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Abstract

In cross-sectional or cohort studies with binary outcomes, it is biologically interpretable and of
interest to estimate the relative risk or prevalence ratio, especially when the response rates are not
rare. Several methods have been used to estimate the relative risk, among which the log-binomial
models yield the maximum likelihood estimate (MLE) of the parameters. Because of restrictions on
the parameter space, the log-binomial models often run into convergence problems. Some remedies,
e.g., the Poisson and Cox regressions, have been proposed. However, these methods may give out-
of-bound predicted response probabilities. In this paper, a new computation method using the SAS
Nonlinear Programming (NLP) procedure is proposed to find the MLEs. The proposed NLP method
was compared to the COPY method, a modified method to fit the log-binomial model. Issues in the
implementation are discussed. For illustration, both methods were applied to data on the prevalence
of microalbuminuria (micro-protein leakage into urine) for kidney disease patients from the Diabetes
Control and Complications Trial. The sample SAS macro for calculating relative risk is provided in
the appendix.
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1 Introduction

Recently, there has been much discussion and interest in the literature concerning the
appropriateness of estimating relative risk (RR) versus odds ratio (OR) in cross-sectional and
cohort studies, for example, Schouten et al. [1], Axelson et al. [2], McNutt et al. [3,4], Skov et
al. [5] and Zhang and Yu [6], among others. In case-control studies, the OR may be preferable
because of the different sampling fractions in the case and control groups. However, the RR
is often more interpretable than the OR [2], especially in cohort studies. When the outcome is
rare, the RR can be approximated by the OR, but the approximation is questionable if the
outcome is common.

Relative risk can be calculated from a binomial model with a log link function [7], referred to
as the log-binomial model (LBM). The LBM was implemented in SAS PROC GENMOD
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[5]. Alternatively, Lee [8] and Lee and Chia [9] used the Cox proportional hazards model to
estimate the RR in cross-sectional studies. Zou [10] proposed an information sandwich
estimator to obtain a robust variance estimate from the Poisson regression; Carter et al. [11]
proposed a quasi-likelihood estimator from a Poisson regression.

In the ideal situation when the calculations converge, all methods should produce consistent
parameter estimates. However, none of the available methods based on LBMs solve the
convergence problem completely. In addition, estimated probabilities from the Poisson/Cox
regressions could be out-of-bound. In this article we propose a new computation method using
SAS PROC NLP. The new method nearly always converges, and it guarantees that the
predicted probabilities are between 0 and 1.

The rest of the paper is organized as follows: In the next section, we review the available
estimation methods and describe the NLP method. We then evaluate and compare the
performance of the proposed method and the COPY method [12] in Section 3 and discuss
several important issues of implementation in Section 4. As an example, both methods are
applied to data on the prevalence of microalbuminuria for kidney disease patients from the
Diabetes Control and Complications Trial. The conclusion includes a discussion of tips for
implementing the methods.

2 The estimation methods

Let Y = 0 (1) denote the absence (presence) of the event. For a subject with covariates X =
(X1,---, Xk), the response probability in a log-binomial model is defined as

P(Y = 1|X) = exp(BX"), BX’ < 0, n

where g = (f1, ..., fk) is the vector of parameters. The loglikelihood function is given by

n

4p) =) | YiBX; + (1 - Ylog{1 - exp(8X))}|.
=1 (2

The RR of xj increasing by one unit is calculated as P (Y = 1|xj + 1)/P (Y = 1|xj),j =1, ..., k.
The popular methods of estimating the RR include the LBM [7] and its modification called the
COPY method [12], the Cox/Poisson regression with robust variance estimates [10,11] and
the method of adjusting OR [6].

