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Abstract
We review development of evidence and current perceptions of the multiple and significant functions
of cardiac troponin I in regulation and modulation of cardiac function. Our emphasis is on the unique
structure function relations of the cardiac isoform of troponin I, especially regions containing sites
of phosphorylation. The data indicate that modifications of specific regions cardiac troponin I by
phosphorylations either promote or reduce cardiac contractility. Thus, a homeostatic balance in these
phosphorylations is an important aspect of control of cardiac function. A new concept is the idea that
the homeostatic mechanisms may involve modifications of intra-molecular interactions in cardiac
troponin I.
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In the time since the troponin discovery and naming by the laboratory of Setsuro Ebashi [1],
there has been a constant stream of evidence indicating the substantial role of modifications in
cardiac troponin (cTn) as a critical control element in the body’s response to physiological
stressors such as the hemodynamic demands of exercise. It is now widely recognized that
regulatory processes at the level of the sarcomeres and the hetero–trimeric Tn complex involve
not only the reception of Ca2+ by cTnC, but also transduction of this Ca-binding signal by cTnI
and cTnT [2,3]. Multiple interactions of cTnI and cTnT with actin and tropomyosin (Tm)
control the number and kinetics of interactions of cross-bridges with the thin filament. Our
focus here on cTnI serves to highlight the significant impact of modifications in the function
of Tn in working cardiac myocytes and in the integrated physiological responses to exercise,
which we have reviewed previously [4,5]. Evidence summarized below indicates that
phosphorylation of cTnI by adrenergic signaling cascades is an indispensable control
mechanism in matching cardiac output to venous return and myocyte dynamics to heart rate.

Specific modifications in troponin I affect the dynamics and intensity of the
heart beat

Elucidation of the function of an N-terminal extension of ~30 amino acids with sites (Ser-23,
Ser-24) of phosphorylation by protein kinase A (PKA), not present in the fast skeletal (fsTnI)
or slow skeletal isoforms (ssTnI), provided the first evidence that cTnI may have a special role
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in the control of cardiac contractility [6,7]. Although it had been reported that phosphorylation
of this region depressed sarcomeric response to Ca2+ and increased cross-bridge kinetics [2,
3], studies with transgenic models have provided the strongest evidence for a critical role of
Tn, especially cTnI, in cardiac function. The first series of studies were carried out with a
transgenic mouse model expressing ssTnI (TG-ssTnI) to the exclusion of cTnI in the cardiac
compartment [8]. We chose the slow skeletal isoform for these studies inasmuch as it is
naturally expressed in the embryonic/neonatal period. Hearts of TG-ssTnI mice had slower
relaxation kinetics, depressed effects of β-adrenergic stimulation [8], and protection against
acidosis [9,10] and ischemia/reperfusion injury [11]. All of these properties are properties of
preparations from neonatal rat hearts, and indicated that the special cardiac function in the
neonatal period is importantly controlled by the isoform of TnI. More recent studies using
mutant forms of cTnI with either pseudo-phosphorylated PKA sites (cTnI-S23D, S24D) or
non-phosphorylatable mutant cTnI-S23A, S24A strongly support a critical role of cTnI
phosphorylation in the control of cardiac contractility. Yasuda et al. [12] concluded from their
studies of hearts of mice expressing these mutant forms of cTnI that phosphorylation of cTnI
is a significant factor in cardiac relaxation with an importance similar to that of phospholamban
phosphorylation. Takimoto et al. [13] also reported that hearts of mice expressing cTnI-S23D/
S24D had a constitutive enhancement of rate-dependent increases in systolic and diastolic
function in vivo. Along these lines, Varian and Janssen [14] reported a frequency dependent
decrease in myofilament sensitivity to Ca2+ associated with increasing heart rates and most
likely attributable to cTnI phosphorylation. The role of cTnI phosphorylation in the relaxant
effect of adrenergic stimulation has also been emphasized in work reported by Stelzer et al.
[15] in studies of mice expressing cTnI-S23D/S24D against a cTnI and myosin binding protein
C null background. These studies together with others provide compelling evidence for a
prominent role of cTnI phosphorylation in the maintenance of power and frequency response
in ejecting ventricles [13,16–19]. Apart from their significant effects on cardiac dynamics,
cTnI phosphorylation at the PKA sites affects length dependence of activation (LDA) [20].
Cooperative mechanisms involving feedback effects of strongly bound cross-bridges are
important for LDA and are also sensitive to isoform specific structure in cardiac TnI [21].

