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Abstract

To understand the molecular basis of glycosyltransferases’ (GTFs) catalytic mechanism, extensive structural
information is required. Here, fold recognition methods were employed to assign 3D protein shapes (folds)
to the currently known GTF sequences, available in public databases such as GenBank and Swissprot. First,
GTF sequences were retrieved and classified into clusters, based on sequence similarity only. Intracluster
sequence similarity was chosen sufficiently high to ensure that the same fold is found within a given cluster.
Then, a representative sequence from each cluster was selected to compose a subset of GTF sequences. The
members of this reduced set were processed by three different fold recognition methods: 3D-PSSM,
FUGUE, and GeneFold. Finally, the results from different fold recognition methods were analyzed and
compared to sequence-similarity search methods (i.e., BLAST and PSI-BLAST). It was established that the
folds of about 70% of all currently known GTF sequences can be confidently assigned by fold recognition
methods, a value which is higher than the fold identification rate based on sequence comparison alone (48%
for BLAST and 64% for PSI-BLAST). The identified folds were submitted to 3D clustering, and we found
that most of the GTF sequences adopt the typical GTF A or GTF B folds. Our results indicate a lack of
evidence that new GTF folds (i.e., folds other than GTF A and B) exist. Based on cases where fold
identification was not possible, we suggest several sequences as the most promising targets for a structural
genomics initiative focused on the GTF protein family.
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The glycosylation reaction is of great biological importance
to both prokaryotes and eukaryotes, and is catalyzed by
enzymes forming a large protein family, the glycosyltrans-
ferases (GTFs). These enzymes transfer a sugar moiety from
an activated glyconucleotide to an acceptor, which may be
a growing oligosaccharide, a lipid, or a protein. In addition
to its central role in all synthetic processes involving car-
bohydrates, GTFs are important drug targets in the fight
against cancer, as well as against bacterial, viral, and fungal

infections (Breton and Imberty 1999; Unligil and Rini 2000;
Davies 2001). GTFs also provide an important technologi-
cal tool, as they have opened new perspectives in the che-
moenzymatic synthesis of oligosaccharides (Sears and
Wong 1996; Davies 2001). Despite the many applications
of these enzymes, the precise molecular events in the cata-
lytic mechanism of GTFs have remained elusive. This lack
of information is due to difficulties in expressing the en-
zymes, which are frequently membrane-bound, and in char-
acterizing enzymatic mechanisms with complex substrates.
However, it is now well established that the substrate speci-
ficity and stereospecificity of the glycosylation reaction de-
pend on the enzymes’ three-dimensional (3D) architecture,
especially in the vicinity of the binding site (Tvaroska et al.
2000, 2002; Andre et al. 2001, 2002).
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At the sequence level, there are now a large number of
open reading frames (ORFs) that correspond to GTFs. A
database classifying GTF sequences into families based on
sequence similarity and substrate/product stereochemistry is
available and currently contains 56 potential families (see
http://afmb.cnrs-mrs.fr/CAZY/; Campbell et al. 1997). At
the 3D-structural level, currently only 13 GTF protein struc-
tures are available, which can be grouped into two folds:
GTF A and GTF B. These two basic folds are shown in
Figure 1. The GTF A fold belongs to the �/� family, con-
sisting of parallel �-strands, flanked on both sides by �-he-
lices, and has been described as containing an N-terminal
glyconucleotide donor-binding pocket and a C-terminal ac-
ceptor-binding domain (Unligil and Rini 2000). The GTF B
fold is also a member of the �/� family. In contrast to the
GTF A type of fold, the GTF B fold comprises two Ross-
mann-fold-like domains separated by a deep cleft. The gly-
conucleotide donor-binding pocket is located at the bottom
of the cleft, where it interacts solely with the C-terminal
domain, and the N-terminal domain is predicted to be re-
sponsible for acceptor binding (Unligil and Rini 2000). Un-
doubtedly, these structures provide a wealth of information
about substrate binding, specificity, and possible catalytic
mechanisms for most of the known GTFs (Gastinel et al.
2001; Persson et al. 2001; Tarbouriech et al. 2001).

For filling in the information gap between protein se-
quences and structures, knowledge-based methods (i.e.,
comparative modeling) have been found to be useful (Blun-
dell et al. 1987; Baker and Sali 2001). The central step in
knowledge-based protein structure prediction is the search
for structurally similar templates for a given query se-
quence. Once an appropriate structural template is identi-
fied, information about the 3D shape for the query sequence

could be suggested. This is particularly helpful in identify-
ing interaction partners for the query protein and in provid-
ing insights into its potential function (Domingues et al.
2000). Different methods are used to deduce protein ho-
mologies. At the sequence level, homologies can be recog-
nized by pairwise searches in which the query sequence is
scanned against sequences stored in a database, using soft-
ware programs such as BLAST (Altschul et al. 1990) and
FASTA (Pearson and Lipman 1988). Marked improvements
in detecting higher numbers of remote homologies (i.e., by
matching more and more dissimilar sequences) have been
obtained using PSI-BLAST (Altschul et al. 1997) and Hid-
den Markov Models (HMMs; Eddy 1996; Sonnhammer et
al. 1997).

In addition to such sequence-based approaches for struc-
tural template identification, several fold-recognition tech-
niques have been developed which incorporate structural
information at a variety of levels. These fold-recognition
methods are broadly classified into two categories based on
the nature of the algorithm used. Profile-based methods op-
erate by gathering both sequence and structural information
(Rice and Eisenberg 1997; Kelley et al. 2000; Shi et al.
2001). Threading methods are based on mean force fields
derived from databases of known structures (Godzik et al.
1992; Jones et al. 1992; Sippl 1995; Bryant 1996). These
methods were developed to push fold recognition beyond
the level of sequence-based similarity searches. The overall
good performances of these techniques have been widely
addressed in a series of Critical Assessment of Techniques
for Protein Structure Prediction (CASP) experiments (Levitt
1997; Murzin 1999; Sippl et al. 2001). In addition to pro-
viding the remotely homologous template to be used for
comparative modeling in case-by-case studies, fold recog-
nition has also been used in automatic prediction experi-
ments. There, fold recognition was found to enhance ge-
nome annotation by suggesting 3D fold information for a
number of genome sequences (Pawlowski et al. 2001).

