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Abstract
Influenza virus entry is mediated by the receptor binding domain (RBD) of its spike, the
hemagglutinin (HA). Adaptation of avian viruses to humans is associated with HA specificity for
α2,6- rather than α2,3-linked sialic acid (SA) receptors. Here, we define mutations in influenza A
subtype H5N1 (avian) HA that alter its specificity for SA either by decreasing α2,3- or increasing
α2,6-SA recognition. RBD mutants were used to develop vaccines and monoclonal antibodies that
neutralized new variants. Structure-based modification of HA specificity can guide the development
of preemptive vaccines and therapeutic monoclonal antibodies that can be evaluated before the
emergence of human-adapted H5N1 strains.

The ability of influenza viruses to adapt from animals to humans is determined by several viral
gene products [reviewed in (1)]. Among them, the viral hemagglutinin (HA) is of particular
interest; it binds to specific sialic acid (SA) receptors in the respiratory tract that affect
transmission (1–3). At the same time, it affects sensitivity to neutralizing antibodies, the
primary determinant of immune protection (4,5). The receptor binding domain (RBD) within
HA is composed of less than 300 amino acids, situated at the outer surface on top of the viral
spike (6–10). SA binding is mediated by a cavity bordered by two ridges (Fig. 1A), formed by
loop 220 (amino acids 221 to 228), loop 130 (amino acids 135 to 138), and a helical domain
at amino acids 190 to 197 (numbering based on H3 A/Aichi/2/68) (10). The structures of the
H1, H5, and H3 HAs have been previously described (6–10), and the H1 and H5 RBD show
greater structural and genetic similarity to one another than to H3 (Fig. 1A).

To define mutations that change receptor recognition, we focused initially on differences
between H5 and H1 (A/South Carolina/1/18), which recognizes α2,6-SA linkages, particularly
amino acids 190, 193, and 225 (Fig. 1B). Individual or combination mutations to create
pseudoviruses were made in which amino acids were replaced at certain positions, described
by the single-letter code for the amino acid (11), as for example, aspartic acid substituted for
glutamic acid at position 190 (E190D). We also used a mutant suggested previously to increase
α2,6 recognition, Q226L,G228S (9). Surface expression of these HAs was confirmed by flow
cytometry (fig. S1A), and pseudotyped lentiviral vectors were produced after cotransfection
of neuraminidase (NA). Entry into 293A renal epithelial cells, which express both α2,3- and
α2,6-SAs (fig. S1B), was measured with a luciferase reporter. The E190D,K193S,G225D
triple-mutant virus showed entry similar to the wild-type HA (fig. S1C), confirming its
functional integrity; however, receptor specificity could not be defined with this assay.
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The SA specificity of different HAs was analyzed by a modification of the glycan microarray
method (12) and by the resialylated HA assay (13). For glycan arrays, HAs were coexpressed
with NA and purified (8). The E190D,K193S,G225D mutation eliminated recognition of most
α2,3-linked substrates compared with wild-type protein (Fig. 2, A versus B). The resialylated
HA assay confirmed the loss of α2,3-SA recognition in the triple mutant and lack of α2,6
binding (Table 1A), also seen in Q226L,G228S. Analysis of previously described mutants
(14) also revealed no α2,6-SA recognition (Table 1B). Finally, we identified mutations that
increased α2,6-SA recognition (Table 1C), particularly the S137A,T192I variant that alters
both the 130 loop and 190 helix. This altered specificity was confirmed in glycan microarrays
(table S1). These mutations represent alternatives by which the HA can adapt its substrate
recognition; in the lastmentioned instance, it increases α2,6-SA binding to be more similar,
although not identical, to human-adapted influenza viruses.

Immunogenic and antigenic differences among HAs with altered receptor specificity were
analyzed by vaccination of mice with wild-type or the triple-mutant HA and generation of
monoclonal antibodies (mAbs). Each mAb recognized mutant or wild-type HA coexpressed
with NA with differential specificity (Fig. 3A). One potent H5-specific mAb, 9E8, neutralized
wild-type H5 but showed significantly reduced activity against the triple-mutant pseudovirus
(Fig. 3B, left). In contrast, a second such monoclonal, 10D10, neutralized both HAs
equivalently at maximal inhibitory concentrations, although smaller differences were observed
at intermediate concentrations (Fig. 3B, middle). A third mAb, 9B11, isolated after
immunization with the triple-mutant expression vector, showed the converse specificity,
inhibiting the triple mutant but not affecting the wild-type H5 pseudovirus (Fig. 3, B and C,
right). Finally, although 9E8 more effectively neutralized the wild type than S137A,T192I,
another antibody, 11H12, showed comparable activity on both (Fig. 3D), confirming the
differential antigenicity of this mutant. Modification of SA binding specificity therefore altered
neutralization sensitivity and facilitated the generation of vaccines that elicited effective
neutralizing mAbs.