Since P(Y = 1|X) € (0, 1), the estimate £ should satisfy the constraint § X < 0 for all possible
Xvalues in the data. Wacholder [7] constrains the likelihood to prevent the response probability
from approaching 0. It requires an extra step that determines if exp(5X;) < P*, where P* is a
predetermined maximum possible value such as 0.99. When the estimates are on or near the
boundaries of the valid parameter space, the estimation algorithm will not converge. The
convergence problem is most likely to happen when the model contains a continuous or
polychotomous covariate, or the response prevalence is high [13,14]. The simulation studies
by Carter et al. [11] show that the estimates have poor properties when the success probability
approaches 1. Deddens and Petersen [12] provide a remedy called the COPY method. The
COPY method consists of expanding the original data set to include a large number of copies
of the original data set together with one copy of the original data set with cases and controls
reversed. Estimates from the COPY method are a good approximation of the MLEs. Deddens
et al. [15] suggest using the COPY method with 1000 copies of the original data set, as been
used in the present paper.
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Lee [8] and Lee and Chia [9] recommend to use the Cox proportional hazards model with the
hazard function

h(t|X) = ho(Dexp(Bix1 + -+ + Brxp),

where hg(t) is the baseline hazard. When the follow-up time is equal for all individuals, the
hazard ratio estimated by Cox regression equals the RR in cross-sectional studies [8,16].
Correspondingly the time t is set to a constant in Lee’s method. The Poisson regression is used
when the outcome is the number of events m over the time at risk t and the model formulation
is

log(m/t) = Bo + B1x1 + -+ + Brxi.

In both the Cox and Poisson regressions, the underlying distribution of the response is Poisson.
As the actual response follows a binomial distribution, the variance of the coefficient g tends
to be overestimated [13]. Barros and Hirakata [13] and Zou [10] propose a robust variance
estimator in the Poisson/Cox regression to adjust for over dispersion.

Zhang and Yu [6] propose a method to convert the OR estimated by logistic regression to the
RR:

_ OR

" (1+Py)+ Pyx OR’

RR

where Py is the event rate in the unexposed group. However, this method produces a biased
estimate when confounding is present [4] and it is not recommended [15].

Barros and Hirakata [13] compare the Cox/Poisson regression with robust variance estimator
and the log-binomial model to the Mantel-Haenszel estimator of RR. They find that the Cox/
Poisson regression with robust variance estimates and the log-binomial regression performed
equally well. The Poisson/Cox regression could produce an estimated prevalence greater than
1, however. Based on several simulation studies by Skov et al. [5] and McNultt et al. [4], the
LBM is preferred since the parameter estimates are asymptotically unbiased, and the
prevalence estimates are between 0 and 1. Recently, Blizzard and Hosmer [19] compare the
LBM, the logistic regression method by Schouten et al. [1] and the Poisson regression approach.
They find that the failure rates (non-convergence, out-of-bounds predicted probabilities) are
rather high for all three methods. In a summary paper, Lumley et al. [17] review a number of
estimation algorithms, compared the relative merits of different estimators, and give some
guidelines for implementation in popular software. They urge that RR regression commands
be implemented in standard software.

Given that LBMs have a high non-convergence rate and the Poisson regressions could give
predicted probabilities greater than 1, it is desirable to find a computation method that produces
estimates with small biases and predicted probabilities between 0 and 1, and more importantly,
that have a high or even 100% convergence rate. Here, we propose using the SAS Nonlinear
Programming (NLP) procedure [18]. The NLP procedure offers a set of optimization
techniques for minimizing or maximizing a continuous nonlinear function with parameters g
= (B, ..., P) with lower and upper bounds, linear and nonlinear equations, and equality and
inequality constraints [18]. For calculating RR, this amounts to maximizing the loglikelihood
function €(8) in Equation (2) for € ®.,i = 1, ..., k, subject to linear inequality constraints

Bixiy +Paxp + -+ Brxy < 0,i=1,...,n,
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where X; = (Xi1, ---, Xjk) iS the vector of covariates for the i-th subject. PROC NLP provides a
variety of optimization techniques, e.g., the Newton-Raphson method with line search or
ridging, the Quasi-Newton methods, etc., and the estimates explicitly satisfy the constraints.
Hence, the NLP procedure is appropriate for estimating the RR. The NLP method can also be
extended to other scales, for example, risk difference. To estimate the RR, the response
probabilities should satisfy that 0 < P(Y = 1|X) = X' < 1.

3 Simulation

Blizzard and Hosmer [19] used simulations to compare the relative bias, mean square error
(MSE) of the estimates and the coverage rates of the 95% confidence intervals (Cls) from the
LBM, Schouten’s expanded logistic regression and the Poisson regression. We used the same
simulation settings and compared the results from the COPY method and those from the
proposed NLP method. The parameters used in the simulation are shown in Table 1.

