclear fraction was calculated (mean  ±  SEM;  n  = 3).   
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the nucleoplasm. GFP-Rac1 in the nuclear envelope gave a pat-

tern that was smooth, continuous and relatively thick ( Fig. 3 C ). 

This is the same pattern that has been reported for GFP-lamin B 

( Kitten and Nigg, 1991 ), a farnesylated protein known to asso-

ciate with the inner nuclear envelope. This suggests that the por-

tion of the nuclear Rac1 that associates with the inner nuclear 

envelope does so by retention of the geranylgeranyl modifi ca-

tion during nuclear import. 

 Rac1 accumulates in the nucleus during G2 
 The stochastic nature of the expression of GFP-Rac1 in the nu-

cleoplasm and nuclear envelope in individual cells ( Fig. 1 A ) 

suggested that nuclear entry might be regulated by the cell 

cycle. To test this idea, we studied PAE cells stably express-

ing GFP-Rac1 at levels below endogenous (Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200801047/DC1) and 

used several agents known to arrest cultured cells at various 

stages of the cell cycle ( Fig. 4 A ). Hydroxyurea and 5-fl uoro-

uracil, agents that promote G1/S arrest, both increased the per-

centage of cells with nuclear Rac1 from 20% to 36% and 30%, 

respectively. The agent that had the most dramatic effect, in-

creasing cells with nuclear Rac1 to 52%, was apigenin, a com-

pound that promotes G2 arrest by inducing p53 ( Plaumann et al., 

1996 ). In contrast, daidzein and olomoucine, agents that pro-

mote G1 arrest, had no effect. Similar results were obtained 

with ECV304 and NIH 3T3 cells stably expressing GFP-Rac1. 

To determine if apigenin could cause nuclear accumulation of 

endogenous Rac1, we performed subcellular fractionation on 

untransfected PAE cells exposed to this agent or a vehicle con-

trol. Although the portion in the nuclear fraction of Ras (a non-

nuclear control) and RCC1 (a nuclear control) was not changed 

by apigenin treatment, the portion of Rac1 in the nuclear frac-

tion increased by 55% ( Fig. 4 B ). 

 To determine the cell cycle dependence of nuclear Rac1 in 

cycling cells, we studied PAE cells stably expressing low levels 

To test this, we performed Triton-X 114 partition analysis on 

the nuclear and nonnuclear pools of Rac1. This method relies 

on the temperature-dependent separation of the nonionic deter-

gent into aqueous and detergent phases. Prenylated proteins 

without lipid sequestering chaperones partition into the deter-

gent phase ( Hancock, 1995 ). Prenylated proteins associated 

with chaperones that sequester the prenyl group would be ex-

pected to partition into the aqueous phase. More than 80% of 

endogenous Rac1 from the nonnuclear fraction partitioned into 

the aqueous phase, which is consistent with the 1:1 binding of 

Rac1 and RhoGDI that we described previously ( Michaelson 

et al., 2001 ). Lamin B, a farnesylated protein without a known 

prenyl-binding chaperone that is synthesized and prenylated in 

the cytosol and then transported into the nucleus, served as a 

control. RhoGDI, a hydrophilic protein excluded from the nu-

cleus, was an additional control. Although RhoGDI was entirely 

aqueous in the nonnuclear fraction, lamin B was found entirely 

in the detergent phase in this fraction, demonstrating that the 

pool of nascent lamin B awaiting nuclear import was fully lipi-

dated, which is consistent with the idea that prenylation is ex-

ceedingly effi cient. As expected, RhoGDI could not be detected 

in the nuclear fraction. In the nuclear fraction, 63  ±  4% of lamin B 

partitioned into the detergent phase, indicating that either some 

nuclear lamin B is delipidated, perhaps through proteolysis, or 

that Triton X-114 partition is not as effi cient from the nuclear 

fraction that contains viscous chromatin than it is from the 

aqueous cytosol. Nuclear, endogenous Rac1 behaved like lamin B, 

with 66  ±  3% partitioning into the detergent phase ( Fig. 3 A ). 

Both Rac1 and lamin B were shifted into the aqueous phase 

in nuclei from cells treated with simvistatin, a potent HMG-

CoA reductase inhibitor ( Fig. 3 B ). We conclude that, con-

trary to our expectation, a signifi cant portion of nuclear Rac1 

is prenylated. 

