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Abstract
An investigator planning a QTL (quantitative trait locus) experiment has to choose which strains to
cross, the type of cross, genotyping strategies, and the number of progeny to raise and phenotype.
To help make such choices, we have developed an interactive program for power and sample size
calculations for QTL experiments, R/qtlDesign. Our software includes support for selective
genotyping strategies, variable marker spacing, and tools to optimize information content subject to
cost constraints for backcross, intercross, and recombinant inbred lines from two parental strains.
We review the impact of experimental design choices on the variance attributable to a segregating
locus, the residual error variance, and the effective sample size. We give examples of software usage
in real-life settings. The software is available at http://www.biostat.ucsf.edu/sen/software.html.

Introduction
Quantitative trait locus (QTL) mapping is used to discover genetic elements contributing to
measurable phenotype variation (Rapp 2000; Broman 2001; Flint et al. 2005). An investigator
planning a QTL mapping experiment has to choose which strains to cross, the type of cross
(backcross, F2 intercross, or recombinant inbred line), genotyping strategies, and the number
of progeny to raise and phenotype. Our software, R/qtlDesign, an add-on package to the R
programming environment (Ihaka and Gentleman 1996), provides interactive tools to help
make these choices, focusing on crosses between two inbred strains. To our knowledge, there
is no software for QTL mapping power calculations that accommodates genotyping strategies.
R/qtlDesign fulfills this need; it can be used for planning a study and writing grant proposals.

Planning experimental crosses is discussed by Silver (1995) and Lynch and Walsh (1998).
Belknap (1998) compares recombinant inbred (RI) line sample size to the intercross and
backcross by quantifying the error variance. Darvasi (1998) gives a comprehensive account of
design options for model organisms, including selective genotyping. Genome-wide thresholds
for QTL detection and confidence interval construction are discussed by Dupuis and Siegmund
(1999). Sen et al. (2005) frame experimental design through its information content. The
webbased program of Purcell et al. (2003) performs power calculations for complex trait
analysis but is not designed for inbred line crosses. The R/qtl package (Broman et al. 2003), a
library of R functions, is a flexible package for analyzing inbred line cross data but does not
perform power calculations.
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The ability to detect QTL and the variance of estimated QTL effects depend on design choices
through three key quantities: the variance attributable to a given locus, the residual error
variance, and the information content of the cross. We begin by reviewing how these quantities
can be manipulated by the experimenter's choices. We follow by describing our implementation
and conclude by illustrating real-life use of our tools.

Theory
This section reviews the quantitative genetics theory underlying our software tools. The reader
is referred to the cited literature for further details. For simplicity we assume that we wish to
detect a single locus contributing to variance in the phenotype. The phenotypic variance is
composed of genetic and nongenetic components. A part of the genetic variance may be
attributable to a locus, the rest being background genetic variance which may be due to multiple
loci (Lynch and Walsh 1998).

The variance attributable to a locus depends on the cross type and the mode of inheritance.
Specifically, a locus with an additive mode of action explains twice as much variance in an
F2 intercross and four times as much variance in RI lines compared with a backcross population.
On the other hand, the genetic similarity of a backcross population is greater than an F2
intercross population, which, in turn, is more similar than a RI line population. Thus, the
background genetic variance is greatest in RI lines, followed by F2 intercross populations, and
least in backcross populations.

Sample size calculations for QTL experiments are usually presented in terms of the proportion
of variance explained by the locus of interest we wish to detect. This approach provides a partial
picture for comparing different cross types because the variance attributable to a locus and the
background variance depend on the cross (see the Examples section for an illustration).

Therefore, we present a complementary approach that directly considers the effect of a locus
on the phenotype, as well as the background genetic variance in the population (Belknap
1998; Flint et al. 2005). To develop this approach, we begin by considering the variance
attributable to a locus, followed by a discussion on the residual error variance which includes
the background genetic variance. Finally, we consider manipulation of information content (or
the “effective sample size”) using selective genotyping and variable marker spacing.