In the field of comparative modeling of GTFs, fold rec-
ognition approaches have been used in case-by-case studies
for identifying structural templates for the bovine �-1,3-
galactosyltransferase (Rao and Tvaroska 2001), porcine �3-
galactosyltransferase (Imberty et al. 1999), and human �3-
fucosyltransferase (de Vries et al. 2001). Studies have also
adressed the occurence of specific and conserved peptidic
motifs to identify remote homologs in the GTF family
(Breton and Imberty 1999; Breton et al. 2002). However, to
our knowledge, automatic fold assignment was not carried
out on sequences from this protein family.

As stated earlier, the number of available GTF 3D struc-
tures is still quite limited, although the number of GTF
sequences delivered by genome sequencing projects keeps
increasing. Since remote homology is frequently found
within the GTF family (i.e., different GTFs sharing the same
fold at low sequence identity; Unligil and Rini 2000), fold

Figure 1. The two most abundant folds found in the GTF protein family:
GTF A and GTF B folds. (A) The typical GTF A structure of the spore coat
polysaccharide biosynthesis protein Spsa from Bacillus subtilis (PDB code
1qg8A; Charnock and Davies 1999). (B) The typical GTF B type fold
adopted by the Escherichia coli protein MurG, a membrane-associated
glycosyltransferase involved in peptidoglycan biosynthesis (PDB code
1f0kA; Ha et al. 2000).
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recognition methods will be an important tool to direct and
accelerate the mapping of GTF sequence landscape to pro-
tein structural space. To address the relationship between
GTF sequences and structures, it is very natural and inter-
esting to ask, “How many GTFs can find an adapted struc-
tural template among currently known protein structures?”
And, “In addition to the GTF A and GTF B folds, should
one expect some other GTF folds?” The present study at-
tempted to answer these questions.

Results and Discussion

Sequence clustering

We retrieved 7500 GTF sequences from public databases,
and reduced this set to 5188 unique sequences. Using se-
quence-clustering techniques, we identified 262 clusters in
this original set. The details of the algorithms we used to
perform the clustering are outlined in the Materials and
Methods section. However, it is important to point out here
that we performed this clustering with the constraint that the
same fold should be found among the sequences in each
cluster. It should also be mentioned that a weak sequence
similarity may still exist between sequences from different
clusters, because a very low cutoff E-value (1e-10) was
chosen when assigning cluster membership. Consequently,
a representative sequence was selected in every one of the
identified 262 clusters.

The sizes of the clusters vary markedly. The largest clus-
ter consists of 1043 sequences, containing almost 20% of all
of the GTF sequences. The five largest clusters consist of
2866 sequences, amounting to 55% of all of the GTFs ad-
dressed in this paper. There are 132 singlet clusters.

Fold recognition

The 262 representative GTF sequences from the reduced
data set were further processed by three different fold-rec-
ognition and two sequence-based searching methods. The
results are summarized in Table 1. The fold recognition
methods 3D-PSSM (Kelley et al. 2000), FUGUE (Shi et al.
2001), and GeneFold (Jaroszewski et al. 1998) provided
confident fold assignments for 102, 138, and 74 represen-
tative sequences out of the 262 initial ones, respectively.
When considering all GTFs represented by these seed se-
quences, we established that the three fold-recognition
methods were able to confidently assign structure to 3695
(71.2%), 3774 (72.7%), and 3635 (70.1%) GTF sequences
out of the initial 5188, respectively. The deduced success
rates of the different fold-recognition methods were further
compared to those obtained with sequence-based similarity
searching methods (i.e., BLAST and PSI-BLAST). These
were used to assign folds to the 262 GTF sequences by
searching against a sequence database representing all
known protein 3D structures (i.e., PDB sequence database;

Berman et al. 2000). We found that the performance of
every one of the three fold-recognition methods was sig-
nificantly better than that of BLAST searching alone. Tak-
ing the results of 3D-PSSM as an example, one can confi-
dently identify the folds adopted by the member sequences
of 72 more clusters (about 1203 GTF sequences) compared
to simple BLAST searching. In addition, fold recognition
was also found to outperform PSI-BLAST-based searching.
For example, 3D-PSSM was able to identify folds in 35
more clusters (about 373 GTF sequences) than PSI-BLAST
did. In the present study, FUGUE confidently assigned folds
to more cluster members than any other fold-recognition or
sequence-based similarity searching method.

Complementary to the performance evaluation of the dif-
ferent methods by the number of folds identified confidently
in the subset of the 262 representative GTF sequences, we
carried out a pairwise assessment. For this, two character-
istic numbers were considered: (1) the number of clusters
where two given methods found a significant fold hit, and
(2) the number of clusters where two given methods gen-
erated an identical significant fold hit. The evaluation of
similarity of 3D protein shapes was carried out with the help
of the combinatorial extension of the optimal path (CE)
method (Shindyalov and Bourne 1998), as indicated in Ma-
terials and Methods. A z-score (ZCE) generated by the CE
structural alignment method was used as a quantitative mea-
sure of similarity between two folds. If ZCE was larger than
4.2, the two folds were regarded as identical. A summary of
the pairwise performance evaluation of the different meth-
ods is shown in Table 2. In most of the clusters where
confident hits were found by BLAST and PSI-BLAST,
fold-recognition methods assigned folds with high certainty.
For example, in the 30 clusters where folds were identified
by BLAST, 3D-PSSM and FUGUE assigned an identical
significant top fold hit in 23 and 28 clusters, respectively.
Furthermore, when considering the 67 clusters identified by
PSI-BLAST, 3D-PSSM and FUGUE were able to identify
an identical significant top fold hit in 52 and 62 clusters,
respectively. In addition, largely consensual results were

Table 1. The results of fold recognition and sequence-based
similarity searching methods applied to the glycosyltransferase
protein family

Method
Standard for
confident hit

No. of clustersa

out of 262
No. of sequencesb

out of 5188

3D-PSSM E-val3D-PSSM < 0.05 102 3695
FUGUE ZFUGUE > 6.0 138 3774
GeneFold ST > 400 74 3635
BLAST E-value < 0.001 30 2492
PSI-BLAST E-value < 0.001 67 3322

a The number of clusters with confident hits.
b The total number of sequences represented by those clusters where a
confident hit was identified.
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also found between 3D-PSSM and FUGUE. For those 102
folds identified by 3D-PSSM, FUGUE was able to provide
an identical hit for 87 clusters. However, a poor perfor-
mance for GeneFold was observed, as the results obtained
with this method were quite different compared to the se-
quence-based searching and the other two fold-recognition
methods. Indeed, GeneFold was able to identify the same
top fold hit in only 32 and 28 clusters in comparison to the
67 and 102 folds assigned by PSI-BLAST and 3D-PSSM,
respectively. The comparable performances of 3D-PSSM
and FUGUE are certainly due to the similar fold-recognition
algorithms used, as both fall in the category of the 1D/3D
profile-based fold-recognition methods. More precisely,
3D-PSSM and FUGUE share the following three basic char-
acteristics: (1) PSI-BLAST searching is included in both
methods in order to make extensive use of sequence infor-
mation; (2) both methods use structure-based profiles; and
(3) the standards for identification of confident hits are well
defined.

