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EmmTILt cells play an important, active role in
the onset and regulation of inflammatory and
immune reactions. Through the production of
chemokines they attract leukocytes and activate
their adhesive receptors. This leads to the ancho-
rage of leukocytes to the adhesive molecules
expressed on the endothelial surface. Leukocyte
adhesion to endothelial cells is frequently
followed by their extravasation. The mechanisms
which regulate the passage of leukocytes through
endothelial clefts remain to be clarified. Many
indirect data suggest that leukocytes might
transfer signals to endothelial cells both through
the release of active agents and adhesion to the
endothelial cell surface. Adhesive molecules (such
as PECAM) on the endothelial cell surface might
also ’direct’ leukocytes through the intercellular
junction by haptotaxis. The information avail-
able on the molecular structure and functional
properties of endothelial chemokines, adhesive
molecules or junction organization is stir frag-
mentary. Further work is needed to clarify how
they interplay in regulating leukocyte inf’tltration
into tissues.
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Introduction

Circulating leukocytes migrate from the vessels
and enter tissues under normal or pathological
conditions. Whereas monocytes, lymphocytes and
natural killer cells exhibit a significant sponta-
neous migration through resting endothelial cells
(EC), neutrophils and eosinophils require
chemotactic stimuli and/or endothelial cell activa-
tion.1-3 Cell migration across endothelial mono-
layers involves leukocyte adherence to the
endothelium, crawling on the endothelial surface
and penetration between endothelial clefts.

Endothelial cells can actively regulate leukocyte
infiltration in inflammatory tissues through differ-
ent mechanisms such as vasodilatation, release of
chemotactic cytokines, expression of adhesion
molecules and opening of interendothelial junc-
tions (Fig. 1).1’2’4-6

All these reactions act in concert in localizing
leukocytes and in facilitating their passage
through the interendothelial junctions. Inflamma-
tory stimuli are able to activate endothelial cells
in,ducing their fun,ctional reprogramming toward
a proinflammatory phenotype.qnterleukin-1 (IL-
l) or tumour necrosis factor (TNF) induce pro-
duction of the vasodilatatory mediators such as
prostacyclin and nitric oydde,5’’8 as well as the

synthesis of a lae series of adhesive molecules
and chemokines, and cause endothelial increase
in permeability and alteration of junction organ-
ization.6’9’1 In addition to ’classic’ inflammatory
agents, stimuli associated with the development
of atherosclerotic plaques (such as minimally
oxidized low-density lipoprotein [LDL]) can also
modify endothelial cell reactivity and induce
monocyte and lymphocyte infiltration into the
vessel wall. In a general sense atherosclerotic
plaque evolution presents many similarities with
inflammatory reactions.

In this review we will focus concisely on the
role of endothelial cells in promoting leukocyte
infiltration in tissues. In particular, we will con-
sider chemokine production, expression of adhe-
sive molecules and regulation of junction
organization. Previous reviews of this rapidly
expanding area of research provide the back-
ground and framework for this contribu-
tion.,6J,2,3

Chemokines

The proinflammatory chemokines are a family
of 16 homologous low molecular weight (8-
10kDa) proteins. They activate different leuko-
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FIG. 1. Leukocyte extravasation as a multistep process regulated by the endothelium.

Table 1. The chemokine family

-chemokines (C-X-C) Ichemokines (C-C)

IL-8 RANTES
GRO-13,-7 MCP- ,-2,-3
IP-IO MIP-I
ENA-78 MIP-11
MGSA
NAP-2

For details see References 14 and 15.

cyte subtypes inducing a large set of responses
including change in cell shape, release of
enzymes, formation of bioactive lipids, respira-
tory burst and most importantly activation of
adhesive molecules and chemotaxis.4’5 One of
their characteristics is the presence of four
cysteines, conserved in all members of the. family.
They can be subgrouped in 0t-chemokines (Table
1) when the first two cysteines are interrupted by
one amino acid (C-X-C) and ]3-chemokines
when they are together (C-C). cz-Chemokines act
on neutrophils, ]3-chemokines activate mono-
cytes, eosinophils and basophils.4’5

