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ABSTRACT

N-Benzoyladenine-cyanoborane (2), and 6-triphenylphosphonylpurine-cyanoborane (3) were selected for

investigation of cytotoxicity in murine and human tumor cell lines, effects on human HL-60 leukemic

metabolism and DNA strand scission to determine the feasibility of these compounds as clinical

antineoplastic agents. Compounds 2 and 3 both showed effective cytotoxicity based on EDs0 values less than

4 g/ml for L1210, P388, HL-60, Tmolt3, HUT-78, HeLa-S uterine, ileum HCT-8, and liver Hepe-2.

Compound 2 had activity against ovary l-A9, while compound 3 was only active against prostate PL and

glioma UM. Neither compound was active against the growth of lung 549, breast MCF-7, osteosarcoma

HSO, melanoma SK2, KB nasopharynx, and THP-1 acute monocytic leukemia. In mode of action studies in

human leukemia HL-60 cells, both compounds demonstrated inhibition of DNA and protein syntheses after

60 min at 100 M. These compounds inhibited RNA synthesis to a lesser extent. The utilization of the DNA

template was suppressed by the compounds as determined by inhibition of the activities of DNA polymerase
, m-RNA polymerase, r-RNA polymerase and t-RNA polymerase, which would cause adequate inhibition

of the synthesis of both DNA and RNA. Both compounds markedly inhibited dihydrofolate reductase

activity, especially in compound 2. The compounds appeared to have caused cross-linking of the DNA

strands after 24 hr at 100 tM in HL-60 cells, which was consistent with the observed increased in ct-DNA

viscosity after 24 hr at 100 tM. The compounds had no inhibitory effects on DNA topoisomerase and II

activities or DNA-protein linked breaks. Neither compound interacted with the DNA molecule itself through

alkylation of the nucleotide bases nor caused DNA interculation between base pairs. Overall, these anti-

neoplastic agents caused reduction of DNA and protein replication, which would lead to killing of cancer

cells.

INTRODUCTION:

Potent anti-neoplastic activity has been demonstrated for cyanoborane derivatives of adenosine,

guanosine, inosine, and cytidine /1-8/. Base substituted boronated nucleosides and phosphate-modified
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nucleotides have been reported to be even more potent in suppressing the growth of murine and human

cancer cells/2/. A common feature of all of these derivatives was that they effectively suppressed DNA

synthesis and the activities of enzymes involved in the nucleic acid metabolism. Selected compounds

demonstrated DNA strand scission with inhibition of DNA topoisomerase II activity. Based on these

previous studies, NCbenzoyladenine-cyanoborane (2), 6-triphenyl-phosphonylpurine-cyanoborane (3) were

selected for investigation in human leukemia HL-60 cells for cytotoxicity, effects on metabolic events, and

DNA strand scission to determine the feasibility of these compounds as clinical antineoplastic agents.

METHODS

The cyanoborane adducts of the substituted purines were prepared via a Lewis acid exchange reaction/9/,

by using excess (e.g., 4 molar equivalents) triphenylphosphine-cyanoborane (1) and the amine (purine) in dry

dimethylfonnamide (DMF) at 55-70C under nitrogen atmosphere (Scheme 2). In the Lewis acid exchange

reaction, a weakly basic or bulky amine or phosphine, as its substituted borane

(C6H5)3P.HBr + NaBH3CN Reflux
N2(g) (C6H5)3P:BH2CN + HBr + H2

Scheme 1 Synthesis of the Lewis acid exchange reagent, triphenylphosphine-cyanobomne (1).

adduct (e.g., Ph3P:BH2CN), is exchanged for a more basic or less bulky amine, (e.g., a substituted purine).

These boron exchange reactions must be carried out under anhydrous conditions to avoid coordination of the

cyanoborane to water and subsequent degradation to boric acid. The Lewis acid exchange reaction is a

general route which has also been used in the preparation of other cyanoborane adducts of aliphatic/3, 9/,

aromatic /3,8/, and heterocyclic /8,9/ amines, as well as their borane and carboxyborane adducts /9/.