Among the 262 representative GTF sequences, there
were cases where 3D-PSSM and FUGUE suggested several
significant hits. It was interesting to perform a more detailed
analysis in such situations, as we expected to obtain further
insights into the performance of the fold-recognition meth-
ods. When facing solutions with several confident hits, we
focussed our attention on the regions aligned between the
query and the hit sequences. We realized that folds for
several domains situated on the query sequence could be
confidently identified in this way, provided that the regions
of query-hit alignments overlap by less than 20%. In situ-
ations where query-hit alignments occurred in nearly the
same regions (overlap larger than 80%), the similarity be-
tween these confident hits was assessed on the structural
level by using the CE algorithm.

A fully automated analysis was performed for query se-
quences with several significant hits identified by 3D-PSSM
or FUGUE by considering all of these hits as well as their
alignments. Of the 102 representative sequences confidently
identified by 3D-PSSM, 48 sequences gave several confi-
dent hits, but after analysis we established that folds for two

domains could be confidently assigned in the case of only
four sequences. In the remaining 44 cases, we applied CE
for structural similarity assessment, and found that 41 se-
quences share structurally related folds (ZCE > 4.2). In only
three cases, structurally unrelated folds (ZCE � 4.2 for at
least one pair of hits) are assigned to an identical region in
the query sequence. Similarly, of the 138 sequences with
confident top hits identified by FUGUE, several significant
hits were assigned to 77 GTFs. In the case of only 15
sequences, folds for two unrelated domains were confi-
dently assigned to the same query. In the remaining 62
cases, we applied CE for structural similarity assessment
and found that 54 domains share structurally related folds.
In only eight cases, structurally unrelated folds are assigned
to an identical region in the query sequence. Compared with
3D-PSSM, FUGUE confidently identified more sequences
with two domains, at the expense of an increased uncer-
tainty in identifying structurally unrelated folds assigned to
an identical region in the query sequence. Independently of
the fold recognition methods being applied, we established
that among the hits where two domains were confidently
identified, in most of the cases the top-scoring fold belongs
to the GTF A or GTF B class. Based on this observation, we
took into account only the top hits in our further analysis.

Three types of contradictory results can be seen in
Table 2:

(1) In some cases, sequence-based searching could identify
a significant hit, whereas fold recognition could not.
Such a finding was observed previously in genome an-
notation using fold recognition. In the annotation of the
Mycobacterium genitalium ORFs reported by Kelley et
al. (2000), not all of the assignments made by PSI-
BLAST were confidently confirmed by 3D-PSSM (Kel-
ley et al. 2000). A strong sequence signal, perhaps a
motif highly conserved in close homologs, may be at-
tenuated upon the inclusion of a large amount of diverse
sequence and structural information in the fold-recog-
nition procedure. Therefore, techniques such as PSI-
BLAST must still be used for an initial screening,
complemented by fold-recognition techniques to extend
the range of detectable homologies.

(2) It was also observed that both 3D-PSSM and FUGUE
could outperform each other, depending on the particu-
lar sequence to be analyzed. The reason for such dif-
ferences is that 3D-PSSM and FUGUE capture different
aspects of similarity between distant protein homologs.
Such behaviors were widely addressed in the series of
CASP experiments (Fischer et al. 2000). It was estab-
lished that the different fold-recognition methods are
often complementary.

(3) For a given cluster, a confident fold hit can be assigned
by different methods, but these top hits differ signifi-

Table 2. Comparison of the consensus among different methods

3D-PSSM FUGUE GeneFold BLAST PSI-BLAST

3D-PSSM — 92 (87) 51 (32) 24 (23) 54 (52)
FUGUE — 51 (38) 29 (28) 64 (62)
GeneFold — 18 (15) 37 (28)
BLAST — 30 (30)
PSI-BLAST —

The value outside the parentheses denotes the total number of clusters
where both methods were able to assign a confident hit. The value inside
the parentheses denotes the number of clusters where the same significant
top hit is identified by both methods. Comparable numbers outside and
inside the parentheses indicate equal performance of both of the methods.
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cantly, even if they are mapped on the same region in
the query sequence. In such cases, generally, additional
information (obtained, i.e., by trying other fold-recog-
nition methods or human expert judgment) must be
used to decide which is the most appropriate fold hit.

The above results clearly demonstrate that structures can
be successfully assigned to about 70% of the GTF se-
quences by the current fold-recognition methods, with a
prediction rate higher than those obtained with sequence-
based searching methods (i.e., BLAST and PSI-BLAST).
Additionally, the results from 3D-PSSM and FUGUE are to
a large extent in agreement, implying that the hits from
these two methods are reliable. Finally, we have shown that
a joint, jury-like prediction scheme combining the results of
different fold-recognition methods enhances the confidence
of fold assignment, and contributes to an increased detection
rate of remote homologs (Lundström et al. 2001).

Structural clustering

To analyze and extract valuable information from the fold-
recognition processing of the 262 representative sequences,
we performed a structural clustering of all of the identified
folds by again using CE structural alignment (Shindyalov
and Bourne 1998). Consequently, a dissimilarity matrix was
constructed, and the dimension was reduced by multidimen-
sional scaling (MDS; Schiffman et al. 1981). We obtained
in this way 2D maps of GTF structural space by using either
3D-PSSM or FUGUE. These maps are shown in Figure 2A
and B, respectively. In Figure 2A, two main clusters can be
found, with eight entries falling in the GTF A family and
seven entries grouped in the GTF B class. The values of
RMSDCE and ZCE between the two central, representative
folds in the GTF A (1g8oA) and GTF B (1f6dA) clusters are
5.4 Å and 2.6 Å for 80 aligned residues, respectively. The
numbers of GTFs sequences falling into the two basic clus-
ters GTF A and GTF B are 2600 and 1057, respectively.
Therefore, 3D-PSSM confidently identified nearly 70%
(3657 of 5188) of GTFs sequences to adopt either the GTF
A or the GTF B fold. However, one can see in Figure 2A the
presence of five other points, representative of folds corre-
sponding to 38 GTFs sequences. These points are signifi-
cantly distant from the points forming the two main clusters
GTF A and GTF B, and belong to the potential “new” GTF
folds identified by 3D-PSSM.