In this report, we have identified mutations in the avian H5 hemagglutinin that alter its
specificity for SA receptors and have shown that such mutants can be used to elicit neutralizing
monoclonal antibodies that more effectively inhibit these variants. Neutralization sensitivity
was determined with a lentiviral entry assay previously shown to define mechanisms of entry
for numerous viruses, including HIV, severe acute respiratory syndrome (SARS), Ebola and
Marburg hemorrhagic viruses, and, recently, influenza (15–17). Inhibition by antibodies
determined neutralization sensitivity (18,19) and correlated with hemagglutination inhibition,
a traditional marker of immune protection (table S2) (19). With this approach, the specificity
of the HA was examined, independent of molecular adaptations required to generate
replication-competent virus, which allowed identification of several mutants with altered SA
specificity. Other mutants have been defined recently whose recognition was assessed with a
less-specific assay (14), and we find here that they do not gain α2,6-SA recognition in the HA
assay (Table 1B; N186K, Q196R). The previously reported Q226L,G228S mutant (9)also
showed no α2,6-SA binding (Table 1A). It is therefore unlikely that HA mutants reported
previously are human-adapted, although S137A,T192I here may represent a step in this
pathway.

Whether acquisition of α2,6-SA specificity would increase H5N1 transmissibility also remains
unknown. Recently, HA mutations in the 1918 virus that allowed human SA recognition were
shown to enhance transmission in ferrets (20), which supports this notion and provides a model
to evaluate such H5 mutants. The approach to rational design of human-adapted H5-specific
vaccines facilitates such analyses, as well as the development of preemptive countermeasures
to contain influenza outbreaks. The five major antigenic sites of HA lie on an accessible surface
adjacent to the RBD (7,21,22). Although antibodies to this region can affect RBD specificity
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and neutralization sensitivity (7,23–26), changes solely in the RBD have not been shown to
alter immunogenicity. Here, structure-based modification of RBD specificity facilitated the
generation of mAbs independent of the major antigenic sites. Directed to a functionally
constrained domain, they may less readily evolve resistance and serve as vaccine prototypes
that can be developed before human-adapted strains emerge.
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Fig. 1.
Structural and genetic basis for hemagglutinin mutations. (A) The RBDs of alternative viral
hemagglutinins are shown. (B) Comparison of amino acid sequences in the major 130 and 220
loops and the 190 helix, color-coded in purple, lavender, and green, respectively.
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Fig. 2.
Altered specificity of the triple-mutant H5 compared with wild-type KAN-1 H5 coexpressed
with NA. Glycan microarray analysis of (A) wild-type or (B) triple-mutant HA purified after
coexpression with NA was performed by a modification (18) of a previous technique (12)
performed by Core H, Consortium for Functional Genomics, Emory University. Glycans with
related linkages are grouped by color: selected glycoproteins (orange), predominantly α2,3-
sialosides (yellow), α2,6-sialosides (green), α2,8 ligands (blue), or others (purple), as
previously shown (table S3).
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Fig. 3.
Altered neutralization sensitivity of mutant H5N1 pseudovirus. (A) Binding to HA coexpressed
with NA in transfected 293T cells was determined by flow cytometry with the indicated mAbs
(blue) or isotype control IgG (red). (B) Neutralization sensitivities were assessed with the
indicated mAbs. (C) Neutralization sensitivities of the indicated wild-type and mutant HAs to
these mAbs (400 ng/ml) are shown (ND, not done). (D) Neutralization sensitivities of wild-
type and S137A,T192I mutant to mAb 9E8 and 11H12 are presented.

Yang et al. Page 6

Science. Author manuscript; available in PMC 2008 August 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yang et al. Page 7
Ta

bl
e 

1
Sp

ec
ifi

ci
ty

 o
f g

ly
ca

n 
re

co
gn

iti
on

 a
nd

 e
ff

ic
ac

y 
of

 e
nt

ry
 o

f w
ild

-ty
pe

 a
nd

 m
ut

an
t H

A
s. 