Sites of phosphorylation on cTnI distinct from the PKA sites have different effects on cardiac
dynamics and myofilament sensitivity to Ca2+ and thus have led to the concept of “yin-yang”
regulation of the function of cTnI dependent on the relative balance of phosphorylation of these
sites [22,23]. Sites at Ser-42, and Ser-44 are substrates mainly for protein kinase C, and when
phosphorylated induce a depression in maximum tension, and a decrease in cross-bridge
kinetics [24–26], as reflected in a depression of thin filament sliding in the motility assay and
ATPase rate. On the other hand, it is apparent that phosphorylation of Thr-143 induces an
increase in sensitivity to Ca2+ [27] and an apparent depression in cross-bridge kinetics [25].
As reviewed elsewhere, phosphorylation of sites at Ser-42, Ser-44, and Thr-143 may be
considered maladaptive, when and if they predominate as may occur in disorders of the heart
[28]. cTnI-Ser-150, a highly conserved and strategically located amino acid, is also a substrate
for phosphorylation by P21 activated kinase [29], and when phosphorylated induces an increase
in Ca2+-sensitivity. However, at this time the physiological significance of cTnI-S150
phosphorylation is poorly understood.

Molecular mechanisms of cTnI function in Ca2+ and crossbridge dependent
activation of cardiac sarcomeres

Structure–function analysis of cTnI reveals mechanisms of the ability of this single protein to
control and modulate sarcomeric activation and dynamics [2,3]. As illustrated in Fig. 1, cTnI
is a rod-like and flexible protein with the following distinct regions: a cardiac specific N-
terminal extension region, an IT-arm region, the inhibitory region (Ip), the switch region (H3),
and the C-terminal mobile domain. The IT-arm region consists of two α-helices that interact
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with the C-lobe of cTnC and the α-helix of the C-terminal domain of TnT (T2). Apart from
IT-arm region, the rest of TnI molecule appears flexible and, as described below, the switch
region and the C-terminal mobile domain undergo disordered–ordered structural transitions
depending on the Ca-bound state of the regulatory Ca2+-binding site in the N-lobe of cTnC.

In the resting state (diastole), which is depicted in Fig. 1, the inhibitory region and the second
actin-binding site in the mobile domain interact with actin to prevent strong, force generating
reactions with myosin heads. Zero-length chemical cross-linking experiments investigating
interactions between fsTnI and actin indicated that the inhibitory region interacts with the N-
terminus of actin, whereas photo-active cross-linking experiments with BP-mal indicated the
inhibitory region, as well as Cys-133 of fsTnI, which corresponds to Cys-166 of cTnI near the
second-actin binding site, are close to Met-47 of actin in the reconstituted thin filaments. The
structure of the inhibitory region when it binds to actin is not known. From sequence
comparisons with profilin, which interacts with the same of region of actin as TnI, and the
crystal structure of the actin–profilin complex, Tung et al. suggested that the inhibitory region
may form a β-hairpin conformation when actin bound [30]. The atomic model for the
interaction between the mobile domain, which includes the second actin binding site and actin-
Tm filament, was proposed based on the NMR structure of the mobile domain determined by
Murakami et al. [31]. Yet ESR experiments with reconstituted thin filaments indicate that most
of the mobile domain remains flexible even in the absence of Ca2+ [32]. Investigation [33] of
the effects of the inhibitory region showed that actin-binding peptides derived from the myosin
head were released from actin when a peptide corresponding to the inhibitory region was added
to actin or actin-Tm. On the other hand, when the peptide corresponding to the second actin-
binding site was added to actin or actin-Tm, the myosin peptides were not released from the
actin surface. These observations indicated that the binding of the inhibitory region, but not
the second actin binding site, induces a structural change in actin and prevents actin–myosin
strong interaction. On the basis of results of experiments with cardiomyopathy-linked
mutations of cTnI, we proposed that the functional role of the second actin-binding site may
be to increase the local concentration of the cTnI molecule for actin to facilitate the interaction
of the inhibitory region and actin [34].

Upon Ca2+-binding to the regulatory site of cTnC, the switch region of TnI binds to a newly
exposed hydrophobic patch in the N-lobe of TnC [35]. This interaction releases both the
inhibitory region and the second actin-binding site from actin. Based on their crystal structures
of fsTn complex in the presence and absence of Ca2+, Vinogradova et al. [36] proposed a model
for Tn activation and relaxation, in which the central linker region of TnC undergoes disordered
to helical structure upon activation, whereas the inhibitory region undergoes short helix to
flexible extended conformation. Consistent with their proposal, experimental results suggest
that the inhibitory region undergoes a conformational switch from a β-hairpin type structure
when bound to actin to a more elongated structure having a propensity to form a helix [36–
38]. The elongated inhibitory region interacts with the central helical region of TnC to stabilize
the active form of the Tn complex. It remains unclear whether this structural transition of the
linker region of the Tn complex is essential or not for regulation. An interesting aspect of the
specialization of the cTnI isoform is an alanine at position 164 near the mobile domain, which
is replaced by His at the homologous position in ssTnI. Dargis et al. [39] reported that this
substitution is of significance in studies in which reconstitution with the mutant, cTnI (A164H),
rendered cardiac myofilament preparations relatively more sensitive to Ca2+ and relatively less
sensitive to deactivation by acidic pH. Incorporation of cTnI (A164H) into hearts of transgenic
mice recapitulated many of the effects of ssTnI described above, while retaining
phosphorylation sites [40].