 A subset of cells expressing nuclear GFP-Rac1 revealed 

decoration of the nuclear envelope in addition to expression in 

 Figure 3.    Nuclear Rac1 is prenylated.  (A) Nuclear 
and nonnuclear fractions were prepared as described 
in Materials and methods. After separation, each frac-
tion was brought to 1% Triton X-114 and phase sepa-
ration was initiated by heating the samples to 37 ° C. 
The aqueous and detergent phases of each fraction 
were analyzed for Rac1, RhoGDI, and lamin B by 
immunoblotting. Immunoblots were quantifi ed with 
[ 125 I]protein A and phosphorimaging, and the percent-
age of total protein in each fraction in the detergent 
phase was calculated (mean  ±  SEM;  n  = 3). (B) Triton 
X-114 partition as shown in A was performed on the 
nuclear fractions of COS-1 cells treated overnight with 
or without 10  μ M simvistatin. Aq, aqueous; Det, de-
tergent phases. (C) Selected images of GFP-Rac1 in 
COS-1 and ECV cells showing prominent decoration 
of the nuclear envelope (arrowhead). Bars, 10  μ m.   
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sults were obtained with PAE cells expressing GFP-Rac1 below 

endogenous levels (unpublished data). The results of the release 

from hydroxyurea block and cyclin A staining together with 

those using agents that promote cell cycle arrest indicate that 

Rac1 accumulates in the nucleus in G2. 

 The appearance of cyclin A in the nucleus during G2 is 

mediated by an increase in the level of expression of this pro-

tein. To determine if Rac1 expression levels fl uctuate during 

the cell cycle, we analyzed a population of synchronized T98G 

cells by immunoblotting ( Dorrello et al., 2006 ). We fi rst con-

fi rmed that T98G cells behaved like the other cell lines we ex-

amined in showing GFP-Rac1 in the nucleus of a subset of 

unsynchronized cells ( Fig. 6 A ). As expected, levels of cyclins A 

of GFP-Rac1 that were synchronized in G1/S by serum starva-

tion and treatment with hydroxyurea and then released from the 

block. The percentage of cells with nuclear Rac1 was deter-

mined as these cells progressed though the cell cycle ( Fig. 5 A ). 

The highest levels of nuclear Rac1 were observed 8 h after re-

lease from the block, when the highest proportion of cells (75%) 

were observed to be in G2 by propidium iodide cytofl uorimetry 

( Fig. 5 B ). Cyclin A accumulates in the nucleus of cells in S and 

G2 phase. We therefore stained for cyclin A a population of 

unsynchronized COS-1 cells expressing GFP-Rac1. Although 

93% of transfected cells expressing GFP-Rac1 in the nucleus 

stained for cyclin A, only 13% of cells with GFP-Rac1 excluded 

from the nucleus stained for this marker ( Fig. 5 C ). Similar re-

 Figure 4.    The effect of cell cycle blockade on 
the nuclear expression of GFP-Rac1 and endog-
enous Rac1.  (A) PAE cells stably expressing GFP-
Rac1 at levels below endogenous Rac1 (Fig. S1, 
available at http://www.jcb.org/cgi/content/
full/jcb.200801047/DC1) were scored for the 
percentage of cells showing strong nuclear fl uo-
rescence before and 16 h after the addition of 
increasing amounts of the indicated compounds. 
Representative cells at the indicated dose are 
shown with the percentage of cells showing each 
phenotype indicated (left), and cumulative dose-
response data are shown on the right (mean  ±  SEM; 
 n  = 3). Bars, 10  μ m. (B) Endogenous Rac1, Ras, 
and RCC1 were measured in the nuclear fractions 
as described in  Fig. 2  before and after the addi-
tion of 50  μ M apigenin for 24 h (mean  ±  SEM; 
 n  = 4).   
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GFP-Rac1 at levels below endogenous Rac1 (Fig. S2). In the 

majority of cells that we captured undergoing at least one round 

of cell division, we observed accumulation of GFP-Rac1 in the 

nuclei before mitosis and a dramatic exclusion of GFP-Rac1 in 

the nuclei of cells immediately after cytokinesis ( Fig. 7  and 

Videos 1 and 2, available at http://www.jcb.org/cgi/content/full/

jcb.200801047/DC1). Collectively, our data demonstrate a re-

distribution of Rac1 during the cell cycle, with the highest 

 accumulation of Rac1 in the nucleus during G2. 