Variance attributable to a locus
Let the two strains under consideration be A and B and let AA and BB be the parental genotypes
at a locus of interest. The possible genotypes at each autosomal locus are AA, AB, and BB.
Let μ be the overall mean, α the additive effect of the locus (half of the difference in the means
of the homozygotes), and δ the dominance effect (the difference between the heterozygote and
average homozygote means). The variance attributable to a segregating locus depends on the
type of cross and the genetic model (Table 1).

A purely additive locus (no dominance, δ = 0) segregating in a set of RI lines accounts for
twice the variance in RI lines compared with an intercross, and four times compared with two
possible backcrosses (Kearsey and Pooni 1996). A dominant locus (δ = ±α) segregating in an
intercross explains 75% of the variance compared to RI lines. If we happen to perform a
backcross to the correct parental strain, the locus explains as much variance as in RI lines,
otherwise it does not contribute to the phenotypic variation. Thus, for a suspected dominant
locus, it is safer to perform an intercross, barring specific knowledge about the dominant allele.
A segregating locus would explain most variance in RI lines unless the locus is overdominant.
When a locus has no additive effect it will explain no variance in RI lines, but both the intercross
and backcrosses would explain the same amount of variance. Thus, the intercross, which
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segregates all three genotypes, offers the opportunity to detect the widest variety of genetic
models (Table 1).

The residual error variance
The residual error variance is composed of background genetic variance due to all QTLs not
linked to the locus of interest and the nongenetic residual variance (Flint et al. 2005). If
measurement error is negligible, then the nongenetic residual variance is a result of
environmental effects specific to each individual. By using biological replication (more than
one individual with the same genotype), we can reduce nongenetic residual variance. On a
similar note, if measurement error is nonnegligible, we can reduce its contribution to the
nongenetic residual variance by replicating measurements.

Nongenetic error variance

Let the measurement error variance be  (variance of phenotype measurement in the same
individual) and the environmental variance be  (variance of phenotype in individuals with
same genotype assuming no measurement error). Assume we have m individuals per unique
genotype. For backcross and F2 intercross populations, typically m = 1. For RI lines, we can
choose m subject to cost constraints. Assume that we have k replicate measurements per
individual (e.g., the number of times blood pressure is measured on the same mouse). Then

the nongenetic residual error variance is . It is in the interest of the investigator

to choose an instrument with negligible measurement error  or to replicate the
measurement enough times so that  is small. In that case, the nongenetic residual error

variance is approximately . Estimates of measurement error  and environmental

variance  may be obtained from pilot studies.

Genetic variance
As mentioned earlier, the background genetic variance depends on the cross type. For
simplicity, assume that the variance attributable to any single locus is small so that the
background genetic variance is approximately equal to the genetic variance. Let c be a constant
that depends on the cross type and equal to 4 for backcrosses, 2 for intercrosses, and 1 for RI
lines, and let  be the corresponding genetic variance. Then, the variance attributable to
an additive locus is α2/c (see Table 1). If we assume that all loci are additive, then the genetic
variance in a cross is , where , the genetic variance in RI lines. Then

the residual error variance would be . Thus, the ratio of the variance
attributable to an additive locus to the residual error variance (the signal to noise ratio) would
be

the approximation holding when  is negligible (when technical measurement error is small
or we have enough technical replications).

The experimenter has no control over the state of nature that dictates the values of α2, , and
. However, by choosing the cross type and the number of environmental replications per
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genotype (Table 2), the experimenter can manipulate the effect size multiplier,

. RI lines are most advantageous if within-genotype environmental
variation is large relative to genetic variation between genotypes. Their advantage can be
magnified by using environmental replication. If environmental variance is small relative to
genetic variance, assuming additive effects, there is little difference between different crossing
designs. For a discussion on the relative merits of RI lines see Belknap (1998).

Information content
The experimenter can exercise greater control over the information content of a cross compared
with his/her control over the effect size and the error variance. The information content of an
experiment may be interpreted as the effective sample size. It is a fundamental quantity that
affects the power to detect a QTL, expected LOD score, and the variance of the QTL effects.
We define the information content, in the sense of Fisher information (Cox and Hinkley
1974), as the reciprocal of the expected variance of the genetic model parameters for unit
residual variance.