Triphenylphosphine-cyanoborane (_1) was prepared as previously reported/9, 10/(Scheme 1) by refluxing

Ph3P HBr and NaBH3CN in dry THF under nitrogen atmosphere. The reaction of 6-chloropurine and

triphenylphosphine-cyanoborane produced the unexpected product, 6-triphenylphosphonylpurine-

cyanoborane (). This resulted when the free triphenylphosphine, formed after the Lewis acid exchange,

underwent aromatic nucleophilic substitution displacing the chlorine in the 6 position of the purine ring.

Synthesis of Compounds

All chemicals and reagents were obtained from Aldrich Chemical Company (Milwaukee, WI) and used as

received except for dry solvents which were dried and distilled using standard procedures/11/. TLC was

performed using silica gel 60F 254 plates (silica gel on plastic, Aldrich Chemical Company). Melting points
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were obtained on a Thomas-Hoover Uni-melt apparatus (capillary method), and were uncorrected. IR spectra

were obtained on a Perkin-Elmer 1600 FTIR spectrometer in a potassium chloride liquid cell in CHCI3 or

CDC13. NMR spectra were obtained on a 300 MHz Bruker Avance FT-NMR spectrometer using

tetramethylsilane as an external standard for H and laC spectra and BF3:OEt2 for IB spectra (6 0 ppm).

Elemental analyses were performed by Quantitative Technologies, Inc. (Whitehouse, NJ).

Preparation of Triphenylphosphine-cyanoborane (1_):

To a mixture of 4.02 g (11.7 retool) of triphenylphosphine hydrobromide and 40 mL of dry THF was

added 0.93 g (14.8 mmol) of sodium cyanoborohydride. The suspension was stirred under N2 (g) at reflux for

10 hr. The mixture was cooled to RT, filtered and the solid washed with THF. The filtrate and washings were

combined and the solvents were removed under reduced pressure. The white solid was washed with cold

water, then cold ethyl ether. After air drying, 3.1002 g (10.30 mmol) of pure white solid was obtained in 88%

yield. TLC on silica gel in 97.5:2.5 dichloromethane:methanol showed a single spot, Rf =0.65. mp 172-

173C, IR (CHCI3): v 2360 cm" (B-H), 2196 cm"l (-CN). H NMR (CDCIa): 5 7.45-7.62 (m, 15H, Ph),

1.30-2.79 (br.m., 2H, BH2) ppm. B NMR (CDC13): 5 -36.68 ppm (q, JB.rt 94.1 Hz). aP NMR (CDC13)" 5

12.46 ppm (d, Jp.B 86.95 Hz).

Preparation of N6-Benzoyladenine-cyanoborane (2)

To a solution of 10.01 g (33.23 retool, 4 Eq.) of triphenylphosphine-cyanoborane in 30 mL of dry DMF

was added 2.03 g (8.49 mmol) of N-benzoyladenine. The solution was stirred under N2 (g) at 70C for 10

days. The solution was cooled to RT, filtered and the solid washed with methanol. The filtrate and washings

were combined and silica gel was added until all of the liquid was adsorbed. The solvents were removed

under reduced pressure. The product was purified by column chromatography on silica gel using

dichloromethane:methanol (95:5, Rf 0.69). A partial yield/12/of 0.0858 g (0.309 retool, 3.6%) of tan solid

was obtained, mp 149-152C, IR (CDCI3): v 2360 cm (B-H), 2255 cm1 (-CN). IH NMR (CDC13): 5

7.64-7.71 (m, 4H, H3, HS, o-Ph), 7.45-7.55 (m, 3H, m- and p-Ph), 1.73 (br.s, 2H, BH2) ppm. 13C NMR
(CDCI3): 133.64, 132.54, 132.49, 132.41,132.36, 132.29, 128.96, 128.91,128.80, 128.68 ppm. B NMR

(CDCI3): -33.20 ppm (hr. peak). HRMS-FAB (C3HIBN60): (M+H)+= 279.1166 (theoretical), 279.0921

(found).