Data generated by FUGUE were processed by analogy to
the analysis carried out on 3D-PSSM results. A graph sum-
mary of the analysis is shown in Figure 2B. Again two main
clusters of points can be identified, which are representative
of the GTF A and GTF B fold types, with seven and six
structural entries, respectively. A total of 2587 GTFs se-
quences are affiliated with the seven structures falling in
cluster GTF A, and 1113 sequences are related to the six

structures in cluster GTF B. The values of RMSDCE and ZCE

for the comparison between the central hits (1ll3A and
1iirA) in GTF A and GTF B clusters are 5.1 Å and 3.5 for
136 aligned residues, respectively. The remaining nine en-
tries may be regarded as potential “new” GTF folds. Only
74 GTF sequences are related to these marginal structures.

“New” GTF folds

Our fold recognition studies demonstrated that unexpected
folds could be assigned confidently to some of the GTF
sequences, referred to as “new GTF folds.” 3D-PSSM iden-
tified five such folds, and nine where found by FUGUE. It
should be emphasized here that these “new” GTF folds
share common folds with already known protein structures,
and they are “new” only in that they differ from the GTF A

Figure 2. A 2D projection of the structural similarities from an all-against-
all comparison of the hits generated from fold recognition by the MDS
technique. For any two hits, the closeness in the 2D plot approximately
represents the pair’s structural similarity. Based on (A) the results from
3D-PSSM; (B) the results from FUGUE. The hits are labeled according to
the groups (�, GTF-A; �, GTF-B; �, potential new GTF folds).
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and GTF B shapes. Taking into account the three clusters
identified as “new” folds by both 3D-PSSM and FUGUE,
the number of unique clusters with potential “new” folds is
11. Results from both methods are compared in detail in
Table 3.

In the case of the nine clusters for which 3D-PSSM or
FUGUE gave nonconsistent solutions, we can only specu-
late that the proposed fold would be the real one. In contrast,
we can predict with sufficient confidence that “new” GTF
folds could be found in the two clusters where 3D-PSSM
and FUGUE share the same top significant hit. These two
clusters represent some 14 GTF sequences. A first cluster
finds a template structure in fold 1f89A, adopted by the
yeast �+� protein Ylr351C. This cluster contains only two
sequences from the genome of Mycobacterium tuberculosis.
The first sequence has a dolichol-phosphate-mannosyl
transferase activity (Dpm1); the substrate specificity of the
second sequence has not been identified. In this first cluster,
we found that close to the common top hit generated by both
3D-PSSM and FUGUE were present hits with sufficiently
high scores to be considered significant. It turned out that
these were representative of the GTF A fold and are mapped
in a region of the sequence different from the one generating
the top hit (cf. Table 3). We therefore found a situation
where a typical GTF fold is located on the same sequence
together with a “new” fold of unknown function. More ex-
perimental work is necessary in this case to determine
whether GTF function is retained when the GTF A domain
is deleted. Only when this is verified can one conclude that
a “new” GTF fold could be related to the sequences in this
first cluster.

The second cluster contains 12 bacterial protein se-
quences, most of them exhibiting a cellobiose/cellodextrin
phosphorylase activity. We found that a relevant template
fold is 1h54A (maltose phosphorylase; MP), a dimeric en-
zyme that catalyzes the conversion of maltose and inorganic
phosphate into �-D-glucose-1-phosphate. Every monomer
consists of an N-terminal complex �-sandwich domain, a
helical linker, an (�/�)6 barrel catalytic domain, and a C-ter-
minal �-sheet domain. In contrast to the first cluster, we
found no indications that any part of this protein sequence
will fit GTF A or GTF B templates. The top hit provided by
3D-PSSM or FUGUE maps in the same region of the se-
quence, and the alignment length matches on almost all of
the template (cf. Table 3). Furthermore, it was established
that the (�/�)6 barrel has an unexpectedly strong structural
and functional analogy with the catalytic domain of glu-
coamylase from Aspergillus awamori. The only conserved
glutamate of MP (Glu487) superposes onto the catalytic
residue Glu179 of glucoamylase and likely represents the
general acid catalyst. When we scrutinized the 3D-PSSM
model generated for the representative protein sequence
gi3172046 for this second cluster, we found that a homolo-
gous residue (Asp) maps close to MP Glu487 and glucoamy-
lase Glu179. All of the described observations provide us
good confidence to assign this type of fold to GTF se-
quences with cellobiose/cellodextrin phosphorylase activity.

Structural genomics target selection

As a key research topic in the postgenomic era, structural
genomics aims to use high-throughput structure determina-

Table 3. Detailed results for those clusters with identified “new” GTF folds from 3D-PSSM or FUGUE

No. of
cluster NCBI-gia

Size of
cluster

3D-PSSM FUGUE

Hit E-val3D-PSSM

Alignment
lengthd Class Hit ZFUGUE

Alignment
length Class ZCE

e

1 2984014 3 1qg8Ab 8.57e-03 221/882 GTFA 1czfA 13.73 319/882 New 2.6
2 9963867 6 N.C.H.c — — — 1bkcA 6.00 238/238 New —
3 13881785 2 1f89A 6.85e-10 225239500/868 New 1fo6A 23.10 233269519/868 New 6.7
4 15292321 20 N.C.H. — — — 1knyA 7.68 241/689 New —
5 17133624 2 1f6dA 3.51e-03 329/714 GTFB 1im8A 8.33 219/714 New 2.6
6 1698601 7 1b04A 3.19e-02 280/740 New N.C.H. — — — —
7 2384786 9 N.C.H. — — — 1gcqC 10.96 62/868 New —
8 3172046 12 1h54A 1.19e-04 29640812/822 New 1h54A 13.79 1727822/822 New 8.6
9 15230362 1 1klo_ 2.03e-03 137/736 New 1c3jA 8.35 297/736 GTFB 2.0