In Simulation I, the response probability P(Y = 1|x) = exp(fy +£1%) and x ~ U(—6, a), a uniform
random variable with upper bound a. Simulation Il consisted of both dichotomous and
continuous covariates and P(Y = 1|xy Xp) =exp(fo + SpXp + fu Xy ). The dichotomous variable
Xp ~ B(p) and the continuous variable x were generated from xp by a uniform distribution
Xy [Xp ~ U(=6 + 2xp, 2 + 2xp). In Simulation 11, the coefficients for the continuous variable,
Bu, took moderate values 0.18 and 0.10. To test the convergence of the estimation methods in
a slightly more extreme situation, we doubled the coefficients in Simulation 111 so that there
was a larger difference between the minimum and maximum response probabilities. We also
generated 1000 data sets with sample size 500. The measures for comparison were the average

. bias = m211000(79\. -6)/6 .
percent relative ~ " T 00 £ Y , 100 times the average
1000 —~ D e
= 100 . — . . . .
MSE = 155 r=1 -8 + Var(e’)}, where &, was the estimate for the r-th data replication
and & was the true parameter value.

Table 2 shows the convergence rate and summary measures, i.e, bias and MSE, of the parameter
estimates for Simulation I with sample size 500. Columns 2—4 are convergence rates from the
three methods, i.e., PROC GENMOD using LBM (GM), the COPY1000 method (COPY) and
PROC NLP (NLP). Convergence rates for PROC GENMOD were much lower, below 50%
for Case 1 and 7. Both the COPY and the NLP method converged 100%. The bias and MSE
of the parameters were calculated using the converged estimates. The MSEs from both methods
were very close. The relative biases from the NLP method were smaller for Case 1, 3, 5, 7, and
the COPY method was better for the other cases. Note that we used the average percent relative
bias. Since the true parameter values were rather small, the absolute biases from both methods
were very small, also. When PROC GENMOD failed to converge, both methods had a negative
bias because the estimates were bounded on one side. The COPY method appeared to be more
affected by this than the PROC NLP method.

As the simulation scenarios were not exactly the same, e.g., random number generator and
seed, we could not replicate the simulation by Blizzard and Hosmer [19] exactly. It is useful
to compare the above Table 2 with their simulation results, however. Blizzard and Hosmer
[19] showed that, if converged, the LBM (PROC GENMOD) yielded a smallert bias and MSE
for the parameter estimates than either the Poisson regression or the expanded data logistic
model [1]. Among all five methods, i.e., two in Table 2 and three from Blizzard and Hosmer
[19], the estimates from the COPY method and the NLP method had very small biases and
they both had MSE very similar to the LBM.
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Table 3 shows the convergence rate and parameter estimates for simulations 11 and 111. Again
we see that both the COPY and NLP methods converged 100%, and the bias and the MSEs
from both methods were comparable.

Based on the simulations, we found that the estimates from both the COPY and NLP methods
were very close to the true values. This confirmed that both methods performed well. The NLP
method explicitly imposes the constraints of [0, 1] to the estimated prevalences and can be
used as an alternative to the COPY method.

4 Implementation

5 Example

There are several important issues related to the implementation of the COPY and the NLP
methods. Blizzard and Hosmer [19] reported a convergence problem with the COPY method.
This problem appeared to be due to poor starting values. Deddens et al. [15] suggested using
the start value option intercept = —4 in the COPY method. In Simulation I, the convergence
rate of the COPY method was reduced to 90% if the option was omitted. This indicates the
importance of appropriate starting values.

The original macro by Deddens et al. [15] made physical copies of the data, rather than using
weights. We found results from both approaches to have been the same. Using weights will
save memory and computation time when the number of copies is very large. We suggest using
weights instead of making physical copies of the data. Deddens et al. [15] suggested a two-
step process. Step 1 was to use the results of PROC GENMOD if it converged on the original
data set, and Step 2 was to use the results of PROC GENMOD on the modified data set if
PROC GENMOD did not converge on the original data set. We did the second step in both
cases. When PROC GENMOD converges, the PROC GENMOD and PROC NLP results are
essentially the same.

In the implementation of the NLP method, we also used a two-step approach (see appendix):
first we used the COPY method to generate initial values for PROC NLP; then used PROC
NLP to find the MLE based on the starting value. The SAS macro provided in the appendix
can be used can be used as a working engine for RR estimation.