Preparation of 6-triphenylphosphonylpurine-cyanoborane (3)

To a mixture of 15.76 g (52.34 retool, 4 Eq.) of triphenylphosphine-cyanoborane in 30 mL of dry DMF

was added 2.02 g (13.1 mmol) of 6-chloropurine. The mixture dissolved upon heating and was stirred under

N2 (g) at 70C for 10 days. The solution was cooled to RT and the resulting suspension was filtered and the

solid washed with methanol. The filtrate and washings were combined and silica gel was added until all of

the liquid was adsorbed. The solvents were removed under reduced pressure. The product was purified by
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column chromatography on silica gel using dichloromethane:methanol (95:5, Rf 0.49). A partial yield/12/

of 0.1363 g (0.705 mmol, 5.4%) of yellow solid was obtained, mp= 209-212C (dec), IR (CHCI3): v 2393

cm" (B-H). H NMR (CDC13): 5 9.18 (s, 1H, H3), 8.30 (s, 1H, HS), 1.82 (br.s, 2H, BH2) ppm. aC NMR
(CDCla): 5 157.21, 151,70, 151.46, 138.09, 136.58, 119.09 ppm liB NMR (CDC13): =-21.4 ppm (br.

peak.), alp NMR (CDCI3)" 8 16.88 ppm. MS (C24H9BNsP): (M-H)+ 418. Elemental Analysis

(C24H9BNsP 1/2CHaOH): C" 67.61%, H: 4.86%, N:16.09% (theoretical), C: 67.47%, H" 4.62%, N:15.92%

(found).

Ph

Ph3P:BH2CN (1_),
Dry DMF,
70C, N2 (g)

CI

Ph3P:BH2CN (1_),
Dry DMF,
70C, N2 (g) "

HN

Ph

PPh3+

:BH2CN

:BH2CN

Scheme 2" Synthesis of the cyanoborane adducts of N6-benzoyladenine (2_) and
6-triphenylphosphonylpurine (3).

Cytotoxicity

Compounds 2-3 were tested for cytotoxic activity by homogenizing the drugs as a mg/mL solution in
0.05% Tween 80/H20. These solutions were sterilized by passing them through an acrodisc (0.45 lure). The

following cell lines were maintained by literature techniques/14/: murine L1210 lymphoid leukemia and

P388 lymphocytic leukemia, human Tmolt3 and Tmolt4 acute lymphoblastic T cell leukemia, HL-60

leukemia, Hut-78 cutaneous lymphoma, THP-1 acute monocytic leukemia, HCT-8 ileocecal adenocarcinoma,

liver Hepe-2, A-549 lung carcinoma, HSO osteosarcoma, KB epidermoid nasopharynx, HeLa-S3 suspended

cervical carcinoma, ovary l-A9, SK-MEL-2 malignant, breast effusion MCF-7 and U-87-MG glioma.
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Normal fibroblasts 1788 were also used to test cytotoxicity of the agents. The NCI protocol was used to

assess the cytotoxicity of the test compounds and standards in each cell line. Values for cytotoxicity were

expressed as EDs0 lag/ml, i.e. the concentration of the compound inhibiting 50% of cell growth. EDs0
values were determined by the trypan blue exclusion technique /13/. A value of less than 4 lag/ml was

required for significant activity of growth inhibition. Solid tumor cytotoxicity was determined utilizing

crystal violet/MeOH and read at 580 nm (Molecular Devices)/14/.

Incorporation Studies

Incorporation of labeled precursors into 3H-DNA, 3H-RNA and all-protein for 106 HL-60 leukemia cells

was obtained/15/using a concentration range of 25, 50 and 100 gM of the test agents 2 and 3 over a 60 min

incubation. The incorporation of 4C-glycine (53.0 mCi/mmol) into purines /16/ and the incorporation of 4C-
formate (53.0 mCi/mmol) into pyrimidines /17/ was determined in a similar manner.