 Nuclear cycling of Rac1 promotes 
cell division 
 The accumulation of Rac1 in G2 suggested that nuclear Rac1 

might play a role in cell division. To test this hypothesis, we 

studied cells that expressed GTP-bound forms of Rac1 capable 

of cycling in and out of the nucleus or restricted to one or the 

other compartment. Rac1L61 with a wild-type C terminus 

cycles in and out of the nucleus. Rac1L61 with the 14 – amino 

acid C terminus of Kras4B substituted for the analogous Rac1 

sequence (Rac1L61Ktail) was used to restrict the protein to 

the cytoplasm. Rac1L61 with the AAX residues of its CAAX 

motif removed (Rac1L61 � AAX) such that prenylation was 

blocked was used as a form that accumulated exclusively in 

the nucleus. GFP-tagged versions of these constructs were in-

troduced into NIH 3T3 cells by retroviral transduction. Cyto-

fl uorimetry revealed that infection effi ciency was high and that 

each population of infected cells expressed equivalent amounts 

and D1 fl uctuated in synchronized cells progressing through 

the cell cycle ( Fig. 6 B ). In contrast, the levels of Rac1, like 

those of ERK1 and ERK2, remained constant, indicating that 

the fl uctuation of Rac1 in the nucleus represents redistribution 

rather than oscillations in its expression. These results were 

confi rmed in IMR-90 diploid primary human fi broblasts 

( Sherwood et al., 1988 ) that are wild type at both the Rb and 

p53 loci ( Fig. 6 C ). 

 To confi rm the cell cycle dependence of nuclear Rac1 in 

dividing cells untreated with drugs, we studied by time-lapse 

fl uorescent microscopy PAE and NIH3T3 cells stably expressing 

 Figure 5.    Expression of Rac1 in the nucleus peaks in G2.  (A) PAE cells sta-
bly expressing GFP-Rac1 at levels below endogenous were synchronized 
in G1/S by serum starvation followed by hydroxyurea and then released. 
The percentage of cells with nuclear Rac1 was determined hourly and plot-
ted as mean  ±  SEM ( n  = 4). (B) Aliquots of the cells analyzed in A were 
scraped from plates at the indicated times and analyzed for stage of the 
cell cycle by propidium iodide and cytofl uorimetry. (C) Unsynchronized 
COS-1 cells were transfected with GFP-Rac1 and, after 16 h, fi xed and 
stained for cyclin A. Although the cell expressing GFP-Rac1 in the nucleus 
(arrows) stained for cyclin A, a marker of G2/M, those excluding the pro-
tein from the nucleus (arrowheads) did not. This correlation held for 93% 
of transfected cells examined ( > 100). Bars, 10  μ m.   

 Figure 6.    Expression of Rac1 is constant through the cell cycle.  (A) Confo-
cal images of asynchronous T98G cells expressing GFP-Rac1 with the per-
cent of the transfected population represented by each pattern indicated. 
T98G (B) or IMR-90 (C) cells were synchronized by serum deprivation for 
72 h and then induced to cycle by refeeding with 10% FBS. Aliquots of 
cells were harvested at the times indicated and assayed for Rac1 and the 
indicated control proteins by immunoblotting. Bar, 5  μ m.   
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type, indicating that nuclear Rac1 cannot stimulate lamelli-

podia formation ( Fig. 8 B ). 

 Using time-lapse phase-contrast microscopy ( Khodjakov 

and Rieder, 2006 ), we studied the mitotic index of the cells 

infected with the various constructs. GFP-Rac1L61 that is 

GTP-bound and capable of cycling in and out of the nucleus 

increased slightly the mitotic index ( Fig. 8 C ). In contrast, 

GFP-Rac1L61Ktail decreased the mitotic index, indicating that 

GTP-bound Rac1 restricted to the cytoplasm acts as a dominant 

negative with regard to the promotion of cell division. Impor-

tantly, GFP-Rac1L61 � AAX that was restricted to the nucleus 

signifi cantly increased the mitotic index, which suggests that 

nuclear GTP-Rac1 promotes cell division. The activity of GFP-

Rac1L61 � AAX in this assay prompted us to ask whether the 

Rac1 wild type at the GTP-binding domain could be loaded 

of protein ( Fig. 8 A ). Confocal microscopy revealed that, as 

expected, although only a subset of GFP-Rac1L61 – expressing 

cells showed nuclear fl uorescence, each cell expressing GFP-

Rac1L61 � AAX showed strong nuclear fl uorescence ( Fig. 8 B ). 

Cells expressing GFP-Rac1L61Ktail showed no nuclear fl uo-

rescence, which is consistent with removal of the NLS ( Fig. 8 B ). 

