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ABSTRACT We present a general-purpose model for biomolecular simulations at the molecular level that incorporates
stochasticity, spatial dependence, and volume exclusion, using diffusing and reacting particles with physical dimensions. To
validate the model, we first established the formal relationship between the microscopic model parameters (timestep, move length,
and reaction probabilities) and the macroscopic coefficients for diffusion and reaction rate. We then compared simulation results
with Smoluchowski theory for diffusion-limited irreversible reactions and the best available approximation for diffusion-influenced
reversible reactions. To simulate the volumetric effects of a crowded intracellular environment, we created a virtual cytoplasm
composed of a heterogeneous population of particles diffusing at rates appropriate to their size. The particle-size distribution was
estimated from the relative abundance, mass, and stoichiometries of protein complexes using an experimentally derived proteome
catalog from Escherichia coli K12. Simulated diffusion constants exhibited anomalous behavior as a function of time and crowding.
Although significant, the volumetric impact of crowding on diffusion cannot fully account for retarded protein mobility in vivo,
suggesting that other biophysical factors are at play. The simulated effect of crowding on barnase-barstar dimerization, an
experimentally characterized example of a bimolecular association reaction, reveals a biphasic time course, indicating that
crowding exerts different effects over different timescales. These observations illustrate that quantitative realism in biosimulation
will depend to some extent on mesoscale phenomena that are not currently well understood.

INTRODUCTION

Biology at the molecular scale is shifting from the collation

of genes, proteins, and metabolites to the study of the inter-

actions of molecular players within complex networks and

systems. At this system-level view of organisms, compu-

tational simulation is required for both quantitative and

qualitative prediction of system behavior. Current network

approaches tend to represent cells as homogenous deter-

ministic systems, ignoring spatial processes and randomness

at multiple scales. The cytoplasmic environment, however, is

crowded and spatially heterogeneous in molecular population

types and numbers (1), a milieu that is remote from the

conditions of typical in vitro experiments.

The relevance of spatial partition to cellular physiology is

immediately evident from examples such as compartmentali-

zation, cell division, morphogenesis, intracellular trafficking,

and signal transduction (2–6). The effects of crowding on

cellular physiology are less obvious (7–11) and include,

among other phenomena, increased association rates (12,13),

metabolic channeling (14), phase separation (15), and slower

rates of diffusion (16–19), with documented consequences for

cell volume regulation (20), lens formation (21,22), reaction

kinetics (23–26) and signal transduction (27,28). Thus, there is

growing awareness of the importance of space when con-

structing realistic cellular models (11,29–32).

There are currently a variety of dynamic spatial modeling

approaches (30). They include strategies based on partial

differential equations (PDEs) (5,33–35), cellular automata

(24,36,37), on-lattice reaction diffusion (5,27,38–41), and

off-lattice diffusing particles (24,42–44). These approaches

vary in their range of application and in their limitations.

PDEs provide the most straightforward extension of ordinary

differential equations into spatial degrees of freedom, but

have difficulty including stochasticity or accounting for mac-

romolecular crowding. Lattice approaches provide a compu-

tationally simple treatment of space. However, the artificial

nature of the lattice limits spatial resolution, introduces lattice

anisotropy, and may (if lattice occupancy is unlimited) dis-

count volume exclusion. As an alternative, particle-based ap-

proaches explicitly track every molecule off-lattice. Although

these models are closer to physical reality, they are computa-

tionally expensive, resulting in compromises within existing

models based on research focus. In MCell, for example, par-

ticles react only with surfaces (42), whereas Smoldyn ignores

excluded volume by treating particles as points (43). At an

even finer scale are coarse-grain molecular dynamics ap-

proaches (45,46), which have been used in membrane simu-

lation (47–49), diblock copolymer self-assembly (50,51),

and protein folding and dynamics (52,53), among other areas.

Although these submolecular models are even more expensive

than molecular scale models, they allow the prediction of
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molecular properties and dynamics at the cost of limited

timescale.