Enzyme assays

Studies for the inhibition of various enzyme activities were performed by first preparing the appropriate

HL-60 leukemia cell homogenates or subcellular fraction, then adding the drug to be tested during the

enzyme assay. For the concentration response studies, inhibition of enzyme activity was determined at 25, 50

and 100 gM of compounds 2 and 3, after 60 rain incubations. DNA polymerase c activity was determined in

cytoplasmic isolated extracts [18]. The polymerase activity for was determined with H-TTP /19/.

Messenger-, ribosomal- and transfer-RNA polymerase enzymes were isolated with different concentrations

of ammonium sulfate; individual RNA polymerase activities were determined using 3H-UTP /20.21/.

Ribonucleoside reductase activity was measured using 4C-CDP with dithioerythritol /22/. The

deoxyribonucleotides 14C-dCDP were separated from the ribonucleotides by TLC on PEI plates. Thymidine,

TMP and TDP kinase activities were determined using 3H-thymidine (58.3 mCi/mmol) /23/. Carbamyl

phosphate synthetase activity was determined/24/and citrulline quanitated colorimetrically/25/. Aspartate

transcarbamylase activity was measured/24/and carbamyl aspartate was quantitated colorimetrically/26/.

Thymidylate synthetase activity was analyzed by the 3H20 released which was proportional to the amount of

TMP formed from aH-dUMP/26/. Dihydrofolate reductase activity was determined by a spectrophotometric

method/28/. PRPP amidotransferase activity was determined by the method of Spassova et al. /29/. IMP

dehydrogenase activity was analyzed with 8-14C-IMP (54 mCi/mmol) (Amersham, Arlington Heights, IL)
after separating XMP on PEI plates (Fisher Scientific) by TLC/30/. Protein content was determined for the

enzymatic assays by the Lowry et al. technique/31/.

ct-DNA studies

After deoxyribonucleoside triphosphates were extracted/32/, levels were determined by the method of

Hunting and Henderson/33/with calf thymus DNA, E. coli DNA polymerase l, non-liniting amounts of the
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three deoxyribonucleoside triphosphates not being assayed, and either 0.4 mCi of (3H-methyl)-dTTP or (5-
3H)-dCTP. The effects of compounds 2 and 3 on DNA strand scission was determined by the methods of

Suzuki et al./34/, Pera et al./35/and Woynarowski et al./36/. HL-60 leukemia cells were incubated with 10

tCi thymidine hnethyl-3H, 84.0 Ci/mmol/for 24 hr at 37C. HL-60 cells (107) were harvested and then

centrifuged at 600 g X 10 min in PBS. They were later washed and suspended in ml of PBS. Lysis buffer

(0.5 ml; 0.5 M NaOH, 0.02 M EDTA, 0.01% Triton X-100 and 2.5% sucrose) was layered onto a 5-20%

alkaline-sucrose gradient (5 ml; 0.3 M NaOH, 0.7 KC1 and 0.01 M EDTA); this was followed by 0.2 ml of

the cell preparation. After the gradient was incubated for 2.5 hr at room temperature, it was centrifuged at

12,000 RPM at 20C for 60 min (Beckman rotor SW60). Fractions (0.2 ml) were collected from the bottom

of the gradient, neutralized with 0.2 ml of 0.3 N HC1, and measured for radioactivity. Thermal calf thymus

DNA denaturation studies, ct-DNA U.V.. absorption studies and DNA viscosity studies were conducted after

incubation of compounds 2 and 3 at 100 laM at 37C for 24 hr/37/.