In vitro studies: Endothelial cells produce various
chemokines in response to signals representative
of inflammatory reactions, immunity and throm-
bosis.5 Inflammatory cytokines (IL-1 and TNF)
and bacterial endotoxins induce expression and
release of IL-8 and GROcz.16-23 Induction of IL-8
expression is associated with and depends on
gene transcription,i IL-4 and IL-13 are weak
inducers of IL-8 expression and amplify induc-

24 25 28tion by inflammatory cytokines. Histamine
induces IL-8 production in EC.29 Hypoxia has
recently been shown to induce IL-8 and MCP-1
expression in EC, a finding potentially relevant
for pathological conditions in which activation
and recruitment of leukocytes may amplify tissue
damage.3’31 Platelets contain IL-1 and, when they
interact with vascular EC, induce IL-8 gene
expression.32

As a result of proteolytic cleavage, IL-8 versions

with a different NI-{2 terminus and length can be
produced.14 It has been suggested that EC
release predominantly a 77-amino acid version of
IL-8, which is a less active species at activating
leukocytes than the most common 73-residue
form.2’ The proteolytic conversion to smaller
versions of the molecule can be catalysed by
thrombin.
The influence of IL-8 on the interaction of

polymorphonuclear cells with vascular EC has
been the object of seemingly conflicting observa-
tions, which seem now to reflect different
experimental protocols and, most interestingly,
different functions exerted by this cytokine under
different pathophysiological conditions. IL-8
increased the adhesiveness of normal poly-
morphonuclear leukocytes for normal EC.4 In
apparent contrast with these findings, EC-derived
IL-8 was reported to inhibit binding of the poly-
morphonuclear leukocytes to activated EC.2

Although it elicits polymorphonuclear leukocyte
extravasation when given locally, IL-8 inhibits
recruitment if administered systematically by the
i.v. route.5’6 The seemingly paradoxical anti-
inflammatory effects of high levels of systemic IL-
8, possibly dependent upon the action of a
reverse chemotactic gradient and leukocyte deac-
tivation, may represent a feedback mechanism to
control tissue damage.
The role of It-8 produced locally by vascular

cells was reexamined using reconstructed vessel
wall models.7 Unequivocal evidence was
obtained for the importance of IL-8 in transen-
dothelial migration induced by inflammatory
cytokines.7’8
EC of postcapillary venules bind IL-8, possibly

via heparin-like molecules.39 EC of postcapillary
venules in kidney and other tissues express the
promiscuous chemokine receptor present also
on erythrocytes and known as Duffy antigen.’
This receptor is present on EC of both Duffy+
and Duffy-- individuals and may serve to present
chemokines to circulating leukocyes. Solid phase
IL-8 elicits haptotactic migration. Thus, locally
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produced IL-8 may be retained on the surface of natural history of atherosclerosis. EC staining was
EC and activate adhesive interactions and migra- prominent in diffuse intimal thickening and in
tion.39 fatty streaks, whereas it was weak in ather-
EC activated in vitro by inflammatory cyto- omatous lesions. Subendothelial macrophages

kines express GRO0t, which according to one were strongly positive for MCP-1 in fatty streak
report, could in turn act on EC.17 It has been lesions and in atherosclerotic plaques. In
suggested that EC-bound GROa may promote plaques, a few intimal smooth muscle cells
monocyte adhesion.4 stained for MCP-1. These results suggest that EC

IP10, a member of the C-X-C family but and macrophages are the major source of MCP-1
unique in that it attracts monocytes, is expressed in early atherosclerotic lesions.53 Monocyte adhe-
in certain endothelia of mice exposed in vivo to sion and infiltration is an early event in the
IFNT or to lipopolysaccharides (tPS).44’45 There natural history of atherosclerosis.’ Mono-
are no reports on in vitro expression of this nuclear phagocyte infiltration is also a prominent
chemokine in EC. feature of vasculitis.58 Locally produced MCP-1
EC produce substantial amounts of the C-C may play an important role in regulating extra-