Since the discovery of insulin in 1921, the medical community debated the hypothesis that the
marked elevation of blood glucose (hyperglycemia) associated with diabetes mellitus was
responsible for the development and progression of the microvascular complications of type
1 or insulin-dependent diabetes: retinopathy leading to blindness, nephropathy leading to end-
stage kidney disease, and neuropathy leading to loss of sensation, ulceration and amputation
[21]. The earliest sign of kidney disease is the leakage of small amounts of protein (albumin)
into urine, which can be measured by the albumin excretion rate (AER) expressed as mg/24h
of albumin excreted into the urine. For healthy people, the AER should be less than 40mg/24h
and some would say no greater than 20 or 30mg/24h. The earliest sign of possible diabetic
nephropathy is microalbuminuria (MA), defined as an AER > 40 mg/24h (but < 300mg/24h).

The Diabetes Control and Complications Trial (DCCT) was launched by the National Institute
of Diabetes, Digestive and Kidney Diseases in 1981 in order to definitively answer whether a
program of intensive therapy aimed at near normal levels of glycemia, as compared to
conventional therapy aimed at maintenance of clinical well being, would affect onset and
progression of microvascular complications (The Diabetes Control and Complications
Research Group, 1995). The DCCT involved 1441 patients enrolled in 29 clinical centers in
the US and Canada, and followed for an average of 6.5 years (4-9) years. Of these, 726 patients
comprising the primary prevention cohort were free of any microvascular complications

Comput Methods Programs Biomed. Author manuscript; available in PMC 2009 May 1.
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(AER<40 mg/24h and no retinopathy, among other features) and 715 patients comprising the
secondary intervention cohort had minimal pre-existing levels of alouminuria (AER < 200 mg/
24h) and mild retinopathy. Patients were randomly assigned to receive either intensive or
conventional treatment. Intensive treatment employed all available means (self-monitoring
four or more times a day with three or more multiple daily injections or a pump, in conjunction
with diet and exercise) to obtain levels of blood glucose as close as possible to the normal range
while attempting to avoid hypoglycemia (blood glucose below a physiologically safe level).
Conventional treatment, on the other hand, consisted of one or two daily injections of insulin
and less frequent self-monitoring with the goal of maintaining clinical well-being, but without
any specific glucose targets.

Although intensive therapy was associated with excess weight gain and greater risk of
hypoglycemia, risks of microvascular complications over the average of 6.5 years of follow-
up were significantly reduced with intensive versus conventional therapy [21]. As the earliest
stage of nephropathy, MA is highly predictive of progression to overt albuminuria, which is
associated with glomerular destruction. Hence, it is also of interest to assess the effect of
intensive therapy on the prevalence of MA. Lachin [21] presented the analysis of factors related
to the prevalence of MA in those people evaluated at the sixth year, the mean follow-up time.
He considered a subset of 172 patients in the secondary intervention cohort with 15 < AER<
40 mg/24h. In addition to the intensive versus conventional treatment group (intensive = 0 or
1), the analysis adjusted for the percent of HbA 1 at baseline (HbALc), prior duration of diabetes
in years (years), systolic blood pressure in mmHg (sbp), and gender (female) (1 if female and
0 if male).

HbA 1 is a measure of the average level of blood glucose control in the 4—-6 weeks prior to the
trial. The underlying hypothesis is that HbA level and duration of diabetes together determine
the risk of further disease progression. Progression of nephropathy may also be associated with
increased levels of blood pressure leading to kidney damage. These effects may also differ for
men and women. Thus the objective was to obtain an adjusted assessment of the effect of
intensive versus conventional treatment and also to explore the association between these
baseline factors and the risk of MA [21].

Our analysis was based on the subset of 172 patients, and the outcome was the presence of
MA, defined as an AER > 40 mg/24h. Table 4 shows percentages for the binary variables and
ranges for continuous variables. The prevalence of MA is moderate (24.4%). However, the
values for HbA;, diabetes duration and sbp had wide ranges. For a subject with sbp = 148, it
was likely that the linear predictor #X’ was close to the boundary 0 and the predicted probability
was so close to 1 that it causes non-convergence. When the LBM was fitted to data using PROC
GENMOD, then calculation did not converge. The estimates of OR and RR of MA for the
treatment and major baseline risk factors are presented in Table 4. The OR estimates are
calculated from SAS PROC LOGISTIC and the RR estimates are calculated from the COPY
and NLP methods. We see that the RR estimates from both methods are almost identical to
two decimal places. This confirms that the RR estimates are consistent and reliable.