10 18699592 4 N.C.H. — — — 1qmeA 38.05 261/366 New —
11 15159314 16 1fchA 2.65e-08 232/686 New 1ft1A 15.16 281/686 New 3.9

a GenPept accession number for representative sequence.
b Each hit is described by five characters, including the PDB code together with the chain name. In the case when the fifth character is “_”, the protein
has only one chain.
c N.C.H., no confident hit available.
d Alignment length and aligned region on the query sequence. Figures in regular font style indicate the alignment length versus overall length for the query
sequence. When figures are in bold font, the left (left superscript) and right (right superscript) bounds of the aligned region flank the figure, indicating the
alignment length.
e Z-score of CE structural alignment. Pairs of hits with ZCE > 4.2 are regarded as identical.
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tion and computational analysis to provide a 3D structure
for every known protein (Brenner 2000; Sali 2001). Cur-
rently exhaustive structural determination for all known
proteins appears to be prohibitively expensive, and there-
fore the selection of a structurally nonredundant set of tar-
gets is of primary importance. The principal requirement for
target selection is to define a relatively small set of proteins
with new, currently unknown folds in an initial large col-
lection of sequences (Portugaly and Linial 2000; Frishman
2002). The selection of such targets is a challenging task,
because it is extremely difficult to predict whether a given
sequence will point to a novel protein fold or not. However,
there are encouraging indications that the total number of
stable protein folds is limited (Chothia 1992; Portugaly and
Linial 2000; McGuffin and Jones 2002).

We speculate that there are two possible situations when
considering those GTFs with unassigned folds in our study.
On one hand, some GTFs could share a common fold with
proteins of known structure, but could not be detected by
current fold-recognition methods. We expect that when ap-
plying different state-of-the-art fold-recognition methods on
such GTF sequences, variable results would be obtained,
with top hits situated somewhere in the lower limits of
certainty. On the other hand, some GTFs could adopt novel,
unknown protein folds. We expect that for such sequences,
various state-of-the-art fold-recognition methods might pro-
vide consistently nonconfident hits (McGuffin and Jones
2002), although a systematic analysis of possible correla-
tions between low statistical scores from fold-recognition
methods (i.e., 3D-PSSM and FUGUE) and the likelihood of
finding novel folds is still not available. Due to the poor
performance of GeneFold, only the results from 3D-PSSM
and FUGUE were jointly utilized for such a target selection.
As pointed out by the authors of 3D-PSSM (Kelley et al.
2000), those hits with E-val3D-PSSM larger than 1.0 should
be regarded as hits of low confidence. When applying 3D-
PSSM, we identified 70 clusters with such low-confidence
hits (Fig. S-1a in the Supplemental Material). Similarly,
FUGUE identified 59 clusters with very weak hits (i.e.,
Z

FUGUE
< 3.0; Fig. S-1b). However, low-confidence and un-

certain predictions were jointly provided by the two meth-
ods for only 30 of the 262 clusters. In this set of 30 unknown
folds, 19 clusters include only one sequence (singlets),
whereas the remaining 11 clusters account for 261 GTF
sequences. We therefore ended up with these 261 sequences
as the most promising targets for structural genomics stud-
ies of the GTF family. We took into account an argument by
Frishman (2002), requiring the targets for a structural ge-
nomics study to represent not only novel folds, but also as
much as possible of the sequences in the initial data set, and
this mainly for reasons of cost-effectiveness. Details regard-
ing these 11 clusters representative of the 261 target se-
quences are listed in Table S-2. Precise choices of candi-
dates for structural determination should be further guided

by feasibility studies of the expression, purification, and
crystallization behavior of the targets.

Conclusions

The glycosyltransferase protein family is of particular in-
terest for testing and validation of fold-recognition tech-
niques because diverse amino acid sequences are known
to adopt only two typical protein folds ensuring sugar
synthesis. Three fold-recognition approaches (3D-PSSM,
FUGUE, and GeneFold) were employed here to identify the
folds of some 5188 GTF sequences. Taking the results from
3D-PSSM and FUGUE into account, the overall perfor-
mance of fold recognition presented in this study is sum-
marized in Tables 4 and 5. The results obtained indicate that
current fold-recognition methods can identify confidently a
fold for nearly 70% of all known GTF sequences with a
confidence of at least 95%, improving on remote homolog
identification by the most sophisticated sequence-based
method (PSI-BLAST; Table 5). In most of the remaining
30% of sequences, we found a “hidden” relationship to GTF
A or GTF B folds; that is, the top hits from fold recognition
still point to GTF A/B but without a significant statistical
score. We found that the FUGUE method performs slightly
better than 3D-PSSM, which is evidenced by the consis-
tently greater numbers appearing in the lower triangular part
of Table 4. Generally, the results from 3D-PSSM and
FUGUE are to a large extent in agreement, certainly due to
the similar fold-recognition algorithms on which they are
based. The high degree of degeneracy of GTF amino acid
sequences in protein structural space was confirmed by 3D
clustering of the significant hits. We were not able to con-
fidently detect other currently known folds that could sup-
port glycosyltransferase function. However, an interesting
evolutionary relationship has been identified among three
folds exhibiting glucoamylase, maltose phosphorylase, and
glycosyltransferase activities. In order to direct structural
genomics efforts for GTFs structural determination, appro-

Table 4. Cross-comparison of the overall performance of
3D-PSSM and FUGUE

FUGUE

3D-PSSM GTF A GTF B Othera Not Identifiedb

GTF A 54 (2566) 0 (0) 1 (3) 4 (31)
GTF B 1 (1) 31 (1043) 1 (2) 5 (11)
Other 0 (0) 1 (1) 3 (30) 1 (7)
Not identified 9 (20) 33 (69) 4 (39) 114 (1365)

Figures outside parentheses relate to clusters of GTF sequences. Figures in
parentheses relate to sequences.
a The folds other than GTF A/B.
b The top hit from fold recognition is low-confidence, i.e. the top hit from
3D-PSSM with E-val3D-PSSM > 0.05 or the top hit from FUGUE with
ZFUGUE < 6.0.
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priate targets were selected from those GTFs for which the
different fold-recognition methods in use were consistently
unable to identify a fold type. The research strategy reported
here would also be useful to map sequence space on the set
of known folds (shapes) for other protein families.