There are many important systems to which an improved

model could be applied. We consider two here, an investi-

gation of the nature of hindrance to in vivo protein diffusion

in Escherichia coli, and an assessment of the impact of crowd-

ing on a prototypical transport-limited process, the diffusion-

limited dimerization of the barnase-barstar pair.

It has been known for some time that in vivo diffusion rates

of soluble proteins differ dramatically from those observed in

vitro, but the detailed mechanisms involved are still a matter

of debate (19). Possible explanations include altered vis-

cosity, nonspecific interactions, hindrance due to crowding,

and caging effects from cytoplasmic polymers. Although

some of these explanations can be partially illuminated by

appropriate experiments, the ability to directly simulate the

processes involved has the obvious potential to determine the

sufficiency of any proposed alternatives.

In vivo, the function of the bacterial ribonuclease barnase

is to cleave extracellular RNA, as a defense against infectious

viral RNA. This functional requirement of high catalytic ef-

ficiency for organism defense is complicated by toxicity to

the cell’s own RNA, thus requiring a highly effective mech-

anism for minimizing the activity of barnase in the host cell.

This is the role of barstar, which forms a rapid, tight, nearly

irreversible association with barnase that deactivates it. This

process has evolved to be as fast as possible, and has therefore

become a prototypical example of a diffusion-limited protein-

protein interaction, and thus forms an excellent system for

studying the impact of crowding on in vivo reactions.

Here, we describe and validate a high-performance, par-

allelized particle-based simulation where particles capable of

diffusion and reaction take on physical dimensions. Using

this model in combination with a proteomic-scale evaluation

of protein abundance, we approximated the populational and

diffusive characteristics of the E. coli cytoplasm to study the

volumetric impact of macromolecular crowding on biomo-

lecular diffusion and diffusion-limited reactions. The ob-

served dependence of diffusion and reaction ‘‘constants’’ on

crowding highlights the value this type of approach toward

the development of realistic biological network simulations.

METHODS

Particle-based hard-sphere
reaction-diffusion model

We model reactions in the cytoplasm at the one particle/molecule level, with

the discrete computational model based on a microscopic continuous reac-

tion-diffusion system. The center of mass of each particle obeys the diffusion

equation

_rAðr; tÞ ¼ DA=
2
rAðr; tÞ; (1)

where r is the location of the molecule, t is the time, rA is the local particle

number density, and DA is the diffusion constant. Reactions occur via the

Collins-Kimball boundary condition between reacting pairs of particles (54):

4pR
2
D
@r

@r

����
r¼R

¼ karjr¼R; (2)

where ka is the microscopic reaction rate, R is the contact distance, and D is

the relative diffusion constant of the pair. Our model is an off-lattice

discretized version of this system. A conceptual flow chart of the simulation

appears in Fig. 1. All source code and input files can be downloaded from

http://projectcybercell.ca/Downloads/.

Movement and collisions

The simulation proceeds in discrete timesteps of fixed size Dt; and particles

move off-lattice via discrete moves of a fixed length, Dx; in a random di-

rection uniformly distributed over the surface of a sphere. The move prob-

ability, PA, for a species A is connected to its dilute aqueous diffusion

constant, DA, through the formula Ær2æ ¼ 6DAt; using Ær2æ ¼ PAðt=DtÞDx2;

giving

PA ¼ 6DADt=Dx
2
: (3)

FIGURE 1 Flow chart for model algorithm.
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After movement, collisions for moved particles are determined by comparing

center-to-center distances, based on new particle positions, with the sum of

particle radii. If, upon collision, no reaction occurs (see below), the move is

rejected, and the particle is returned to its original position, enforcing hard-

sphere exclusion.