As an example, the estimates for intensive therapy from both methods were RR = 0.350. If we
were to use OR (0.205) as the measure, we would report a 1.00-0.205 = 79.5% reduction of
odds. Since RR = 0.350, the relative reduction of risk rate would be 1.00-0.35 = 65%, which
is more relevant for health practitioners. The difference between the OR and RR for HbAlc is
more pronounced. As we see from Table 4, the difference between RR and OR may change
the interpretation and impression of the treatment effect. For epidemiologic studies where the
outcome is common, we would expect that such difference to be more noticeable.
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6 Discussion

The OR always overestimates the magnitude of association as compared to the RR when their
logs are both greater than 0, i.e., 0 < log(RR) < log(OR). The magnitude of the difference
between the estimates of OR and RR could be noticeable when the prevalence of outcome is
common. However, in practice, OR are seemingly always interpreted as RR, regardless of the
prevalence of the outcome.

In this paper, we propose a new method of calculating the RR. This method uses the SAS NLP
procedure and is widely available. As PROC NLP explicitly imposes the constraints, the
corresponding estimates are guaranteed to be within the bounds. Different methods should
produce similar estimates if they converge. In practice, we suggest examining the consistency
of the estimates from different methods to ensure that the results are correct.

The NLP procedure can also be used to estimate the risk difference, where the log link function
is replaced by the identity link and the constraintsare 0 < gXj < 1,i=1, ..., n. Itis also useful
to extend the estimation technique to multivariate correlated binary data. Once the log-binomial
model reaches convergence, the goodness of fit of the model can be assessed using the method
described by Blizzard and Hosmer [19].
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Appendix. Sample code

Ymacro nlp(DSIN=, DEP=, INDEP=, NUMIN=);
/* 1. Create the initial values using the COPY method */

data CopiedData;

set XDSIN.;
_weight_ = 0.999; output.;

weight = 0.001; &DEP. = 1 - &DEP.; ocutput;

rum;

ods select none; ods results off;

proc genmod data=CopiedData descending;
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weight _weight_;

model &DEP. = &INDEP. / dist=binomial link=log intercept=-4;
ods output ParameterEstimates=COPYPE;

rum;

ods select all; ods results on;

data NLPStarting; set COPYPE (keep-estimate); rum;
proc transpose data-HLPStarting out=NLPInit; run;

data NLPInit; set NLPInit;
_HAME_ = ‘parms’;
rename _NAME_ = _type_;
%do i = 0 %to &NUMIN.;
Wlet j = Nevaldki. + 1);
rename COL&j. = betaki.;
Tend;
Tun;

/# 2. Set up the constraints x+*beta<0 */ data Constraints;
length _type_ $ 8;
_type_ = *le’; betal = 1; _rhs_ = -0.00001;
set. &DSIN. (keep=RINDEP.};
%do i = 1 %to &NUMIN.;
betaki. = %scan(XINDEF., &i.);

keep betaki;
Yend;
keep beta( _type_ _rhs_;
Tung

data Constraints (type=est);
set. NLPInit Constraints;
Tun;

/# 2. Fit the relative risk regression using PROC NLP #/
%let parms = beta0;
%o i = 1 %to ENUMIN.;
%Wlet parms = &parms., betadi.;
Yend;

%let linear = betal;
Ydo i = 1 %to ENUMIN.;

%let linear = &linear. + beta&i.+%scan(XINDEP., &i.);
Yend;

proc nlp data=&DS8IN. inest-Constraints nomiss coveH vardef-n
pstderr;

max loglikelihood;
parms Eparms. ;
p = exp(klinear.};
if 0 < p < 1 then loglikelihood = XDEP.#log(p) + (1 - &DEP.}#log{1-p);
else loglikelihood = O;
run;
Yimend nlp;

data renal;
input. obsn micro24 int hbael duration sbp female;
yearsdm=duration/12; cards;
141 963178 104 1
200 7.93 176 112 ¢
/# dataline omitted +/
172 0 0 10,10 127 124 ¢ ; Tum;