Also as expected, differential interference contrast microscopy 

(not depicted) and phalloidin staining ( Fig. 8 B ) revealed that 

GFP-Rac1L61 promoted marked ruffl ing with prominent con-

centric lamellipodia. The phenotype of cells expressing GFP-

Rac1L61Ktail was identical, which indicates that the ability of 

GTP-Rac1 to regulate actin remodeling was retained in the 

chimeric protein excluded from the nucleus and targeted to the 

plasma membrane with the K-Ras sequence. In contrast, cells 

expressing GFP-Rac1L61 � AAX did not show a ruffl ed pheno-

 Figure 7.    Nuclear expression of Rac1 peaks 
in G2 in asynchronously dividing cells.  PAE 
(A) or NIH 3T3 (B) cells stably expressing 
GFP-Rac1 at levels below endogenous were 
examined by time-lapse confocal microscopy 
over one division cycle. Arrowheads indicate 
representative parent and daughter cells. Note 
that nuclear Rac1 is high immediately preced-
ing mitosis and that GFP-Rac1 is excluded from 
the nuclei of the daughter cells immediately 
after cell division. See Videos 1 and 2 (avail-
able at http://www.jcb.org/cgi/content/full/
jcb.200801047/DC1). Bars, 10  μ m.   
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region that serves, along with a prenyl modifi cation, as a plasma 

membrane – targeting motif ( Hancock et al., 1990 ;  Michaelson 

et al., 2001 ;  Heo et al., 2006 ;  Yeung et al., 2006 ), it is unique in 

serving as a strong NLS. The absence of a functional NLS in 

Rac2 (PPPVKKPGKK) or Rac1/Ktail (PPPKKKKKKSKTK) 

suggests that an optimal charge distribution (+6) after a proline 

is required. 

 The inhibitory effect of the geranylgeranyl modifi cation 

with regard to the NLS suggests that nuclear transport of Rac1 

may be regulated by prenylation. However, prenylation is ir-

reversible ( Clarke, 1992 ), making any model that evokes de-

prenylation as the regulatory event for nuclear import untenable. 

Moreover, our observation that a signifi cant pool of nuclear 

Rac1 remains prenylated demonstrates that nuclear entry does 

not require loss of the prenyl modifi cation. 

 An alternative model would be sequestration of the geranyl-

geranyl group by a prenyl-binding protein that allows condi-

tional engagement of importin- �  by the NLS. RhoGDI binds 

geranylgeranylated Rac1 ( Michaelson et al., 2001 ) and, by analogy 

with GTP when constitutively driven into the nucleus as a con-

sequence of blocked prenylation. A GST-PAK-PBD pull-down 

assay revealed that GFP-Rac1 � AAX and GFP-Rac1 were equiva-

lently loaded with GTP when expressed at endogenous levels 

(Fig. S3, available at http://www.jcb.org/cgi/content/full/jcb

.200801047/DC1), which suggests that at least a portion of the 

nuclear pool is activated. 

 Discussion 
 Our data show that Rac1 possesses a strong but cryptic NLS. 

The NLS consists of the polybasic region of the C-terminal 

membrane-targeting domain and is strengthened by an adjacent 

triproline sequence. As such, it mimics the canonical NLS of 

polyomavirus large T antigen, which consists of a polybasic se-

quence preceded by a diproline ( Chelsky et al., 1989 ). However, 

the strength of the NLS is greatly diminished by the geranylger-

anyl lipid group that flanks the NLS on the C-terminal side. 

Although Rac1 is but one of many small GTPases with a polybasic 

 Figure 8.    Constitutive expression of activated Rac1 in the cyto-
plasm inhibits cell division and constitutive expression in the nu-
cleus enhances cell division.  NIH 3T3 cells were transduced with 
the indicated constructs. Rac1L61/Ktail cannot enter the nucleus. 
Rac1L61 � AAX is entirely nuclear. (A) Cytofl uorimetry indicates 
equivalent expression levels. (B) TRITC-phalloidin staining reveals 
that although Rac161L/Ktail induces marked peripheral ruffl ing 
like Rac1L61, Rac1L61 � AAX does not. Bar, 10  μ m. (C) Mitotic 
index (mitoses per number of cells over 16 h) of cells transduced 
with the indicated constructs (mean  ±  SEM;  n  = 3).   
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tein enters the nucleus in complex with Rac1 ( Kawashima et al., 

2006 ). Intriguingly, overexpression of dominant-negative forms 

of MgcRacGAP ( Kawashima et al., 2000 ) as well as constitu-

tively active Rac1V12 ( Yoshizaki et al., 2004 ) led to multi-

nucleate cells because of defects in cytokinesis, which suggests 

that inhibition of Rac1 by MgcRacGAP is required for cell divi-

sion. Similar defects in cytokinesis were observed in  Cae-
norhabditis elegans  that harbored a temperature-sensitive allele 

of CYK-4 ( Jantsch-Plunger et al., 2000 ), an orthologue of 

MgcRacGAP, which suggests that nuclear Rac1 GAP activity 

was necessary for cytokinesis. Our observation that GTP-bound 

Rac1 restricted to the cytoplasm with the C terminus of K-Ras4B 

results in diminished cell division supports a model whereby 

Rac1 must enter the nucleus in G2 and interact with MgcRac-

GAP to permit cytokinesis. 