Reactions

If, however, the colliding species can undergo a bimolecular reaction, the

collision triggers that reaction with probability g. This probability may be con-

nected to the intrinsic reaction rate, which in a continuum reaction-diffusion

model is specified via the partially absorbing boundary condition (Eq. 2) that

connects the diffusive flux of particles across the contact distance to the local

concentration. We have computed a discrete form of this equation as follows.

Since the projection of the spherical move distribution onto any axis is

uniform, the probability per move of a particle B initially located at z ¼ z9

crossing a surface at z ¼ 0 is pB/2 (1 � z9/Dx) for z9 , Dx, where pB is the

probability of movement. The total flux of B particles crossing the contact

radius, R¼ RA 1 RB, near a fixed A particle is computed by integrating over

both the surface of the sphere and initial separations. If the B concentration is

constant on the scale of Dx (valid for small g), the result is 4pR2pB/4 Dx rB.

Of these particle collision events, a fraction g react, and the resulting reaction

events per timestep equals the total reacting flux from Eq. 2 times, Dt. We

then solve for ka in terms of g as

ka ¼
3

2

R

Dx
g4pDR; (4)

where the move probability has been replaced with the diffusion constant via

Eq. 3. A similar formula is used by the MCell model (42), where, however,

moves are normally distributed. If both particles can move simultaneously,

the calculation gives the same expression as Eq. 4, where D is replaced by a

combined diffusion probability, Dc:

Dc ¼ DA 1 DB �
2

3

DADB

Dx
2

=6Dt

: (5)

Dissociation events for complexes are handled with a fixed probability/

timestep/complex,

Pd ¼ kdDt: (6)

Products are positioned at their contact distance, in a random orientation,

where the location of the center of mass of the dissociating complex is

conserved.

Environment

Simulations occur in a rectangular box. Boundary conditions at the walls can

be 1), periodic, 2), reflecting, 3), absorbing, or 4), absorbing with nonzero

fixed species concentrations on the other side, acting as a particle source. The

latter case corresponds to Dirichlet boundary conditions for a PDE.

Model validation

Diffusion

We validate diffusion by measuring mean-square distance traveled versus

time for a heterogeneous dilute collection of particles with a size distribution

corresponding to the virtual cytoplasm (Table 1, and discussed below).

Diffusion constants are computed from a reference to the in vitro diffusion of

green fluorescent protein (GFP), D ¼ 87 mm2/s (55), via the scalings

D ; R�1 ; M�1=3; valid if it is assumed that all particle classes share equal

specific volumes and the hydrodynamic radius is proportional to the contact

radius. Move probabilities are calculated from the diffusion constants via

Eq. 3. Simulations were conducted in a (1000 nm)3 box with reflecting

boundary conditions where the move length Dx ¼ 0.5 nm, and the timestep

Dt ¼ 0.35 ns for a total simulation time of 1 ms. The system was initialized

with random nonoverlapping particles to a 1% occupied volume fraction. Con-

vergence was checked against additional shorter simulations with twofold-

and fourfold-smaller time and space steps.

Association reactions

Assuming the movement length and timestep are both unity (always possible

via a change of units), the remaining variables for an irreversible A 1 B / C

reaction are the radii, RA and RB, of the A and B particles, the probability of

reaction g, and the initial concentration of each species. The corresponding

macroscopic rate coefficients are given by Eq. 4.

To validate the reaction model over a wide range of parameters, we con-

ducted simulations over a range of combinations of microscopic constants

including: reaction probability (0.001, 0.01, 0.1, and 1), move probability

(0.1 and 1), and reactant radii (10 and 100), for a total of 40 independent

cases. Initial particle numbers are NA ¼ NB ¼ 5000 for each case, where the

simulation volume is adjusted so that the total occupied volume is 1%, cor-

responding to uncrowded conditions. The results are averaged over 10 runs of

100,000 iterations each. Survival probability is assessed as the fraction of

species A remaining at a given time. The time-dependent rate coefficient is

calculated from the concentration time curves as

kðtmidÞ ¼
Cinitial � Cfinal

CinitialCfinalðtfinal � tinitialÞ
; (7)

where tfinal is selected to ensure that a minimum of 100 events have occurred

when summed over all runs. This threshold provides a means of controlling

the tradeoff between noise and time resolution in a manner that is indepen-

dent of rate coefficient.