The information content depends on the number of progeny, marker spacing, and the proportion
of extreme phenotypic individuals genotyped (if there is a single phenotype of interest). The
dependence of information content on the selection fraction and marker spacing is shown in
Fig. 1. By making choices that maximize information content based on the cost structure of
the experiment, the experimenter can make efficient allocation of resources.

For a further discussion of information content in the context of genetic-mapping experiments
see Sen et al. (2005).

Implementation
Using the theory described above, we have developed a computer package written in the open
source R programming language (Ihaka and Gentleman 1996). The package may be
downloaded from http://www.biostat.ucsf.edu/sen/software.html. For those unfamiliar with R,
the website has instructions on how to get started using the package.

Functions
The main user functions in the package are:

• powercalc calculates power to detect a QTL given effect size, residual error
variance, genome-wide threshold, width of marker interval containing QTL, sample
size, and proportion of extreme individuals genotyped (selection fraction).

• detectable calculates minimum detectable QTL effect as a function of target power
and other powercalc inputs.

• samplesize calculates minimum sample size needed to detect QTL effect given
power and other powercalc inputs.

• info calculates approximate expected information as a function of the selection
fraction and marker interval width.

• optspacing calculates optimal marker spacing and selection fraction given
genotyping cost and the genome size.

• optselection calculates optimal selection fraction given genotyping cost, marker
spacing, and genome size.
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• error.var calculates residual error variance given cross type, environmental
variance, background genetic variance, and number of environmental replicates per
unique genotype.

• thresh calculates the genome-wide LOD threshold required for QTL detection given
the cross type, genome length, and marker density using the approximations of Dupuis
and Siegmund (1999).

All user functions are documented. For example, to access documentation for the function
powercalc, the user would type “help(powercalc).”

Assumptions
We assume that the phenotype distribution is Gaussian, the effect size is small relative to the
residual variance, and that the sample size is large (a warning is printed if the effective sample
size is smaller than 30). The Gaussian assumption facilitates analytical tractability; and the
sample size assumption is needed to use the χ2 approximations for power calculations. The
small effect size assumption simplifies information content calculations; the resulting
approximation is accurate for most practical situations. We also assume that the measurement
error is negligible. If that is not the case, it may be advisable to consider replicating
measurements.

Cost functions are assumed to be linear; this ignores economies of scale but is a useful guide.
The optimal marker spacing and selection fractions therefore should be seen as approximations
and not strictly optimal. The function approximating the residual error variance assumes that
all loci are additive. This is intended as an approximation; in practice one would consider a
range of possibilities (see examples below). We also assume that measurement error is
negligible. If that is not the case, measurements should be replicated. Finally, we note that we
focus on design options for detecting a QTL. For localizing a QTL, other criteria apply (Darvasi
1998).

Examples
Traditional QTL power calculations use proportion of the variance attributable to a locus. These
can be calculated using the function detectable (Table 3). The proportion of variance
attributable to a QTL has to be interpreted in the context of the cross, the mode of action of the
locus (Table 1), the error variance which depends on the number of environmental replicates
per genotype, and the cross type (Table 2). Little power is lost by spacing markers 5–10 cM
apart relative to dense genotyping and by genotyping half of the most extreme phenotypic
individuals. However, we note that it is desirable to genotype at least half of the cross for
robustness. A cursory glance at Table 3 may give the impression that there is little difference
between a backcross and an intercross. However, as discussed in the Theory section, the allelic
effects that can be detected in an intercross are smaller. We illustrate this with an example
using the package. We calculate the minimum effect size detectable with 80% power with 100
individuals typing markers densely.

We first calculate the appropriate LOD threshold to use for the mouse genome of size 1440
cM using the thresh function.