Human DNA Topoisomerase Inhibition

Sample drugs were prepared in DMSO so that the stock final concentration was 5 mM [w/v]. The enzyme

assay consisted of test drugs at 50-200 laM, unit of human topoisomerase II (p170 isoform) [TopoGen, Inc.,

Columbus, OH], 0.5 mg of supercoiled PBR322 DNA in 50 mM Tris buffer, pH 7.5, 15 mM [3-

mercaptoethanol, 30 mg/ml bovine serum albumin, mM ATP, 10 mM MgCI2 and 150 mM KCI. After 30

rain incubation at 37 C the reaction was terminated with 1% SDS and mg/ml proteinase K (v/v). After an

additional hour of incubation, aliquots were applied to a 0.8% agarose TBE gel (v/v) containing 0.5 mg/ml

ethidium bromide and 1% SDS (w/v). Following overnight electrophoresis at 30 v (constant), the gel was

destained and photographed using a U.V-transilluminator and Polaroid film. Topoisomerase activity

inhibition was assayed by a similar method. The enzyme reaction consisted of test drugs, 0.5 units of human

topoisomerase [TopoGen, Inc., Columbus, OH], 0.5 lag of supercoiled PBR322 DNA in 50 mM Tris-HCl,

pH 8.0, 100 mM KCI, 10raM MgC12, 2 mM 2-mercaptoethanol, 30 lug/ml nuclease-free BSA.

Statistic Analysis

Data is displayed in tables and figures as the means + standard deviations of the mean expressed as a

percentage of the control value. N is the number of samples per group. The Student’s "t"-test was used to

determine the probable level of significance (p) between test samples and control samples.

RESULTS

Compounds 2 and 3 both showed effective cytotoxicity based on EDs0 values less than 4 tg/ml for

L1210, P388, HL-60, Tmolt3, lymphoma HUT-78, HeLa-S", ileum HCT-8, and liver Hepe-2. Compound 2

had activity against ovary I-A9, while only compound 3 was only active against prostate PL and glioma UM.
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Both compounds were not active against the growth of lung 549, breast MCF-7, osteosarcoma HSO,

melanoma SK2, KB nasopharynx, and THP-1 acute monocytic leukemia (Table 1).

Compound 2 was examined for its mode of action in HL-60 leukemia cells (Table 2). DNA and RNA

synthesis after 60 minutes was slightly inhibited by 35% and 25% at 100 laM. Protein synthesis after 60

minutes at 100 laM inhibited 55% at 100 .tM. Utilization of the DNA template showed that the agent

inhibited DNA polymerase ct activity by 50% at 100 tM,.mRNA polymerase 41%, rRNA polymerase 37%,

and tRNA polymerase 52%. A number of enzyme activities were slightly reduced but were not significantly

different from the control. Ribonucleotide reductase activity after 60 minutes was inhibited only 12%, while

de novo purine synthesis was inhibited 18%. Compound 2 mildly suppressed PRPP amido transferase activity

at 100 IuM by only 6% with an 11% reduction of IMP dehydrogenase activity. Carbamyl phosphate synthase

and aspartate transcarbanylase activities were slightly inhibited 14% and 31%. While thymidylate synthase

and thymidine kinase activities were increased by 1% and 35%, TMP and TDP kinase was slightly inhibited

22% and 31%. Dihydrofolate reductase activity was markedly inhibited 85%. Studies with ct-DNA showed

that compound 2 had no effect on ct-DNA ultraviolet absorption between 220 and 340nm. HL-60 DNA

strand scission studies after 24h incubation at 100 laM revealed that compound 2 caused DNA cross-linking

(Figure 1). This was consistent with the increase in ct-DNA viscosity after 24 hr at 100 pM.