 An alternative or additional model for the role of Rac1 in 

the nucleus is the regulation of a specifi c function or set of func-

tions in that compartment during division. The numerous GEFs 

and GAPs that regulate Rac1 and the myriad of effectors regu-

lated by Rac1 make such a model plausible. Although generally 

active at cell membranes as a consequence of their pleckstrin 

homology domains, Dbl domains containing Rho GEFs have 

been found in the nucleus ( Rossman et al., 2005 ). Ect2 is a 

Rac1/Rho/Cdc42 GEF regulated by phosphorylation that occurs 

in G2 when it accumulates in the nucleoplasm ( Tatsumoto et al., 

1999 ), which is coincident with Rac1. The DOCK180 – ELMO1 

complex is a non – Dbl-containing GEF for Rac1 that is localized 

in the nucleus ( Yin et al., 2004 ). Among Rac1 effectors, PAK1 

and IQGAP2 have been described in the nucleus ( Yamashiro et al., 

2003 ;  Singh et al., 2005 ). Rac1 is well known to regulate the 

transcription of certain genes ( Jaffe and Hall, 2005 ). Although 

this activity could emanate from the cytoplasm, Rac1 could also 

have a more direct effect on the transcriptional machinery in the 

nucleus. Consistent with this idea is the observation that Rac1 

interacts directly with STAT3 ( Simon et al., 2000 ) and STAT5 

( Kawashima et al., 2006 ). Also among the transcription factors 

regulated by Rac1 is nuclear factor  � B that, in turn, regulates 

expression of cyclin D1, which is critical for cell cycle progres-

sion ( Hinz et al., 1999 ). Our observation that GTP-bound 

Rac1L61 � AAX, which is constitutively targeted to the nucleus, 

accelerates cell division, combined with our observation that at 

least a portion of wild-type Rac1 targeted to the nucleus in the 

same way is GTP-bound, supports a model in which nuclear 

Rac1 plays a positive role in the regulation of cell division. 

 Materials and methods 
 Cell culture, transfection, and infection 
 COS-1, ECV304, NIH3T3, T98G, IMR-90, and MDCK cells were obtained 
from the American Type Culture Collection. PAE cells were obtained from 
M. Klagsburn (Children ’ s Hospital, Boston, MA). Phoenix retroviral pro-
ducer cell lines were obtained from G. Nolan (Stanford University, Palo 
Alto, CA). Rac1fl ox/fl ox mouse embryonic fi broblasts were provided by 
V. Tybulewicz (National Institute for Medical Research, London, UK) and 
J. Kissel (Wistar Institute, Philadelphia, PA). Cells were grown in DME 
(Cellgro; Mediatech, Inc.) supplemented with glucose,  L -glutamine, sodium 
pyruvate, 10% fetal bovine serum (for Cos-1, ECV 304, MDCK, T98G, 
IMR-90, and PAE; Cellgro), or 10% calf serum (for NIH 3T3 and Phoenix; 
Atlanta Biologicals) and antibiotics at 37 ° C and 5% CO 2 . For all high-
magnifi cation microscopy, cells were plated, transfected, and imaged in 

to the cocrystal of Cdc42 and RhoGDI, sequesters the geranyl-

geranyl group in a deep hydrophobic pocket ( Hoffman et al., 

2000 ). Exclusion of RhoGDI from the nucleus makes it an un-

likely candidate for a chaperone that transits the nuclear pore, 

although it is conceivable that this chaperone could hand Rac1 

off to importin- �  on the cytoplasmic side of the nuclear pore 

complex. Indeed, the structure of a cocrystal of RhoGDI and 

Cdc42 shows the polybasic region adjacent to the buried gera-

nylgeranyl group to lie on the solvent-exposed surface of the 

chaperone accessible to a potential ternary protein – protein in-

teraction ( Hoffman et al., 2000 ). GFP extended with the gera-

nylgeranylated 21 – amino acid tail of Rac1 cannot bind RhoGDI 

but entered the nucleus, demonstrating that RhoGDI binding is 

not required for nuclear import. However, this does not mean 

that RhoGDI does not play a role in sequestering Rac1 in the 

cytoplasm. In two out of three cell types tested, GFP extended 

with the 21 – amino acid C terminus of Rac1 showed a frequency 

of nuclear localization almost as high as unprenylated GFP-

Rac1SAAX. Thus, the geranylgeranylated construct that cannot 

bind RhoGDI resembles the nonprenylated protein, which sug-

gests that RhoGDI plays a role in cytoplasmic retention. 