> thresh(G=1440,cross=“bc”, p=0.05)[1] 3.189658

In the computer output examples, lines with the “>“ character denote user inputs. Above, we
told the thresh function that we wanted the 5% threshold (p=0.05) for a genome of length
1440 cM (G=1440) in a backcross population (cross=“bc”). We get the analogous threshold
for the F2 intercross as follows:
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> thresh(G=1440,cross=“f2”, p=0.05)[1] 4.182964

Then we calculate the minimum detectable effect sizes using the function detectable.

> dectable(cross=“bc”, n=100, sigma2=1) thresh=3.2)effect 

percent.var.explained[1,]0.9360905     17.97001>detectable

(cross=“f2”, n=100, sigma2=1 thresh=4:2) additive. effect 

dominance.effect, percent. var. zexplained[1,] 0.7259998 0 20.85714

Although the locus explains a similar percentage of variance in both the backcross and F2
intercross populations, the effect size that can be detected in the intercross is smaller (assuming
no dominance). This is reiterated in the examples below.

The following narrative illustrates how our tools may be used. We emphasize raw variances
attributable to a locus so that we can compare competing crossing designs.

(1) Jane is planning to map blood pressure QTLs in mice in an F2 intercross. The A and B
strains have blood pressure means of 85 mm Hg and 105 mm Hg, respectively. The within-
strain standard deviations are 8 mm Hg. (We suppress measurement units for brevity below.)
An oversight board asks Jane to justify the number of progeny. She wants to know how many
mice are needed to detect a QTL with 80% power. She assumes that the QTL is additive, and
an allelic substitution raises the blood pressure by 5. We estimate , the environmental
variance by the within-strain variance, to be 82 = 64. It is difficult to estimate the background
genetic variance without assumptions. We consider a range of possibilities guiding our choices
using the between-strain variance, (105 − 85)2/4 = 100. This would be the genetic variance in
RI lines if a single QTL accounted for the strain difference. If there are two or more QTL, the
genetic variance would be smaller in the absence of epistasis. Thus, consider three values of

, 25, 50, and 100 (these correspond to percent variance attributable to the QTL equal to
14.0%, 12.3%, and 9.9%, respectively). For , we use:

> samplesize(cross=“f2”, effect=c(5,0),env.var=64,gen.var=25)

sample.size percent.var. explained[1,] 121 14.04494

This gives us a sample size of 121. The additive and dominance effects we wish to detect are
given in the effect argument. The residual error variance is approximated using our estimates
of the environmental and genetic variances (alternatively one can specify the residual error
variance directly). If the genetic variance is 50 or 100, we get sample size estimates of 140 and
180, respectively. By default, the software assumes that our target LOD threshold is 3, desired
power is 80%, and all individuals are typed densely; these defaults can be overridden.

(2) Her postdoc, John, asks, “Why don't we perform a backcross?” Plugging the three values
of , 25, 50, and 100, into samplesize gives us sample sizes of 234, 255, and 296,
respectively. Thus, a backcross would involve using more mice than the intercross.

(3) A week later John reports that 30 RI lines bred from the same strains are available. Should
the lab use the RI lines? RI lines are most advantageous when the genetic variance is small
relative to the environmental variance. Therefore, the best scenario for RI lines would be when

. Using six mice per RI line would imply a total of 180 mice. To find out how much
power we have to detect an additive effect of 5 with 30 RI lines (each replicated 6 times,
indicated by the argument bio.rep) we use
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> powercalc(cross=ri,n=30,effect=5,env.var=64,gen.var=25,bio.rep=6)  

power percent.var.explained[1,] 0.8074976     41.20879

However, if the genetic variance is 50, then even an indefinite number of mice per line would
not give sufficient power. Thus, the use of RI lines in this scenario would require additional
preliminary data to estimate genetic variance in the RI lines.