Deoxyribonucleotide levels were all slightly reduced after 60 min incubation at 100 laM.
Compound 3 was also examined for its mode of action in HL-60 leukemia cells (Table 3). DNA and RNA

synthesis after 60 minutes was slightly inhibited 35% and 10% at 1001aM. Protein synthesis after 60 minutes

at 100 laM was inhibited 48% at 100tM. Utilization of the DNA template was moderately inhibited at 100

pM with inhibition of DNA polymerase e activity 20%, mRNA polymerase activity 44%, rRNA polymerase

activity 40%, and tRNA polymerase activity 39%. Ribonucleotide reductase activity was inhibited only 25%,

while de novo purine synthesis was inhibited 35% after 60 rain. Compound 3 mildly suppressed PRPP amido

HL-60 Leukemia DNA Strand Scission
after 24 hr

,: Control#2---- #35

Fraction Number

Fig. 1" DNA Strand Scission by the Cyanoboranes after 24 hr at 100 mM
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Table 1

Cytotoxicity of Cyanoborane Compounds

Tumor Cell Line

L1210 mouse

leukemia

P388 mouse

lymphocytic

leukemia

HL-60 human

Leukemia

Tmolt3 T cell

Leukemia

T molt4 T cell

Leukemia

HUT-78

Lymphoma
THP-1 Acute

Monocytic

Leukemia

HeLa-S susp
Uterine

KB Nasopharynx
...Lung A- 549

...Liver Hepe-2
Ovary l-A9

Breast MCF-7

Glioma UM 86

Ileum HCT-8

Prostate PL

Osteosarcoma

HSO

Melanoma SK2

Nonral

RMPI 1788

2.96

2.58

3.53

3.17

4.24

3.53

6.73

2.75

4.88

7.69

3.20

2.63

6.07

5.98

3.56

1.31

2.62

4.56

2.96

7.11

3.77

6-MP

2.43

2.04

3.35

1.62

2.67

1.68

1.93

4.63

Ara-C

3.07

0.79

4.00

2.67

2.36

2.50

2.54

VP-16

Etoposide

1.83

0.99

4.43

1.00

1.92

5-FU

1.41

1.41

5.28

2.14

2.75

5.81

1.12

2.47

1.25

3.58

6.46

6.37

9.14

5.74

4.05

2.69

4.47

6.73

3.68

3.97

2.98

8.79

8.41

3.03

2.12

11.04

4.71

6.64

8.84

4.46

1.15

9.13

6.86

EDs0 values > 4 tg/ml are required for significant activity

2.13

2.84

5.62

5.39

12.45

1.88

2.54

0.86

10.53

1.33

3.27

1.69

3.32

4.74

6.24

11.00

2.44

1.13

3.57

3.53

6.82

1.28

1.30

8.73

5.93
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Assay (N = ,6)
DNA Synthesis

RNA Synthesis

Protein Synthesis

DNA Polymerase a

mRNA Polymerase

rRNA Polymerase

tRNA Polymerase

Ribonucleotide Reductase

De Novo Purine Synthesis

PRPP Amido Transferase

IMP Dehydrogenas

De Novo Pyrimidine Synthesis

Carbamyl Phosphate Synthetase

Aspartate Transcarbamylase

Thymidylate Synthase

Thymidine Kinase

TMP kinase

TDP Kinase

Dihydrofolate Reductase

d(ATe)

d(GTP)

d(CTP)

d(TTP)

* P < 0.001;
a 45011 dpm f 8394 dpm
b 4226 dpm g 5151 dpm
c 5343 dpm h 63565 dpm
d 7125 dpm 17646 dpm

e 5693 dpm J 0.164 OD

Table 2

Effects of Compound I HL60 cell metabolism after 60 min incubation.

Percent of Control . X _+ S.D,)
Control 25 M 50 M 100

6
a

100 + 81+_. 4 68+_5* 65+_4*

5
b

100 + 98+5 94+_4 75+._4*

100 + 6
c 55+_4* 45+_5* 45_+3*

100 + 5
d 76+4* 72_+5* 50+_4*

100 + 4
e 71_+5’ 59+._4* 59+3*

100 + 6
f 69+6* 65+_5* 63+_5*

100 + 6
g 57+_5* 56+6* 48+5*

6
h

100 + 94_+6 92+5 88+__4

100 + 6 110_+6 86+_5 82+_4

100 + 6
j 100+7 95+5 94+_4

7
k

100 + 96+_5 94+6 89_+5

61100 + 101 +_5 91+5 76+__4’