 The ability of the Rac1 polybasic region to bind to the 

 inner leafl et of the plasma membrane and to serve as an NLS that 

binds to importin- �  are likely mutually exclusive. In both cases, 

a simple model is one in which RhoGDI hands off Rac1 to either 

the plasma membrane or to importin- � . What regulates this 

decision could be yet-to-be identifi ed GDI-releasing factors ( Dirac-

Svejstrup et al., 1997 ) that are coupled either to the plasma 

membrane or importin- � . 

 Although the C termini of small GTPases are the regions 

that vary the most through evolution, the NLS of Rac1 is highly 

conserved, which suggests a critical function. The fl uctuation in 

nuclear Rac1 as cells proceed through their division cycle sug-

gests that nuclear Rac1 plays a role in cell division. The entry 

of Rac1 into the nucleus before mitosis could function in two 

ways. The process could sequester Rac1 in the nucleus to di-

minish its effects in the cytoplasm, Rac1 could serve a specifi c 

function in the nucleoplasm, or both. 

 Radical changes to the cytoskeleton must accompany mi-

tosis. In tissues, adherens junctions must break down. In mono-

layers, previously spread and adherent cells must detach from 

the substratum and round up. These are processes opposed by 

the biological actions of Rac1 on the cytoskeleton that promote 

ruffl ing, spreading, and adhesion ( Takaishi et al., 1997 ;  Jaffe 

and Hall, 2005 ). During cytokinesis, the cell must rapidly re-

cover the ability to spread and adhere ( Yoshizaki et al., 2003 ; 

 Khodjakov and Rieder, 2006 ). Therefore, sequestration of Rac1 

in the nucleus immediately before mitosis and release into the 

cytoplasm during cytokinesis would be an effi cient way of ac-

complishing these tasks if the fi rst line of control by GEFs and 

GAPs is not suffi cient. The accumulation of one or more Rac1 

GAPs in the nucleus might also play a role in this model. One 

candidate is MgcRacGAP, which is expressed in the nucleus 

( Hirose et al., 2001 ) and associates with the mitotic spindle, 

where aurora B kinase can alter its specifi city toward Rac1 and 

Rho ( Minoshima et al., 2003 ). Moreover, MgcRacGAP mRNA 

levels rise dramatically in G2 ( Hirose et al., 2001 ), and the pro-
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G40 and once in RSB-G (RSB with 10% glycerol). The fi nal pellet was re-
suspended in 100  μ l RSB-G40 as the nuclear fraction and 100  μ l 2 ×  
SDS-PAGE buffer was added to both fractions. The nuclear fraction was 
sonicated to break up the DNA and equal volumes (equal cell equivalents) 
of both fractions were analyzed by SDS-PAGE and immunoblotting for a 
variety of nuclear and nonnuclear proteins. Proteins were detected and 
quantifi ed using [ 125 I]protein A and phosphorimaging. 

 Triton X-114 partitioning 
 Cells were partitioned using Triton X-114 as described previously ( Han-
cock, 1995 ), with modifi cations. Four 10-cm plates of COS-1 cells at 50% 
confl uency were scraped in PBS supplemented with 0.1% MgCl 2  and re-
suspended in 700  μ l RSB. Precleared 10% Triton X-114 was added to 
0.1% and incubated for 15 min. Lysates were centrifuged at 1,300  g  and 
the nonnuclear fraction was separated from pelleted nuclei. Nuclei were 
resuspended in an equivalent amount of RSB and both the nuclear and 
nonnuclear fractions were supplemented with Triton X-114 to 1%. Nuclei 
were broken using seven cycles of 5-s sonication followed by 55 s on ice. 
Both fractions were centrifuged at full speed at 4 ° C to pellet any cellular 
debris. Supernatants were partitioned by incubating at 37 °  for 5 min and 
the now turbid fractions were centrifuged at full speed for 2 min at room 
temperature. The upper aqueous phase was carefully separated into a 
fresh tube and any remaining aqueous phase was removed. RSB was 
added to the detergent phase and 10% Triton X-114 was added to the 
aqueous phase to bring the two partitions to equivalent detergent concen-
tration. SDS sample buffer was then added to the partitioned fractions, 
which were analyzed by SDS-PAGE and immunoblotting. Proteins were 
detected and quantifi ed with [ 125 I]protein A and phosphorimaging. 