(4) Jane finds out that she can afford about 240 mice. What kinds of effects can she reasonably
detect? We consider three possibilities: 240 intercross mice, 240 backcross mice, and 8
replicates of 30 RI lines that are available. We assume that we want to detect only additive
effects and that the genetic variance is 25. Using the function detectable for the RI lines as
follows:

> detectable(cross=“ri”,n=30,env.var = 64, gen.var = 25,bio.rep=8)   

effect percent.var. explained[1,] 4.781040 40.92199

we find that an effect of 4.78 or larger can be detected with 80% or more power. Using
analogous commands for the backcross and intercross, we find that we can detect additive
effects of 4.93 or larger in the backcross and 3.54 or larger in the intercross. Thus, the backcross
and RI lines are equally good, but the intercross is better. If the genetic variance exceeds 25,
the RI lines are less advantageous.

(5) Jane decides to perform an intercross. How dense should the genotyping be? Should she
genotype everyone or a fraction of the mice with extreme blood pressure? The core genotyping
facility charges approximately 30 cents a genotype, and the animal facility per diem rate for
mice is $1.20. The total cost of housing a mouse for 25 weeks is about $30; therefore, the
genotyping cost in the units of raising the mouse is about 0.01. Because the mouse genome
size is about 1440 cM (denoted by G), we conclude that it would be best to genotype 25% of
each extreme of the animals at approximately 20 cM (the argument sel.frac, denoting the
selection fraction, is set to NULL to indicate that we wish to find the optimal selection fraction
simultaneously with the optimal spacing):

> optspacing(cost=30/3000,G=1440,sel.frac=NULL,cross=“f2”)Marker 

spacing (cM), Selection fraction20.92194      0.49043

Discussion
When planning an experiment we have to make design choices to best use available resources
using credible information about the unknown state of nature. Our R/qtlDesign software
provides tools to plan QTL experiments using crosses between two inbred lines. Our tools help
the experimenter choose between cross types, marker density, and selective genotyping
strategies using approximate knowledge about the parental strains and the cost structure of the
proposed experiment.

In addition to the design choices mentioned above, it is helpful to follow the basic principles
of good experimental design. In the context of QTL experiments, this would include adjusting
for covariates potentially influencing the phenotype, performing reciprocal crosses (if maternal
effects are suspected or if the QTL is X-linked), deciding whether to consider one sex or both,
adjusting for litter or foster mom effects, etc.

Because our software is open source, our algorithms and implementation are transparent to the
interested user. Users may modify the code to fit their needs after agreeing to the GNU General
Public License (http://www.gnu.org/copyleft/gpl.html). We will continue to make
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improvements to the software by incorporating new developments and user needs. We hope
that our software will be a useful resource for the complex trait community.
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Fig. 1.
Expected information from a selectively genotyped backcross as a function of the selection
fraction (α, the proportion of extreme phenotypic individuals genotyped) in the middle of a
marker interval of length 0 cM, 5 cM, 10 cM, and 20 cM. The information is plotted relative
to fully genotyped cross where all individuals are genotyped at a dense set of markers. We can
see that if the cross is densely genotyped, genotyping between 40% and 60% of the cross gives
us between 85% and 95% of the information in the cross. The gains diminish with wider marker
spacings. The figure was created using the function info.
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Table 2
Effect size multiplier by cross type, number of environmental replications per genotype (m), and ratio of

environmental relative to genetic variance 

Backcross Intercross RI lines

m = 1 m = 1 m = 1 m = 4

1/16 0.80 0.89 0.94 0.98
1/4 0.50 0.67 0.80 0.94
1/2 0.33 0.50 0.67 0.89
1 0.20 0.33 0.50 0.80
2 0.11 0.20 0.33 0.67
4 0.06 0.11 0.20 0.50
16 0.015 0.030 0.059 0.200

Here  is the within-genotype variance and  is the between-genotype variance in RI lines. We assume that all loci are additive so that between-

genotype variance (genetic variance) is  and  in F2 intercross and backcross populations, respectively. When environmental variance is large
relative to genetic variance, the effect size multiplier for F2 intercross is approximately twice that of a backcross. In this case, the effect size multiplier
for RI lines with single replication is approximately twice that of an F2 intercross. The effect is magnified further with more replication. When
environmental variance is small relative to genetic variance, the effect size multiplier is approximately the same for all types of crosses.
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