6
m

100 + 89+_5 89+_5 86+6

7
n

100 + 101+5 100_+6 69+__4"

6100 + 128+5’ 128+_6’ 101+5

100 + 5
p 178+7’ 135_+5’ 135_+6"

100 + 4
q 104+5 90+__4 78+3*

4
r

100 + 89_.+5 81 +_.4’ 69+3’

6
s

100 + 49+__4* 32+_3* 15+ 2*

4 87+5100 +

6
u 75+4*100 +

6
v 89+5100 +

6
w 83+5100 +

k 4658 dpm P 1511 dpm

7316 dpm q 320 dpm
m 1.242 lamoles citrulline r 286 dpm
n 1.030 mol N-carbamyl s 0.092 OD units

aspartate
o 13890 dpm 9.02 pmoles

u 11.21 pmoles
v 13.65 pmoles
w 16.73 pmoles

units
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Table 3

Effects of Compound 2 HL-60 Leukemia cell metabolism after 60 rain incubation.

Percent of Control ( X + S.D.)

Z_6__2 Control 25

6
aDNA Synthesis 100 + 66+4* 65+3* 65+4*

RNA Synthesis 100 + 5
b 97+5 94+6 90+4

6
cProtein Synthesis 100 + 60+4’ 56+4’ 52+3 *

5
dDNA Polymerase ct 100 + 94+5 93+5 80+4*

4
emRNA Polymerase 100 + 82__+5 67+4* 56+_4*

6
frRNA Polymerase 100 + 86+6 71+5* 60+_4*

tRNA Polymerase 100 + 6
g 74+5 63+4’ 61 +3 *

6
hRibonucleotide Reductase 100 + 102+6 88+5 85+5

6De Novo Purine Synthesis 100 + 76+4’ 66+4’ 65+_4"

PRPP Amido Transferase 100 + 6
j 92+5 89+5 88_+6

7
kIMP Dehydrogenase 100 +__ 101 +6 93+5 85+5

61De Novo Pyrimidine Synthesis 100 + 93+_4 80+4* 79+3*

Carbamyl Phosphate Synthetase 100 + 6
m 116+5 104+5 102+6

Aspartate Transcarbamylase 100 + 7
n 104+6 98+4 58+4*

6Thymidylate Synthase 100 + 101 +5 99+5 24+3"

Thymidine Kinase 100 + 5
p 1698* 1526* 72+__4*

TDP kinase 100 + 4
q 96+5 74+4* 57+3*

4
rTTP Kinase 100 + 103_+5 101+4 54+_4’

6
sDihydrofolate Reductase 100 + 57+_4* 40+3* 37+3___Z*

4d(ATP) 100 + 88+5

6
ud(GTP) 100 + 89+5

6
vd(CTP) 100 + 88+5

6
wd(TTP) 100 + 75+_5’

P _< 0,001;

transferase activity at 100 laM by only 12% with a 15% reduction of IMP dehydrogenase activity. Carbamyl

phosphate synthase activity showed an increase of 14%, while aspartate transcarbanylase activity was

inhibited 42%. Only thymidylate synthase activity’ was markedly suppressed 76%, with thymidine kinase

activity marginally inhibited 28%, TMP kinase activity 43% and TDP kinase activity 46%. Dihydrofolate

reductase activity was suppressed 63%. Studies with ct-DNA showed that compound 3 had no effect on ct-

DNA ultraviolet absorption between 220 and 340nm. HL-60 DNA strand scission after 24h incubation at 100

28



7"alrcl C.Scarlett et al. A4etal...Based Drugs

laM revealed that compound 3 caused DNA cross linking (Figure 1) which was consistent with the observed

increased in ct-DNA viscosity after 24 hr at 100 gM. Deoxyribonucleotide pools were slightly redtced afier

60 min incubation with agents at 100 laM. Human topoisomerase and II activity was not inhibited by

compounds 2 or 3 at 100 laM.