chemokine MCP-1.2’22 The proinflammatory vasation of leukocytes, of monocytes in parti-
signals IL-1, TNF and, to a lesser extent, endo- cular, in vessel wall pathology.
toxin are potent stimuli for MCP-1 produc-
tion.21’22 IL-4 and IL-13 are active, though less
potent inducers of MCP-1 expression.25-2v IFN7 Endothelial adhesive molecules
was recently shown to induce MCP-1 in human
microvascular EC.46 M-CSF was reported to The recruitment of leukocytes into sites of
induce MCP-1, though we did not detect the M- inflammation involves a cascade of sequential
CSF receptor c-fms in EC by Northern analysis.47 events controlled by the interaction between
Given the role that lipids and monocytes play in adhesion molecules expressed by leukocytes and
the natural history of atherosclerosis, it is of by the endothelium. This multi-step process is a
interest that minimally modified LDL induce MCP- cell to cell adhesive reaction that involves specific
1 production in EC and smooth muscle cells.48 binding of membrane receptors on one cell to
Thrombin was recently found to induce expres- counter-receptor structures on the other cell.
sion of MCP-1 in monocytes and, less promi- Several adhesion receptors belonging to different
nently, in EC.49 The C-C chemokine RANTES families including integrins, selectins, and immu-
was produced by EC exposed to TNF and noglobulin-like molecules have been shown to

IFN7.5 participate in this mechanism.’2 In the current
The molecular basis of stimulation of chemo- model, selectins are implicated in the initial

kine expression in EC has been studied to a rolling, while adhesion receptors from the integ-
limited extent. Induction by inflammatory signals fin family and the immunoglobulin superfamily
and thrombin is protein synthesis independent in are involved in the firm attachment, flattening
EC, but, interestingly, not in monocytes.49 Direct and extravasation of leukocytes.’2’59’6 Leuko-
demonstration of enhanced gene transcription cytes have to adhere to the endothelium before
was obtained for MCP-1 and IL-8 by nuclear run transmigrating, and it is difficult to distinguish
off analysis.2’2 between adhesion molecules involved only in

adherence and proteins involved in the transmi-
In vivo studies: EC at sites of delayed type hyper- gration process. However, several studies have
sensitivity reactions and kidney allograft rejection shown that intercellular cell adhesion molecule 1
ex r the ch m kin 5 52p ess C-C e o’e RANTES. In vivo (ICAM-1), vascular cell adhesion molecule 1
studies on chemokines in vessel wall pathology (VCAM-1), platelet endothelial cell adhesion
have largely been restricted to atherosclerosis, molecule 1 (PECAM-1) and selectins are impor-
MCP-1 expression has been detected in athero- tant for leukocyte diapedesis between endothelial
matous lesions of rabbits, primates and man.53-56 cells.
IL-8 and MCP-1 mRNA have been detected in
increased amounts of aortic aneurisms.57 Chemo- Selectins: The selectin family comprises three
kine gene expression has been detected in proteins: E-selectin (CD62E), L-selectin (CD62L)
various cellular elements, including smooth and P-selectin (CD62P).59’6 They all contain a
muscle cells, EC and mononuclear phagocytes, lectin domain, an epidermal growth factor
with somewhat different results in different domain, and a variable number of short con-
studies. In the only study with mAb,53 cell popu- sensus repeats of 60 amino acids present in the
lations positive for MCP-1 were different in complement regulatory proteins. The three selec-
lesions representative of different stages of the tin genes are located on chromosome 1.62,63
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E- and P-selectins are expressed on endothelial ICAM-1 is moderately expressed on resting
cells, while L-selectin expression is restricted to endothelial cells, but release of cytokines at sims
leukocytes. Selectins bind to carbohydrate ligands of inflammation and immune response such as
via their lectin domains. It has been shown that TNF-cz, IL-1 or IFN3, results in augmented cel-
tetrasaccharides sialyl Lewis X and sialyl Lewis A lular expression of ICAM-1.87’88 The expression
(sLeX, sLeA) have a ligand activity for all the of ICAM-1 has also been demonstrated on lym-
three selectins.61’64 The role of selectins in leuko- phocytes, monocytes and other non-haemato-
cyte transmigration is still debated, poietic cells, like fibroblasts, epithelial cells and