We used the standard Smoluchowski theory of diffusion-limited reactions

to compute predicted survival curves and time-dependent reaction coeffi-

cients as follows (56,57):

kirrðtÞ ¼ k9D 1 1
ka

kD

F
ka

kD

ffiffiffiffiffi
t

t9D

r� �� �
; (8)

where ka is the association reaction rate constant; kD ¼ 4pDR is the

maximally diffusion-limited reaction rate in terms of the contact distance,

R, and the combined diffusion constant, D; k9D ¼ kakD/(ka 1 kD) is the

asymptotic reaction rate, t9D¼ (k9D/kDR)2/D, and the function F(x) ¼
exp(x2)erfc(x). In terms of kirr(t), the survival probability for an A particle

is given as

TABLE 1 Particle distribution and properties for

virtual cytoplasm

Molecular

mass range

(kDa)

Weight

fraction

(%)

Average

molecular

mass (kDa)

Radius

(nm)

D

(mm2/s)

0–20 0.7 11.4 1.7 156.8

20–40 3.5 29.1 2.3 83.7

40–60 3.9 46.0 2.7 61.7

60–80 4.1 67.2 3.0 47.9

80–100 4.8 91.4 3.4 39.0

100–120 1.9 107.1 3.5 35.1

120–140 2.5 132.8 3.8 30.4

140–160 3.5 156.1 4.0 27.3

160–180 0.6 161.7 4.1 26.7

180–200 1.3 186.5 4.3 24.3

2001 37.7 346.0 5.2 16.1

Ribosomes 35.4 2700 10.4 4.1
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SirrðtÞ ¼ exp �c0

Z t

0

kirrðt9Þdt9

� �
; (9)

where c0 is the concentration of B particles.

Reversible reactions

For evaluation of a prototypical diffusion-influenced reversible reaction

A1B4C; with forward association rate ka and reverse dissociation rate kd,

we consider problems with the following parameters: ka¼ 125, RA¼ RC¼1,

RB¼ 0, DA¼ DC¼ 0, cB¼ 1, DB¼ 1, and kd¼ 5 or 500. These parameters

are selected to correspond to the limitations of current theoretical approaches

to reversible reactions, in particular the target approximation, dilute As, and

noninteracting Bs. The association reaction is primarily diffusion-limited

(ka/4pDR � 10), so a small Dx is required for the validity of Eq. 4. We use

Dx ¼ 1.5 3 10�3, resulting in g ¼ 0.01; and set Dt ¼ 3.80 3 10�7, giving

PB ¼ 1. The dissociation probability Pd ¼ 1.9 3 10�4 and 1.9 3 10�6 for

kd ¼ 5 and 500, respectively. The system simulated consists of a single A

particle and 125 B particles in a cubic box of volume 53, with reflecting

boundary conditions, and the average survival probability is computed over

1000 runs with independent seeds.

Simulation results are compared with theoretical curves, computed as-

suming either mass action or applying the best available approximate theory,

the MPK1 multiparticle kernel (57). The survival kernel is computed nu-

merically in Laplace space followed by a numerical inverse Laplace trans-

form.

Numerical experiments

Transport in a crowded environment

We examine the impact of crowding on diffusion by conducting diffusive

transport experiments incorporating particles distributed according to the

virtual cytoplasm at an occupied volume fraction of 0.01, 0.10, 0.20, 0.30,

0.34, 0.40, and 0.50. Conditions are the same as for the diffusion validation

except for the occupied volume. The total number of particles ranges up to

1.7 3 106 particles for the 0.50 case. Time-dependent self-diffusion coeffi-

cients were computed through measurements of mean-squared displacement

over elapsed time. Total simulation time was generally 100 ms, with 245 ms

used for the 0.34 case.