Materials and methods

GTF sequence database

In this work we relied essentially on the CAZy database (Campbell
et al. 1997) as a primary source of information. The CAZy data-
base was compiled in two steps. First, glycosyltransferase se-
quences (i.e., NDP-sugar hexosyltransferase, EC 2.4.1.x) were col-
lected from the Swissprot and EMBL/GenBank databanks and
compiled into a preliminary sequence library. Second, representa-
tives of each EC number were used as templates for BLAST simi-
larity searches. Similar sequences were retrieved, even if they were
still uncharacterized ORFs. The data set we constructed is com-
posed of unique GTF sequences selected from among the se-
quences included in the CAZy database at the time this study was
carried out. For this, we first downloaded the corresponding Gen-
Bank/GenPept or Swissprot accession numbers for all of the GTF
sequences from the CAZy database (version as of 01/05/2002).
Then, the sequences were retrieved from the NCBI GenBank/
GenPept or Swissprot databases. For those GTFs with identical
sequences, only one was kept for further processing. In this way,
a nonredundant GTF sequence data set consisting of 5451 entries
was compiled.

The length of the sequences varies from 12 to 4573 amino acids,
as illustrated in Figure 3. More precisely, 18 and 72 sequences
have lengths shorter than 50 and 100 aa, respectively, and 245 are
longer than 1000 aa. Sequences with chain lengths shorter than 50
aa were excluded, and in the final data set there were only 54
sequences with chain length between 50 and 100 aa. Our purpose
was to find the compromise between a data set that will be adapted
to fold-recognition studies, and one with maximized information

content, containing even some fragments of GTF amino acid se-
quences. The cutoff of 50 aa was deduced from two different
sources. First, we noted that the fold-recognition server validation
LiveBench experiment (Bujnicki et al. 2001) automatically ex-
cludes from further analysis sequences shorter than 100 aa. Sec-
ond, we performed some preliminary experiments with the
FUGUE and 3D-PSSM methods, by sending to them several frag-
ments derived from the N terminus of the GTF B fold adopted by
the UDP-glucosyltransferase of Amycolatopsis orientalis (PDB en-
try 1iir). Fragments were cut from the N terminus, spanning re-
gions 1–30, 1–50, and 1–100, respectively. The FUGUE server
recognized confidently all of the fragments and correctly identified
structure 1iir as the template. In contrast, 3D-PSSM was not able
to identify confident hits for fragments 1–30 and 1–50, and picked
1iir as a low-confidence template only for fragment 1–100. Based
on these observations, we decided to apply the cutoff for chain
length of 50 aa as a good compromise between the performance of
current fold-recognition methods and the discovery spirit with
which we tried to analyze sequence-structure relationships in the
GTF protein family. On the other hand, sequences longer than
1000 aa often code for multidomain proteins, and cannot be pro-
cessed by most of the current fold-recognition methods. In our
study we also filtered out the sequences with lengths exceeding
1000 aa. Finally, 5188 GTF sequences (about 95% of the original
5451 GTFs) were kept for further study.

Sequence clustering

Generally, fold recognition requires more computational resources
than sequence-based similarity searching. It was expected that fold
identification would take a prohibitively long time if carried out on
all of the 5188 GTF sequences, especially when using the web-
based fold recognition servers (i.e., 3D-PSSM and FUGUE). How-
ever, it is clearly not necessary to perform fold recognition on
every GTF sequence, because many GTF sequences have very
high sequence similarity, sharing therefore the same fold. For these
reasons, a systematic and exhaustive clustering was performed on
the initial set of 5188 GTF sequences, with the constraint that
every entry within the same cluster should correspond to the same

Figure 3. The distribution of sequence lengths in the GTF protein family.
In 5451 nonredundant GTF sequences, the length ranges from 12 to 4573
aa. About 69% of GTF sequences have an aa chain length in the range
200–550; only about 5% of GTFs have sequence longer than 1000 aa or
shorter than 50 aa.

Table 5. Summary of the rate of fold identification in the GTF
family based on the results from 3D-PSSM and FUGUE

GTF A/B folds
Confidenta 85 (3609) 32.4% (69.6%)
Non-confidentb 52 (132) 19.8% (2.5%)

Other folds
Confidentc 2 (14) 0.8% (0.3%)
Non-confidentd 9 (68) 3.5% (1.3%)

Not identifiede — 114 (1365) 43.5% (26.3%)
Total — 262 (5188) 100.0% (100.0%)

Figures outside parentheses relate to clusters of GTF sequences (column 1,
raw numbers; column 4, percentages). Figures in parentheses relate to
sequences.
a Both 3D-PSSM and FUGUE generate the same significant hit as GTF
A/B.
b The same confident hit as GTF A/B is not available from the results of
3D-PSSM and FUGUE, but at least the top hit from one method should be
confidently assigned as GTF A/B, and the top hit from the other method
could be confidently assigned as GTF A/B or not identified.
c Both 3D-PSSM and FUGUE have the same confident hit but other than
GTF A/B.
d No same confident hit other than GTF A/B is found from the results of
3D-PSSM and FUGUE, but at least one method should generate a signifi-
cant hit other than GTF A/B.
e Neither 3D-PSSM nor FUGUE can generate a confident hit.
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protein fold. This last requirement is believed to hold true if se-
quence similarity is significant (Chothia and Lesk 1986; Rost
1999). Subsequently, one representative sequence from each clus-
ter was selected to compile a new reduced GTF subset, which was
further sent to fold recognition.

The following algorithm was applied for clustering the GTF
sequences: (1) A sequence is chosen at random as a seed for the
current cluster. (2) A BLAST search is executed with this sequence
as a query against all other GTFs. Sequences with E-value less
than 1e-10 are assigned to the current cluster. (3) For those se-
quences newly assigned to the current cluster, a BLAST run is
executed against the remaining GTF sequences to find possible
new cluster members. In this step, we made an extensive use of
similarity by transitivity in the sequence space (Yona et al. 2000).
To prevent unrelated proteins from clustering together, a more
strict standard was adopted at this step; that is, the qualified new
member was required to have not only an E-value less than 1e-10,
but additionally a similar sequence length [i.e., |L1−L2|/max(L1,L2)
< 30%]. (4) The above step would be repeated until no sequence
could be merged into the current cluster. (5) For each member in
the newly built cluster, the Number of Directly Similar sequences
within this cluster (NDS) was calculated by intracluster sequence-
based cross-comparisons. The E-value for two directly similar se-
quences was again set to 1e-10. Then a representative sequence for
the current cluster was selected, by choosing the one with a maxi-
mal value of NDS. (6) The same procedure is iterated for the
remaining GTF sequences to build the other clusters. Eventually,
262 clusters were formed out of the original set of 5188 GTF
sequences, and the 262 representative sequences were further pro-
cessed by fold-recognition methods.