H
5 

m
ut

an
ts

 K
A

N
-1

 fr
om

 T
ha

ila
nd

, o
r V

N
12

03
,

an
d 

V
N

11
94

 f
ro

m
 V

ie
tn

am
 w

er
e 

us
ed

 a
s 

de
sc

rib
ed

 in
 m

et
ho

ds
 (

18
). 

Th
e 

ab
ili

ty
 o

f 
in

di
ca

te
d 

H
A

s 
to

 b
in

d 
α2

,3
- 

an
d 
α2

,6
-S

A
s 

w
as

de
te

rm
in

ed
 b

y 
a 

re
si

al
yl

at
ed

 h
em

ag
gl

ut
in

at
io

n 
as

sa
y 

(1
8)

 fo
r (

A
) K

A
N

-1
 m

ut
an

ts
 w

ith
 lo

ss
 o

f α
2,

3 
H

A
 a

ct
iv

ity
 a

nd
 re

le
va

nt
 c

on
tro

ls
,

(B
) V

N
12

03
 a

nd
 p

re
vi

ou
sl

y 
de

sc
rib

ed
 V

N
11

94
 m

ut
an

ts
 (1

4)
, a

nd
 (C

) K
A

N
-1

 m
ut

an
ts

 w
ith

 in
cr

ea
se

d 
α2

,6
-S

A
 b

in
di

ng
. V

ira
l e

nt
ry

 o
f

w
ild

-ty
pe

 a
nd

 m
ut

an
t p

se
ud

ot
yp

ed
 le

nt
iv

ira
l v

ec
to

rs
 w

as
 m

ea
su

re
d 

as
 d

es
cr

ib
ed

 (1
8)

. T
he

 d
eg

re
es

 o
f e

nt
ry

 w
er

e 
as

 fo
llo

w
s:

 +
, <

25
%

 o
f

W
T;

 +
+,

 2
5 

to
 5

0%
 o

f W
T;

 +
++

, 5
0 

to
 7

5%
 o

f W
T;

 +
++

+,
 >

75
%

 o
f W

T.
 T

he
 H

5 
(K

A
N

-1
) h

er
e 

is
 id

en
tic

al
 to

 th
e 

G
en

B
an

k 
se

qu
en

ce
an

d 
di

ff
er

s 
at

 a
m

in
o 

ac
id

s 
18

6(
N

/K
) f

ro
m

 Y
am

ad
a 

an
d 

co
lle

ag
ue

s 
(1

4)
, a

nd
 th

e 
V

N
11

94
 m

ut
an

ts
 a

re
 id

en
tic

al
 to

 N
18

2K
 a

nd
 Q

19
2R

(1
4)

 a
cc

or
di

ng
 to

 a
lte

rn
at

iv
e 

nu
m

be
rin

g 
co

nv
en

tio
ns

.

M
ut

at
io

n
H

A
 ti

te
r

E
nt

ry

C
R

B
C

α2
,3

α2
,6

(A
)

H
5(

K
A

N
-1

)
80

16
0

<2
++

++
E1

90
D

<2
<2

<2
+

G
22

5D
40

<2
<2

++
++

E1
90

,G
22

5D
<2

<2
<2

+
Q

22
6L

40
<2

<2
++

+
Q

22
6L

,G
22

8S
40

<2
<2

++
+

E1
90

D
,K

19
3S

20
<2

<2
++

+
K

19
3S

,G
22

5D
80

<2
<2

++
++

E1
90

D
,K

19
3S

,G
22

5D
40

<2
<2

++
+

K
19

3S
,Q

22
6L

20
<2

<2
+

K
19

3S
,Q

22
6L

,G
22

8S
40

<2
<2

+
H

1N
1(

19
18

/S
C

)
16

0
<2

16
0

++
++

(B
)

H
5(

V
N

12
03

)
20

20
<2

++
++

E1
90

D
,K

19
3S

,Q
22

6L
,G

22
8S

40
<2

<2
++

+
A

18
9K

,K
19

3N
,Q

22
6L

,G
22

8S
40

<2
<2

++
++

H
5(

V
N

11
94

)
32

0
32

0
<2

++
++

N
18

6K
32

0
16

0
<2

++
++

Q
19

6R
<2

<2
<2

++
(C

)
S1

37
A

80
80

80
++

++
T1

92
I

80
16

0
80

++
++

S1
37

A
/T

19
2I

40
40

80
++

+

Science. Author manuscript; available in PMC 2008 August 10.