Crowding in barnase-barstar dimerization

A (400 nm)3 box was initialized with equal numbers of randomly positioned

barnase and barstar particles at 300 mM, corresponding to ;11,000 particles

and an occupied volume fraction of 4%. Radii and diffusion coefficients for

barnase and barstar were both set as equal, at 3.0 nm and 150 mm2 s�1 (58).

The virtual cytoplasm particles were added to this system at an additional

occupied volume of 0%, 30%, and 50%. The timestep, Dt, was 0.1 ns, the

move length was 0.3 nm, and reactions between barnase and barstar were

irreversible with an association probability of 1. Simulations were run in

periodic boundary conditions for 10 ms.

The virtual cytoplasm

In terms of its dry weight, the cytosolic content of E. coli consists mainly of

ribosomes (62% RNA, 38% protein, constituting 40–50% of cell weight) and

free protein (20–30%). To construct a volumetrically accurate size distri-

bution of the E. coli cytoplasm, we used the catalog of proteins and their

abundances originally reported in our proteomic analysis of E. coli K–12

(59). From this analysis, we initially selected 159 of the major polypeptides

representing .90% of the cytosolic protein mole-percentage. From this pool,

we removed from the analysis 1), ribosomal polypeptides (whose quantifi-

cation was deemed unreliable); 2), polypeptides that transiently associate

with other cell structures (i.e., the inner membrane) or with other proteins in

noncomplex arrangements (i.e., elongation factors); and 3), proteins repre-

senting cross-compartment contamination. The stoichiometric relationships

of the remaining 118 polypeptides were found by bioinformatic analysis to

include 82 species involved in homocomplexes, 19 species involved in 13

heterocomplexes, and 17 monomers (60,61).

The relative molar abundance for monomers and homo complexes were

calculated as follows:

MAb ¼ TpAb

Mr 3 n
; (10)

where TpAb is the total protein abundance (49); Mr is the experimentally

determined molecular mass (59), and n is the number of protein subunits

within the complex. For heterocomplexes the abundance of the complex was

taken as the relative abundance of the most abundant identified member.

A cytoplasm mass distribution was created by grouping monomers and

complexes into size classes separated by 20 kDa to an upper class of 200 kDa

and greater. The resulting distribution (Table 1, and illustrated at three

packing densities in Fig. 2) is smooth and has (mass-weighted) peaks of

FIGURE 2 Virtual cytoplasm, with 1% (a), 10% (b), and 50% (c) occu-

pied volume fraction.
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;80 kDa and 200 kDa. The largest single complex by mass is the 374 kDa

RNA polymerase complex, at 11.4% by molar abundance.

Since ribosomes constitute 40–50% of the total cell mass of exponentially

growing E. coli (62), a separate ribosomal class was introduced that assumed

a copy number of 18,000 ribosomes per cell (60) contributing to a total

density of 0.34 g/ml (10).

The effective molecular radius of each class was determined by assuming

spherical particles of weight corresponding to the class average and a specific

volume of 1.0 cm3/g (10). In the simulation, each particle class was assigned

diffusive behavior appropriate to its molecular mass.

RESULTS

Model validation

In this model, spherical molecules of different sizes diffuse

through space and are capable of reversible reactions upon

collision. The realism of the model in terms of its diffusive and

reaction properties was therefore evaluated according to

known empirical behavior and existing theory, validated

against the underlying microscopic description of Eqs. 1 and 2.

For realistic diffusion, we expect that the movement of

molecules within the simulation will conform to the rela-

tionship ÆR2æ¼ 6Dt, where ÆR2æ is the mean-squared distance

traveled by the molecule at time t, and D is the diffusion

constant. Fig. 3 shows the mean-squared path length versus

time under free diffusion for a population of hard spheres

with different sizes. The results agree well with the expected

formula over the duration shown.