mucosal cells.87’89 ICAM-1 is a ligand for CDlla/
E-selectin. E-selectin (CD62E) is a 115kDa glyco- CD18 (LFA-1)9 and for CD11b/CD18 (Mac-l).91

protein, only expressed on EC after activation by The primary binding site for CDlla/CD18 is
IL-1, TNF-cz,65 or bacterial endotoxin such as located in the NHi-terminal first Ig-like domain
LPS.66 After EC stimulation, newly synthesized E- of ICAM-1, with domain 2 also involved in this
selectin is rapidly detected with a maximal interaction,92 while the one for CD11b/CD18 is
surface expression after 3-6h and a return to localized to the third Ig-like domain.9 ICAM-1 is
basal levels within 24h.65’67 This rapid down- also a receptor for the major group of rhino-
regulation, although not completely understood, viruses94’95 and the malaria trophozoite Plasmo-
has been explained by the release of a soluble dium falciparum,9 the binding site for both
form of E-selectin,68’69 and internalization of the ligands, though distinct from the LFA-1 binding
molecule.7 This regulation of E-selectin expres- site, is located in the first two domains of the
sion might be crucial to control leukocyte accu- ICAM-1 molecule.92’97 In addition, ICAM-1 is a
mulation in inflammatory responses. Several receptor for CD4398 and hyaluronan.99 The
ligands for E-selectin have been identified on leu- interaction between Mac-1/LFA-1 (CD11a,b/
kocytes, but have not yet been cloned.71’72 CD18) and endothelial ICAM-1 is a well docu-
Monoclonal antibodies specific for E-selectin mented adhesion pathway, important in the
have been shown to inhibit leukocyte transmigra- adhesion and extravasation of leuko-
tion.7-76 It has been suggested that binding of cytes.73’74’100-102 It has been shown recently that
leukocytes to E-selectin on activated endothelium fibrinogen (Fg) is a ligand for ICAM-1, and that
upregulates CDllb (Mac-l) on the leukocytes, Fg binding to ICAM-1 results in enhanced adhe-
and induces an increased adhesion through an sion of leukocytes to EC monolayers,1 and an
ICAM-1/Mac-1 interaction.7’77’78 increase in their transendothelial migration.14

These results suggest that Fg must act as a bridg-
P-selectin. P-selectin (CD62P), previously termed ing molecule: for monocyte and polymorpho-
PADGEM or GMP-140, is a single-chain glycopro- nuclear leukocyte adhesion, it could bind to
tein of 140kDa, expressed in platelets and endo- leukocyte CD11b/CD1815 and to endothelial
thelial cells. In platelets, P-selectin is stored in cz- cell ICAM-1, while for lymphocyte adhesion it
granules,79 whereas in endothelial cells it is could interact with two ICAM-1 molecules on
found in Weibel-Palade bodies.’1 After activa- opposing cells. This interaction between Fg and
tion, P-selectin is mobilized to the external ICAM-1 was inhibited by a commercially avail-
plasma membrane within minutes. This increase able mAb specific for ICAM-1, LB2, epitope-
in P-selectin expression is transient, and the mapped to the first immunoglobulin domain of
protein is rapidly internalized inside the cell, ICAM-1,97 suggesting that this domain is involved
where it is degraded or recycled.82’83 P-selectin is in the Fg interaction with ICAM-1. However, the
also upregulated transcriptionally by TNF-z.67 inhibition obtained with LB2 on Fg-dependent
Two ligands has been identified: the P-selectin adhesion was only partial, even at a high mAb
glycoprotein ligand-1 (PSGL-1), expressed on concentration. This limited inhibition might

a4various leukocytes and a 120kDa ligand reflect the fact that LB2 is not reacting with the
expressed only on myeloid cells.5 P-selectin exact binding site of Fg on ICAM-1, but rather
deficient mice have been shown to be deficient with a nearby site. Alternatively, an unidentified