 Cell cycle blocks 
 The cell cycle inhibitors 5-fl uorouracil, daidzein, apigenin, olomuocine, 
and hydroxyurea were obtained from Sigma-Aldrich. Cells stably express-
ing GFP-Rac1 were treated with various concentrations of these agents for 
24 h. For synchronization, cells were fi rst blocked in G0 by serum starva-
tion for 24 h and released into medium containing 10% serum and 6 mM 
hydroxyurea for 24 h to block in S phase. Cells were then released from 
the block by transferring to standard growth medium and monitored by 
microscopy to determine changes in nuclear localization. The cell cycle 
distribution of cells in culture was determined by propidium iodide (Invitro-
gen) analysis of DNA content by cytofl uorimetry. T98G and IMR-90 cells 
were blocked at G 0  by serum starvation (0.2% FCS for 3 d) and released 
by transfer to DME with 10% FBS. Lysates were prepared at various times 
with lysis buffer (50 mM Tris, pH 7.5, 250 mM NaCl, 0.1% Triton X-100, 
1 mM EDTA, protease inhibitors, and phosphatase inhibitors) and ana-
lyzed by immunoblotting. 

 Phalloidin staining 
 Cells grown on 12-mm coverslips were transfected with GFP fusion con-
structs and fi xed (3.7% paraformaldehyde) and permeablized (0.1% Triton 
X-100) 24 h later. Cells were stained with 28 nM rhodamine phalloidin 
(Cytoskeleton, Inc.). 

 Mitotic index 
 48 h after retroviral infection, NIH 3T3 cells were plated sparsely on a 
60-mm dish, and  � 25 cells in a single fi eld (10 ×  objective) were imaged 
by time-lapse phase-contrast microscopy (1 frame every 5 min) using a 
metabolic chamber. Cell divisions were counted manually and the mitotic 
index was determined as a ratio of the number of divisions over 16 h divided 
by the number of cells in the starting frame. 

 Online supplemental material 
 Fig. S1 shows that commercial anti-Rac1 antibodies are not Rac1-specifi c in 
indirect IF staining. Fig. S2 shows relative expression of GFP-tagged Rac1 
and endogenous Rac1 in stably transduced cells. Fig. S3 shows that nuclear 
Rac1 can be loaded with GTP. Video 1 shows that Rac1 accumulates in the 
nucleus of PAE cells before mitosis (G2) and is excluded afterward (G1). 
Video 2 shows that Rac1 accumulates in the nucleus of NIH 3T3 cells before 
mitosis (G2) and is excluded afterward (G1). Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200801047/DC1. 

 This work was supported by grants from the National Institutes of Health 
(CA116034, CA118495, and GM55279 to M.R. Philips and R37-CA76584, 
R01-GM57587, and R21-CA125173 to M. Pagano) and the New York 
State Department of Health Breast Cancer Research and Education Program 
(to M.R. Philips and D. Michaelson). 

the same 35-mm culture dish that incorporated a No. 1.5 glass coverslip –
 sealed 15-mm cut-out on the bottom (MatTek). Transfections were performed 
1 d after plating at 50% confl uence using SuperFect (QIAGEN) according 
to the manufacturer ’ s instructions. Transiently transfected cells were ana-
lyzed 1 d after transfection. NIH 3T3 cells were infected as described pre-
viously ( Pear et al., 1993 ). In brief, Phoenix cells plated on 60-mm dishes 
were cotransfected with the indicated MSCV-GFP plasmid and an eco-
tropic helper vector using Superfect, with 3 ml of fresh media added 3 h 
after transfection. 27 and 50 h after transfection, 1 ml of cleared superna-
tant from the Phoenix cells was added to 2 ml of fresh media on NIH 3T3 
cells in the presence of 5  μ g/ml polybrene. PAE and ECV cells stably ex-
pressing GFP-Rac1 have been described previously ( Michaelson et al., 
2001 ). NIH 3T3 cells stably expressing GFP-Rac1 were derived by retro-
viral transduction with MSCV-GFP-Rac1 and selection in puromycin. Where 
indicated, cells were treated with 10  μ M compactin for 24 h. Puromycin, 
compactin, and polybrene were obtained from Sigma-Aldrich. 