Fold recognition

3D-PSSM

3D-PSSM (Kelley et al. 2000) is a profile-based method relying
on both multiple sequence alignments and multiple structural
alignments. Central to the method is the so-called Three-Dimen-
sional Position-Specific Scoring Matrix (3D-PSSM) that combines
data from multiple-sequence profiles as implemented in PSI-
BLAST with structure-based profiles, taking into account second-
ary structure and solvent accessibility. However, the truly innova-
tive component of the approach resides in the use of structural
alignments of remote homologs to generate sequence profiles that
are accurately aligned yet more diverse than those generated
through PSI-BLAST. The fold library for 3D-PSSM is based
mainly on the SCOP database (Murzin et al. 1995) and included
7485 structures at the time that the present study was undertaken.

The 262 GTF sequences, forming the representative subset,
were submitted automatically to the 3D-PSSM fold-recognition
server (http://www.sbg.bio.ic.ac.uk/servers/3dpssm/) by running a
Perl script. 3D-PSSM scans a submitted query sequence against its
fold library, and potential homologs are suggested. Results were
downloaded automatically for further analysis. According to the
3D-PSSM authors’ experience, all hits with E-val3D-PSSM less than
0.05 should be regarded as confident at the 95% certainty level.

FUGUE

FUGUE is a profile-based fold-recognition program, making
extensive use of both multiple sequence and structural information
(Shi et al. 2001). It is based on environment-specific substitution
tables and structure-dependent gap penalties, where scores for
amino acid matching and insertions/deletions are evaluated de-

pending on the local environment of each amino acid residue in
known structures (Shi et al. 2001). Given a query sequence,
FUGUE scans its fold library, which is based on the HOMSTRAD
database (Mizuguchi et al. 1998), calculates the sequence-structure
compatibility scores, and produces a list of potential homologs and
alignments. At the time the present study was performed, the
FUGUE fold library contained 3914 templates.

By analogy to the protocol applied when using the 3D-PSSM
fold-recognition server, the 262 sequences were sent to the
FUGUE server (http://www-cryst.bioc.cam.ac.uk/∼fugue/) auto-
matically by running a dedicated Perl script. In addition, the results
were automatically downloaded from the web site for further
analysis. As pointed out by the authors Shi et al. (2001), hits with
Z-scores larger than 6.0 should be considered confident at the 99%
confidence level, and thus considered significant.

GeneFold

The third fold-recognition method we used is GeneFold
(Godzik et al. 1992; Jaroszewski et al. 1998). Licensed by Tripos
Inc., GeneFold is integrated into the SYBYL molecular modeling
environment (SYBYL 6.8 2000). It uses both sequence and struc-
tural information to measure sequence-structure compatibility us-
ing three different scoring functions (Jaroszewski et al. 1998). The
first scoring function evaluates sequence similarity only. The sec-
ond scoring function evaluates a hybrid sequence/structure simi-
larity score, where sequence, local conformational preferences,
and burial terms are taken into account. The third, most elaborate
scoring function derives a full hybrid score based on the compat-
ibility of sequence, secondary structure, local conformational pref-
erences, and burial terms between a query sequence and a struc-
tural template from the fold library. The results of sequence-struc-
ture matches using the above three functions are returned as a list
of templates, ordered by decreasing scores, that are possible
matches for the target sequence.

The original fold library distributed by Tripos Inc. consisted of
1824 entries representing all of the protein structures in the release
of the PDB databank as of April 1998. In the past five years
however, many protein structures with new folds have been de-
posited in PDB databank, and therefore the original GeneFold
library was clearly outdated. For the purposes of our study, we
updated the GeneFold library with all entries included in the 3D-
PSSM fold library. At the time our study was preformed, 7485
protein structures were present in the 3D-PSSM fold library. How-
ever, as GeneFold supports a maximum size of 2500 structures per
library, three new libraries were built up, with sizes of 2410, 2413,
and 2414 structures, respectively. As can be seen, a total of 248
entries were not included in the libraries out of the 7485 initial
ones, as GeneFold does not support structures with multiple con-
formations for the surface residues, with disordered chain termi-
nals, or for which only the C� coordinates are provided (Godzik et
al. 1992).

The processing of the 262 sequences by GeneFold was executed
on an SGI O2+ workstation by running a dedicated Perl script. For
every one of the query sequences, GeneFold scanned the three
libraries to find potential hits. Since GeneFold provides three dif-
ferent scores for a hit, we used a “jury” method to combine these
three scores into a unique score (Lundström et al. 2001). There-
fore, we did the following modifications:

(1) A unique total score (ST) was introduced:

ST = 0.3 × S1 + 0.3 × S2 + 0.4 × S3 ( 1)
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where S1, S2, and S3 denote the three different scores, respec-
tively. Then, all of the hits generated from these three fold
libraries were ranked by order of decreasing ST.

(2) In contrast to 3D-PSSM and FUGUE, statistical bounds were
not derived for GeneFold scores which can guarantee confi-
dence in the derived hits. However, we regarded a hit as highly
confident if the total score was higher than 400. This value was
derived from a validation study we carried out on a restrained
set of protein sequence-structure pairs taken from the CASP4
experiment (Sippl et al. 2001).

BLAST and PSI-BLAST searching

In a manner similar to that used for our fold-recognition studies,
the subset of the 262 representative GTFs sequences was pro-
cessed by the sequence-based similarity searching methods
BLAST and PSI-BLAST. For this we used the standalone version
of the BLAST program (Altschul et al. 1990, 1997). The nonre-
dundant (NR) and structural (PDB) sequence databases were
downloaded from (ftp://ncbi.nlm.nih.gov/blast/) in their updates
dated 14 May 2002. The NR sequence database consists of all
nonredundant GenBank CDS translation, PDB, SwissProt, PIR,
and PRF entries (Altschul et al. 1990, 1997). The PDB database
contains all of the sequences derived from protein structures de-
posited in the PDB Databank (Berman et al. 2000). BLAST
searching was executed by using all 262 sequences as queries
against the PDB sequence database. After an adjustment to the size
of the NR database, all of the hits with an E-value less than 0.001
were considered confident.