Snlp(DSIN-Renal , S Input data set */
DEP=micro24, /# Dependent variable *f
INDEP=-int hbael yearsdm sbp female, /* Independent variables *f
NUMIN=5 f* Number of ind. variables +/

¥
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weight _weight_;

model &DEP. = &INDEP. / dist=binomial link=log intercept=-4;
ods output ParameterEstimates=COPYPE;

rum;

ods select all; ods results on;

data NLPStarting; set COPYPE (keep-estimate); rum;
proc transpose data-HLPStarting out=NLPInit; run;

data NLPInit; set NLPInit;
_HAME_ = ‘parms’;
rename _NAME_ = _type_;
%do i = 0 %to &NUMIN.;
Wlet j = Nevaldki. + 1);
rename COL&j. = betaki.;
Tend;
Tun;

/# 2. Set up the constraints x+*beta<0 */ data Constraints;
length _type_ $ 8;
_type_ = *le’; betal = 1; _rhs_ = -0.00001;
set. &DSIN. (keep=RINDEP.};
%do i = 1 %to &NUMIN.;
betaki. = %scan(XINDEF., &i.);

keep betaki;
Yend;
keep beta( _type_ _rhs_;
Tung

data Constraints (type=est);
set. NLPInit Constraints;
Tun;

/# 2. Fit the relative risk regression using PROC NLP #/
%let parms = beta0;
%o i = 1 %to ENUMIN.;
%Wlet parms = &parms., betadi.;
Yend;

%let linear = betal;
Ydo i = 1 %to ENUMIN.;

%let linear = &linear. + beta&i.+%scan(XINDEP., &i.);
Yend;

proc nlp data=&DS8IN. inest-Constraints nomiss coveH vardef-n
pstderr;

max loglikelihood;
parms Eparms. ;
p = exp(klinear.};
if 0 < p < 1 then loglikelihood = XDEP.#log(p) + (1 - &DEP.}#log{1-p);
else loglikelihood = O;
run;
Yimend nlp;

data renal;
input. obsn micro24 int hbael duration sbp female;
yearsdm=duration/12; cards;
141 963178 104 1
200 7.93 176 112 ¢
/# dataline omitted +/
172 0 0 10,10 127 124 ¢ ; Tum;

Snlp(DSIN-Renal , S Input data set */
DEP=micro24, /# Dependent variable *f
INDEP=-int hbael yearsdm sbp female, /* Independent variables *f
NUMIN=5 f* Number of ind. variables +/

¥
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max loglikelihood;
parms Eparms. ;
p = exp(klinear.};
if 0 < p < 1 then loglikelihood = XDEP.#log(p) + (1 - &DEP.}#log{1-p);
else loglikelibood = O;
run;
Yimend nlp;

data renal;
input. obsn micro24 int hbael duration sbp female;
yearsdm=duration/12; cards;
141 963178 104 1
200 7.93 176 112 ¢
/# dataline omitted +/
172 0 0 10,10 127 124 ¢ ; Tum;

Snlp(DSIN-Renal , S Input data set */
DEP=micro24, /# Dependent variable */
INDEP=-int hbael yearsdm sbp female, /* Independent variables wf
HUMIN=5 S+ Number of ind. variables +/
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Table 1

The parameters used in the simulations
Simulation I:
Case Py A a
1 —2.30259 0.38376 6.0
2 —2.30259 0.38376 4.0
3 -1.20397 0.56687 2.0
4 —1.20397 0.56687 1.0
5 —0.69315 0.65200 1.0
6 —0.69315 0.65200 0.0
7 —0.35667 0.70808 0.5
8 —0.35667 0.70808 -0.5
Simulation I1:
Case Bo Po Bu p
9 log(0.3) log(1.5) 0.18 0.2
10 10g(0.3) log(1.5) 0.18 0.5
11 10g(0.3) 10g(2.0) 0.10 0.2
12 10g(0.3) log(2.0) 0.10 0.5
Simulation 111:
Case Bo Bo Bu p
13 10g(0.15) log(1.5) 0.36 0.2
14 10g(0.15) log(1.5) 0.36 0.5
15 10g(0.15) log(2.0) 0.20 0.2
16 10g(0.15) 10g(2.0) 0.20 0.5
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