The role of the IT-arm region of the Tn complex has been considered to be structural rather
than functional in that it is apparent that the structure of the IT-arm region of the Tn complex
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remains unchanged during diastole-systole cycle. However, the relative orientation of the IT-
arm to actin filament axis is more sensitive to strong cross-bridge attachment than to Ca2+-
binding to the regulatory sites [41]. Moreover, recent data indicate that the IT-arm region is
involved in the cross-bridge dependent activation of myofilaments [21]. These studies
demonstrated that a region of cTnI in the near N-terminal region (surrounding Ala-65), which
interacts with C-terminal regions of cTnC and cTnT, is of particular significance in transducing
signaling of thin filament activation by strong cross-bridges.

Molecular mechanisms of the effects of cTnI phosphorylation on cardiac
function

Phosphorylation of cTnI at sites in the unique N-terminus may exert their functional effects by
both altered intermolecular and intra-molecular interactions. The major inter-molecular
interaction is with the N-lobe, regulatory domain of cTnC, which occurs in the absence of
phosphorylation. Although structural and biochemical evidence indicate that this interaction
is relatively weak [42–45], it establishes a relatively high affinity Ca2+-binding state to the N-
lobe of cTnC [46]. With phosphorylation of cTnI Ser-23/Ser-24, interaction with the N-lobe
is further weakened and Ca2+-affinity of the N-lobe is reduced in association with enhanced
off rate for Ca2+ exchange.

Recent evidence has provided insights into the disposition of the now free and flexible N-
extension and predicted an intra-molecular interaction between the N-extension and the
inhibitory region [47]. As mentioned above, Ca2+ dissociation from N-lobe or regulatory
domain of cTnC is associated with a helical to β-hairpin type conformational change in the
inhibitory region. PKA phosphorylation at Ser-23/Ser-24 in the cardiac N-extension of cTnI
decreases Ca2+-sensitivity and increases the conformational transition rate of the inhibitory
region [38]. These results demonstrate a structural linkage between the inhibitory region and
the cardiac N-extension of cTnI. Both regions of cTnI have unique cardiac isoforms. Further
support for a linkage between the cardiac N-extension and inhibitory region comes from the
human mutation Arg-145 to Gly resulting in the loss of a basic charge in the inhibitory region
linked to development of familial hypertrophic cardiomyopathy (see [48] for review). This
mutation leads to a reduced ability to inhibit the actin-activated ATPase and an increase in
Ca2+-sensitivity [49–51]. These studies suggest that the R145G mutation prevents the
inhibitory region of cTnI from properly interacting with actin-tropomyosin in the thin filament.
In addition, cTnI carrying the R145G mutation is insensitive to phosphorylation of the two
adjacent Ser residues in the cardiac N-extension [52]. Thus, replacement of a basic Arg residue
in the inhibitory region of cTnI with Gly appears to disrupt the effect of PKA phosphorylation
at Ser-23/Ser-24 in the cardiac N-extension.

These observations suggested that interactions between the inhibitory region of cTnI and actin
could be modulated by the bisphosphorylated cardiac N-extension. While the inhibitory region
in both skeletal and cardiac TnI has been shown to be helical in the absence of Ca2+-binding
to the regulatory domain [36], bioinformatics analyses supports a β-turn type conformation for
this region when bound to actin [29], as mentioned. Recently, the determined structure for the
cardiac N-extension bisphosphorylated Ser-23/Ser-24 was found to contain a C-terminal helix
(residues 21–30) containing the phosphorylation motif, an extended poly(L-proline)II helix
(residues 11–19), and an acidic N-terminus with some propensity for helical structure [47].
Using this structure, the X-ray crystal structure of the cTn core, and uniform density models
of the cTn subunits derived from neutron contrast variation data, atomic models were built that
show the conformational transition induced by PKA phosphorylation at Ser-23/Ser-24 of cTnI
and suggest a molecular linkage between the cardiac N-extension and the inhibitory region of
cTnI [47]. In the absence of phosphorylation, structural and biochemical studies show that the
cardiac N-extension interacts weakly with the N-lobe or regulatory domain of cTnC [42–44].
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Binding to the N-lobe is further weakened by phosphorylation of Ser-23/Ser-24 in the N-
extension. In addition, neutron contrast variation data demonstrated that bisphosphorylation
resulted in a dramatic bending of the rod-like cTnI at the N-terminal end that interacts with
cTnC, resulting in a broader, shorter structure [53]. The phosphorylation-induced bending of
cTnI suggests an alternative binding mode for the N-extension of cTnI. A model maximizing
electrostatic interactions generated by constrained docking yielded a single conformation
requiring a hinge bending motion between residues 33–42 of cTnI [47]. This resulted in a sharp
bend in the cTnI similar to that observed in the molecular envelops for cTn components derived
from small-angle scattering with deuterium labeling. In the model, the acidic amino terminus
of the N-extension interacts with basic residues within the inhibitory region of cTnI. The
phosphorylation–induced bending of cTnI is consistent with biochemical studies showing that
the axial ratio decreases upon phosphorylation and an asymmetrical to a more symmetrical
change in shape consistent with a shorter, broader structure [54–56].