60in leukocyte extravasation. Fg receptor present at the surface of endothelial
cells could contribute to Fg-mediated adhesion

IgG superfamily: of leukocytes. Both Fg-mediated leukocyte adhe-
sion and transendothelial migration could be

ICAM-1. In general, interaction of leukocytes inhibited by a peptide from the fibrinogen 3’
with ICAM-1 seems to be necessary for their chain.16

extravasation. ICAM-1 (CD54) is a single chain.
membrane glycoprotein of 80-115kDa, with five VCAM-1. VCAM-1 (CD106) is a transmembrane
Ig-like repeats in its extracellular domain.6 glycoprotein of 110kDa expressed only on
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cytokine-activated endothelium.7’8 A protein malemmal undercoat.-2 One of the typical
containing six Ig-like domains was initially characteristics of endothelial junctions is their
cloned (6D VCAM-1),m9 but this form arises dynamic organization. Endothelial cells are able
from an alternative splicing of a seven Ig-like to rapidly change the architecture of the junc-
domain of VCAM-1 (7D VCAM-1), which is the tions to allow the passage of circulating blood
dominant form on activated endothelium.m-2 cells. This effect, in most cases, is quickly rever-
VCAM-1 is a ligand for x4131 (VLA-4) and a4137 sible and the endothelium is able to dis-
integrins.-6 VLA-4 binds VCAM-1 through organize/reorganize its intercellular junctions
the first and the fourth Ig domain.7’8 Using within minutes. Interendothelial junctions
monoclonal antibodies, several studies have present a different degree of complexity along
shown that VCAM-1 is involved in the transmi- the vascular tree responding to different func-
gration of monocytes and eosinophils,74’75 but tional requirements. For instance, they are
its involvement in lymphocyte transendothelial well organized and numerous in large arteries or
migration remains to be clarified.9’2 in the blood vessels of the brain where the

control of permeability must be strict, whereas
PECAM-1. PECAM-1 (CD31)is a 130kDa glyco- they are very primitive in the post-capillary
protein expressed on endothelial cells, platelets venules, where cell extravasation and exchange
and some leukocytes.12 CD31 is constitutively of plasma constituents need to be particularly
expressed on endothelial cells, and its expression efficient.1

is not increased by cytokines.22 Molecular On the basis of morphological and functional
cloning studies have shown that CD31 is com- characteristics at least four types of junctions
posed of six extracellular Ig-like domains, a short have been described in endothelial cells. These

134 136transmembrane region, and a relatively long cyto- are: tight junctions (TJ), adherence junc-
132 137 138plasmic tail of 118 amino acid-containing poten- tions (AJ), gap junctions and syndesmos.

122 125tial sites for posttranslational modifications. Although there is a great deal of information
Alternative splicing of the cytoplasmic tail can regarding the molecules that mediate leukocyte
generate multiple CD31 isoforms that may reg- adhesion to the endothelium, the mechanisms by
ulate phosphorylation, cytoskeletal association which leukocytes trigger the opening of endothe-
and ligand affinity of the potein.126 CD31 is lial cell junctions is still obscure. In many condi-
heavily glycosylated and glycosylation accounts tions the passage of leukocytes through
for 40% of the mass of CD31.2 PECAM-1 endothelial junctions is a non-toxic process that
appears to be able to interact both with itself in a does not increase endothelial permeability per se
homophylic interaction and with other molecules or cause vascular damage.9
in a heterophylic interaction.25’27 In endothelial Chemoattractants and adhesive molecules sti-
cells, CD31 is localized at intercellular junc- mulate neutrophils to secrete oxygen free radi-
tions,122’125 and plays an important role in adhe- cals, lipid metabolites and proteases, each of