DISCUSSION

N6-Benzoyladenine-cyanoborane (2), and 6-triphenylphosphonylpurine-cyanoborane (3) proved to be

cytotoxic in suspended cancer cells. Surprisingly these compounds were also cytotoxic in solid liver Hepe-2

and ileum HCT-8 carcinoma. In mode of action studies in human leukenic HL-60 cells, both compounds

demonstrated inhibition of DNA and protein syntheses after 60 rain at 100 gM. These compounds inhibited

RNA synthesis to a lesser extent. The utilization of the DNA template was suppressed by the compounds as

determined by inhibition of the activities of DNA polymerase ct, m-RNA polymerase, r-RNA polymerase

and t-RNA ploymerase which would cause adequate inhibition of the synthesis of both DNA and RNA.

Because the d[NTP] pool levels were slightly reduced after 60 rain further inhibition of DNA synthesis

would occur. Both compounds remarkably inhibited dihydrofolate reductase activity, especially compound 2.

This would cause the reduction of the one carbon transfer for purine and pyrimidine syntheses/2/. However,

the de novo synthesis of purine and pyrimidines was only.marginally affected by the compounds as were

their regulatory enzyme activities /2/. Ribonucleotide reductase activity was moderately inhibited which

would reduce the amount of ribonucleotide converted to deoxyribonucleotides for DNA synthesis. The

reduction of TMP and TDP kinase activities would further reduced thymidine nucleotides levels

demonstrated significantly by compound 3. Both compounds appeared to have caused cross-linking of the

DNA strands after 24 hr at 100 laM in HL-60 cells, which was consistent with the observed increased in ct-

DNA viscosity after 24 hr at 100 gM and lack of inhibition of DNA topoisomerase and II activities with no

DNA-protein linked breaks. Neither compounds interacted with the DNA molecule itself through alkylation

of the nucleotide bases nor caused DNA interculation between base pairs.

Previously studied thymidine, inosine, cytidine, guanosine, and arbinoside cyanborane nucleotides have

demonstrated a similar pattern of cytotoxicity on the growth of suspended murine and human tumor cells and

solid human tumors. Those nucleoside and nucleotide cyanboranes inhibited DNA and protein synthesis,

with a select few of the derivatives reducing RNA synthesis after hr/2/. Mutliple targets of the cyanboranes

in DNA synthesis were demonstrated by the compounds. For the nucleoside cyanboranes the major sites of

inhibition were IMP dehydrogenase and PRPP amido tranferase activities, suppressing de novo purine

synthesis of Tnolh leukemia cells /2/. In contrast, the de novo synthesis of purine, pyrimidine and their

regulatory enzyme activities were only marginally suppressed by the current compounds. Although similar

nucleoside cyanoboranes inhibited dihydrofolate reductase activity, the current compounds were more potent.

The boranated nucleosides cause a reduction of thymidylate synthase activity whereas only compound 3

decreased activity while compound 2 increased activity. However, both types of compounds inhibited TMP

and TDP kinase activity and marginally reduced d[NTP] pools. Some of the nucleoside cyanoboranes caused

DNA strand scission [thymidine] whereas others ribose and arabinoside] caused DNA cross-linking as the

current compounds. However, none of the cyanboranes targeted the DNA molecule itself.
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CONCLUSION

N-Benzoyladenine-cyanoborane (2) and 6-triphenylphosphonylpurine-cyanoborane (3) have been proven

to be effective antineoplastic agents in their overall reduction of DNA and protein replication in respect to

killing cancer cells. The inhibition of dihydrofolate reductase activity and/or thymidylate synthetase adds to

the overall inhibition of DNA and protein synthesis. Even though both compounds showed DNA cross-

linking, neither compound interacted with the DNA molecule itself through alkylation of the nucleotide bases

nor caused DNA intercalation between base pairs. Sufficient activity was demonstrated by these cyanoborane

derivatives to warrant further investigation as potential antineoplastic for clinical use.
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