PSI-BLAST is a sensitive sequence-similarity search method,
performed in an iterative manner. First, an initial BLAST search is
carried out, and the hits are ranked according to their alignment
scores. Second, a profile in the form of a score matrix model is
calculated from a certain number of the sequences taken from the
top of the hit list. Third, an additional search is executed as a
profile-sequence comparison using the generated score-matrix
model to find a new set of hits. This search loop is repeated until
no more new hits can be found or the maximum number of itera-
tions is reached. To assign a fold to every GTF sequence, PSI-
BLAST searching was executed in two stages. First, all 262 se-
quences were run against the NR sequence database by PSI-
BLAST for three iterations. Based on the score matrix model built
in this first search, we further searched with PSI-BLAST against
the PDB sequence database for one round to find the potential
structurally similar hits. The E-values for including sequences in
the score matrix model and assessing the significant similar hits
were both set to 0.001.

Confidence levels

The confidence levels provided for BLAST, PSI-BLAST, and 3D-
PSSM are based on expectation values (E-values). By definition,
the E-value is a parameter that describes the number of hits one
can “expect” to see just by chance when searching a database of
a particular size. It decreases exponentially with the score that
is assigned to a match between two sequences. The lower the
E-value, or the closer it is to zero, the more “significant” the match
is. Currently, the most extensively studied E-value statistic is the
one associated with BLAST. On the other hand, FUGUE uses
an alternative scoring based on Z-scores, evaluated as the number
of standard deviations above the mean score obtained by chance.
Limited information is provided by the authors of both FUGUE

and 3D-PSSM on the precise method of calculating confidence
levels in general. However, an initiative such as LiveBench (Buj-
nicki et al. 2001) can provide some basis for the rationale of
our results. The LiveBench project is a continuous benchmarking
program for a number of participating fold-recognition servers.
Every week the results are collected and evaluated using auto-
mated model assessment programs. The LiveBench experiment
thus provides a simple evaluation of the sensitivity and specificity
of the available servers and provides a way to assess the confi-
dence of the obtained predictions. In the current LiveBench
program, the 95% confidence levels for the 3D-PSSM and
FUGUE servers are situated at cutoffs for E-values < 0.119 and for
Z-scores > 4.8, respectively (cf. http://www.cs.bgu.ac.il/∼dfischer/
CAFASP3/summaries/thresholds.html). In our study, in order to
declare a 3D-PSSM hit confident, we used an E-value cutoff of
0.05, as recommended by the authors of that method. Similarly, in
order to declare a FUGUE hit confident, we applied a Z-score
cutoff of 6.0, deduced by the FUGUE authors. In both cases, we
used more restrictive cutoffs than the ones obtained in a real ap-
plication, such as the LiveBench experiment. Therefore, we expect
our assignments to be at least 95% correct in a CASP-like experi-
ment.

Structural alignment

In order to rationalize the results from the fold-recognition studies
and to establish the structural relationships among the identified
hits, it is important to reliably assess protein structural similarity.
More precisely, evaluation of protein structural similarity was
needed mainly in the following two situations: (1) For the same
query sequence, it was necessary to compare among them the hits
obtained by the different fold-recognition methods. (2) In order to
classify all the hits identified, a structural clustering was carried
out based on an all-against-all comparison of the generated hits.

Several structural alignment methods have been developed
(Taylor and Orengo 1989; Holm and Sander 1993; Shindyalov and
Bourne 1998; Lu 2000). In our work we used CE, a structural
alignment method proposed by Shindyalov and Bourne (1998).
This algorithm involves a combinatorial extension (CE) of an
alignment path defined by aligned fragment pairs, in contrast to the
conventional techniques based on dynamic programming and
Monte Carlo optimization. Two main parameters (RMSDCE and
ZCE) for characterizing a given structural superposition are re-
turned along with the resulting sequence alignment. The parameter
RMSDCE is the root mean square deviation (Å) based on C� po-
sitions in the two structures at the optimal superposition. ZCE is
the z-score from the CE statistical model. Although the value of
RMSDCE is intuitive to reveal structural similarity between two
structures, it is not sufficient. For example, a structure alignment
with a lower RMSDCE can be more significant than one with a
higher RMSDCE if the number of aligned residues is greater in the
first alignment. In the present study, ZCE was used to measure the
structural similarity of the hits derived by fold-recognition meth-
ods. As pointed out by Shindyalov and Bourne, a family level
similarity can be found for structures with ZCE � 4.5. In contrast,
superfamily level similarity appears for structures with ZCE values
between 4.0 and 4.5, whereas the similarity for those structures
with ZCE � 3.7 is usually very low. The source codes of the CE
program were downloaded from http://cl.sdsc.edu/ce.html, and
compiled for use in our local computer.

Structural clustering

Our study led us to the conclusion that an important structural
degeneration is present among the otherwise diverse GTF amino
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acid sequences. For example, hits generated from some 102 of the
262 clusters map into only 20 different protein structures. As a
matter of fact, this degeneration may be even higher, because some
of these structures still share high similarity. To investigate the
relationships between the hits produced by fold recognition, 3D
clustering was undertaken by using the CE structural alignment
method (Shindyalov and Bourne 1998). First, a structural dissim-
ilarity function operating on two protein structures was defined as
follows:

�tanh�ZCE − 3.7

2 � − 1� =
1

1 + exp�ZCE − 3.7�
( 2)

where tanh is the hyperbolic tangent function, and the value of Dstr

varies from 1.0 to 0.0 with the increase of the structure similarity
(i.e., ZCE) between two hits. We used this type of sigmoid function
to ensure smoothness properties for the dissimilarity function Dstr.
First, we took the 20 hits generated by 3D-PSSM and we calcu-
lated Dstr between any pair of these, to obtain a 20 × 20 dissimi-
larity matrix. To provide a visual representation of the structural
relationships among these 20 hits, we applied multidimensional
scaling (MDS; Schiffman et al. 1981). In this way we reduced the
dimension of the original 20 × 20 dissimilarity matrix to 20 × 2.
Finally, structural similarity relationships were displayed as a 2D
plot (see Fig. 2A). The structural relationship for the 22 different
hits generated by FUGUE were derived similarly, and are dis-
played in Figure 2B.

Electronic supplemental material

The supplemental material contains two tables and one figure
showing (1) the detailed fold-recognition results for the 262 rep-
resentative GTFs using 3D-PSSM, FUGUE, and PSI-BLAST, (2)
the potential targets for a GTF structural genomics initiative based
on the results from 3D-PSSM and FUGUE, and (3) distribution of
the statistical scores for the top hits of the 262 representative GTF
sequences generated by the different fold-recognition methods. All
of the tables, figures, and figure legends are included in the file
supplement.pdf.
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