125 hsion of endothelial cells. The hig level of which is a potential agonist of endothelial per-
constitutive expression of PECAM-1 in endothelial meability. However, experimental evidence
cells suggests that its function might be regulated, suggests that these reactive agents are not neces-
and phosphorylation of the cytoplasmic domain sary for neutrophil extravasation.
has been demonstrated.28 PECAM-1 is directly In patients with chronic granulomatous disease
involved in the process of leukocyte diapedesis leukocytes are unable to make oxygen metabo-
between endothelial cells, as demonstrated by lites but can extravasate and infiltrate in areas of
inhibition studies using anti-PECAM-1 monoclonal inflammation and form pus.39

antibodies and soluble recombinant PECAM-1.29 Inhibitors of proteases do not affect neutrophil
Leukocytes blocked in transmigration by anti- extravasation in different experimental condi-
PECAM-1 antibodies remained attached to the tions.139 In addition, the possibility that leukocyte
endothelium, clearly implicating PECAM-1 in dia- passage through the endothelium requires pro-

h 129pedesis rather than in ad es’on, tease digestion of membrane proteins seems
unlikely in view of the very rapid, within seconds,
closure and reorganization of the junctions after

Regulation of endothelial cell-to-cell leukocyte diapedesis.
junctions These observations, however, do not exclude

the possibility that oxygen free radicals and pro-
Circulating cells infiltrate into tissues migrating teases might act as contributing factors in leuko-

through intercellular junctions. These organelles cyte extravasation, inducing endothelial cell
are formed by a complex network of transmem- damage and mediating oedema during sustained
brane proteins linked to a well developed plas- inflammatory reactions.
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The question of how leukocytes pass through
endothelial clefts remains open. An interesting
possibility is that leukocyte adhesion to endothe-
lial cells could cause a cascade of events that
resembles that induced by soluble agonists of
endothelial permeability. In particular, leukocyte
ligation to endothelial adhesive molecules (such
as selectins, VCAM or ICAM-1) could generate
intracellular signals similar to those induced
by permeability increasing agents. It has been
found14 that endothelial cells respond to
neutrophil contact and migration by increasing
intracellular calcium. Similarly, inhibitors of intra-
cellular Ca2 + block neutrophil transmigration. In
addition, ICAM-1 activation by specific antibodies
leads to cortactin phosphorylation.14 This or
other signals could induce changes in cleft mole-
cular organization (see above), leading to the
opening of gaps between endothelial cells.
According to this hypothesis endothelial cells
would not only play an important role in regulat-
ing leukocyte attachment to their surface but also
actively modulate their extravasation.

Leukocytes might find preferential pathways
for their passage through the interendothelial
clefts. As discussed above, TJ and AJ comprise a
system of discrete ion selective pores rather than
an absolute seal around the cells.134 In endothe-
lial cells, the presence of areas of junctionless
clefts that regulate the transendothelial transport
of high molecular weight proteins has been
described.142 Leukocytes might be directed to
these pores through the concentration gradient
of specific adhesive molecules such as PECAM.
Their passage would require them to squeeze
through the pores accompanied by a rearrange-
ment of the endothelial cell cytoskeleton organi-
zation around these structures.
There might be differences comparing the

modalities of leukocyte extravasation for different
types of vessels, for example lymphatic versus
large vessels, where the clefts present different
levels of complexity. There might also be distinct
mechanisms regulating the passage of the differ-
ent types of leukocytes or of other types of cells.

Concluding remarks

We begin now to understand that leukocytes
and endothelial cells are able to communicate
and reciprocally modulate their responses. Fol-
lowing inflammatory stimulation endothelial cells
attract and localize leukocytes through the
release of chemokines and expression of adhe-
sive molecules. Leukocytes in turn might transfer
signals to the endothelium releasing soluble
mediators, such as cytokines, oxidation products

and lytic enzymes. Adhesion of leukocytes to
endothelial adhesive molecules might also cause
endothelial cell activation facilitating leukocyte
passage through interendothelial clefts. Leukocyte
extravasation is not always accompanied by
endothelial cell damage and an increase in per-
meability. In contrast, it seems that the opening
of endothelial junctions is a well regulated
process that is frequently reversible. Future work
is required to fully understand how we might
modulate the cross-talk between endothelial cells
and leukocytes. This appears to be a difficult task
considering the complexity and the number of
soluble and membrane bound molecules which
involved interplay.
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