 Plasmids 
 Rac1, Rac1 L61, and Rac1-21aa (hypervariable domain of Rac1) were 
cloned into GFP-C3 (Clontech Laboratories, Inc.) to obtain the GFP fusion 
proteins as previously described ( Michaelson et al., 2001 ). GFP fusion of 
Rac1 CVLS (farnesylated variant of Rac1) has also been described previously 
( Michaelson et al., 2005 ). The 11 – amino acid hypervariable domain and 
the triple proline to alanine mutant version of the Rac1 hypervariable domain 
were generated using synthetic primers incorporating restriction enzyme sites 
for cloning into an EGFP-C3 vector (Clontech Laboratories, Inc.). Prenyl-defi -
cient (GFP-C3-Rac1SAAX and GFP-C3-Rac1L61SAAX) mutants were derived 
using QuikChange (Stratagene) site-directed mutagenesis of wild-type Rac1 
or Rac1L61. The GFP-C3-Rac1L61/KRas construct was made using synthetic 
primers to replace the C-terminal 11 amino acids of Rac1 with the C-terminal 
14 amino acids of K-Ras encoding the polybasic region. MSCV-GFP, MSCV-
GFP-Rac1L61, and MSCV-GFP-Rac1L61 � AAX were generated from MSCV-
GFP-Rac1 (provided by M. Dinauer, Indiana University School of Medicine, 
Indianapolis, IN) using QuikChange. Rac1L61/KTail was digested from 
GFP-C3-Rac1L61/KTail using BglII and ApaI (Roche) and used to replace 
Rac1 in the MSCV vector. 

 Fluorescence microscopy 
 Live cells were examined for CFP-, YFP-, or GFP-tagged proteins 24 h 
after transfection with an inverted epifl uorescence microscope (Axiovert 
100; Carl Zeiss, Inc.) with a 63 ×  Plan-Apochromat 1.4 NA oil immersion 
objective equipped with a cooled charge-coupled device (CCD) camera 
(Princeton Instruments) and MetaMorph digital imaging software (MDS 
Analytical Technologies) or a laser scanning confocal microscope (510; 
Carl Zeiss, Inc.) incorporating an Axiovert 200M with the same objec-
tive. Time-lapse phase-contrast microscopy of dividing cells was per-
formed with an inverted microscope (Axiovert 200; Carl Zeiss, Inc.) with 
a 10 ×  Plan-Neofl uar, 0.30 NA dry objective equipped with a cooled 
CCD camera (Retiga EX; QImaging) and acquisition software (OpenLab 
3.1.7; Improvision). Living cells were imaged in 35-mm dishes (MatTek) 
either at room temperature or at 37 ° C with 5% CO 2  and humidifi ed air 
using a metabolic chamber (PeCon). Digital images were processed for 
levels and gamma adjustment with Photoshop CS2 (Adobe). Nuclear 
localization of GFP-Rac1 constructs was determined by counting 50 or 
more cells per condition and scoring cells that had nuclear fl uorescence 
stronger than surrounding cytoplasm. 

 Antibodies 
 Commercial antibodies used were anti-Rac1 monoclonal Ab (BD Biosci-
ences or Millipore); anti-Rac1 polyclonal, anti-RhoA, -RhoB, -RCC1,  – c-myc, 
-HDAC1, -HDAC3,  – lamin A,  – Erk 1,  – cyclin A, and -RhoGDI antisera 
(Santa Cruz Biotechnology); lamin A (Cell Signaling Technology); lamin B 
(EMD); and anti-Ras10 monoclonal Ab (Millipore). Anti-Ran antisera were 
a gift of M. Rush (New York University School of Medicine, New York, 
NY). Texas Red – conjugated donkey anti – rabbit or rabbit anti – mouse were 
obtained from Jackson ImmunoResearch Laboratories. 

 Nuclear fractionation 
 Cells were grown to confl uence in 10-cm plates and scraped into 500  μ l 
RSB (10 mM Tris, pH 7.4, 10 mM NaCl, 3 mM MgCl 2 , and protease in-
hibitors), transferred to an Eppendorf tube, and centrifuged at a low speed 
(3,000 rpm for 1 min). The pellet was resuspended in 100  μ l RSB-G40 
(RSB with 10% glycerol and 0.25% NP-40) with 1 mM DTT and protease 
inhibitors and then centrifuged at 10,000 rpm for 1 min. The supernatant 
was saved as nonnuclear fraction and the pellet was rinsed once in RSB-
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