A two-step molecular mechanism was proposed to account for the observed physiological
consequences of PKA phosphorylation at Ser-23/Ser-24 of cTnI. Interactions between the
cardiac N-extension of cTnI and the N-lobe of cTnC form the first step of the phosphorylation
switch and affect myofilament Ca2+-sensitivity. The second step of the phosphorylation switch
results from bisphosphorylation at Ser-23/Ser-24 of cTnI and weakening of interactions with
the N-lobe of cTnC. This induces a bend in cTnI such that the acidic N-terminus of the cardiac
N-extension is positioned for interaction with the inhibitory region of cTnI. As a result,
weakening the interaction of the inhibitory region with actin and altering cross-bridge
reactions. This model can be extended to provide an enhanced molecular understanding of
phosphorylation at Ser-42, Ser-44, and Thr-143 in cTnI.

Cardiac TnI also can be phosphorylated by PKC at Ser-42 and Ser-44 in the N-domain and
Thr-143 in the inhibitory region of cTnI [57]. Phosphorylation at Ser-42/Ser-44 is known to
decrease maximal actomyosin Mg2+ATPase activity and Ca2+-sensitivity by stabilizing the
inactive state of the thin filament [24–26,58]. Residues 42 and 44 are located in the N-domain
of cTnI near the interaction site with the C-lobe hydrophobic crevice of cTnC. Comparison of
the cTnC bound structures for the N-domain of cTnI having Ser-42/Ser-44 mutated to Asp, to
mimic the phosphorylated state, with the N-domain of cTnI demonstrated that negative charge
at residues 42 and 44 stabilized and extended the amino terminus of the N-domain helix
(Howarth, Finley, and Rosevear, unpublished). In agreement with the structural results,
bioinformatics analysis predicted that introducing negative charge at positions 42 and 44 of
cTnI by mutation to Glu extends the amino terminus of the N-domain helix [25]. Extension
and stabilization of the N-domain helix would alter the dynamical properties at the neighboring
hinge region, residues 32–41, of cTnI required for PKA phosphorylation-dependent bending
of the cardiac specific N-extension of cTnI. Thus, PKC phosphorylation at Ser-42/Ser-44 of
cTnI would decrease mobility of the hinge region of cTnI and thus have opposite effects on
Ca2+-sensitivity and cross-bridge formation.

PKC is also responsible for phosphorylation at Thr-143 located in the inhibitory region of cTnI.
This region is flexible and not observed in the core crystal structure of cardiac troponin [59].
While the structural role of Thr-143 phosphorylation remains to be elucidated, a model can be
suggested based on our current understanding of the effects of PKA and PKC phosphorylation
of cTnI. Introduction of negative charge at Thr-143, via phosphorylation, would be predicted
to decrease electrostatic interactions between the inhibitory region and both the acidic amino
terminus of the cardiac N-extension of cTnI and actin. The end result would be stabilization
of a more extended structure resulting in an increase in cross-bridge kinetics. Consistent with
this hypothesis, introduction of negative charge at Thr-143 appeared to potentate the effects
of PKA phosphorylation at Ser-23/Ser-24 in a transgenic mouse model [60].
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Fig. 1.
Model illustrating interactions of troponin (Tn) components in the diastolic state and with
phosphorylation of Ser-23, Ser-24 in the unique N-terminal extension containing a
phosphorylation helix, a proline helix linker and an acidic region. Tm, tropomyosin, cTnI,
cardiac troponin I, cTnT, cardiac TnT, H3, the switch peptide that binds to a hydrophobic patch
on cTnC as indicated, Ip, a basic inhibitory peptide. cTnC is illustrated in apo state and indicates
the N-lobe regulatory Ca-binding domain (II) and C-lobe slowly exchanging Ca/Mg sites in
the mobile C-domain demonstrates a second actin binding site. The model emphasizes the
potential for the phosphorylated N-extension of cTnI to interact with the inhibitory peptide.
See text and Ref. [47] for details.
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