As a prelude to evaluating the model’s performance with

respect to reversible reactions, we confirmed that irreversible

association reactions exhibited expected behavior for the

simple bimolecular case A 1 B / C over a wide range of

parameters (Methods, Eq. 8). Since the predicted reactant

survival curves given by Eq. 8 vary for every case, only

several selected cases are illustrated (Fig. 4, a and b). In

general, the agreement is very good for all conditions ex-

amined. The worst discrepancies apply to cases with the

smallest collision distances, all of which are included among

the curves plotted. The agreement indicates that when ap-

plying Eq. 4, these simulations are able to reproduce re-

actions in all ranges, including maximally to minimally

diffusion-limited reactions. An even more precise test can be

made by rearrangement of Eq. 8 so that time-dependent rate

coefficients fall on a single universal curve F(t) (after the

asymptotic value has been subtracted and k and t have been

rescaled). This resulting collapse of data is shown in Fig. 4 c.

Since the subtraction emphasizes the noise, the smallest

collision distance cases were removed for clarity.

Since the simulations cover parameter space in terms of

microscopic move and reaction probabilities, they also il-

lustrate convergence properties of the model. As Dx becomes

larger, approaching the collision distance, the collision sur-

face can no longer be treated as planar, as required in Eq. 4,

resulting in a discrepancy visible between Fig. 4, a and b, for

some of the cases with smallest radii. In the opposite limit, as

Dx becomes much smaller than the collision distance, the

discrete model will approach a continuous reaction-diffusion

system.

When applying the above observations to reversible re-

actions, we note that, among other problems, reversibility is

complicated by the possibility that proximally dissociated

molecules will tend to recombine (geminate recombination).

To validate the simulation of reversible reactions, we there-

fore limited consideration to theoretically tractable cases with

both high and low dissociation constants. We compared our

simulation results for the cases of the simple reversible re-

action A 1 B 4 C with well-stirred mass-action chemical

kinetics and with continuum reaction-diffusion using the

accepted MPK1 approximation (Fig. 5). It is worthy of note

that our simulations agree well with MPK1 up to noise limits,

thereby providing validation of diffusion-influenced revers-

ible reactions. However, mass action was found to deviate

substantially from both simulation and MPK1 theory, indi-

cating the failure of conventional ODE approaches to this

system (see Discussion).

Simulating the effects of crowding on diffusion
and reaction

We next applied the validated model to study the impact of

macromolecular crowding on diffusion and reaction using a

size distribution of mobile but inert particles that approxi-

mates the volumetric composition of the E. coli cytoplasm.

The move length was selected to be a fraction of the smallest

particle size, and the timestep was maximized given the

constraint that the maximum diffusion coefficient Dx2/6Dt
must be greater than the largest modeled diffusion constant.

The time-dependent behavior of self-diffusion in this simu-

lated cytoplasm is shown in Fig. 6 a at an occupied volume of

34%. Convergence and stepsize dependence was tested by

comparison of test cases with shorter simulations at higher

resolution, with Dx reduced two- and fourfold, and Dt re-

FIGURE 3 Diffusion validation. ÆR2æ versus t for diffusion of particles

distributed according to the virtual cytoplasm (Table 1) at 1% occupied

volume. Solid lines, simulation; dashed lines, 6Dt, where D is the input

diffusion constant of the species from Table 1.
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duced to match (data not shown). The higher-resolution runs

displayed quantitatively similar behavior, within a few per-

cent, indicating partial, albeit not total, convergence. The

higher-resolution runs lie slightly above the data shown,

unsurprisingly indicating that step size discreteness results in

a slightly higher effective collision radius for the particles.

The simulated diffusion coefficients in Fig. 6 are time-

dependent. There is a crossover in diffusion rate between

10�7 s and 10�6 s, corresponding roughly to the diffusion time

for cytoplasm particles across a ribosome, the largest species

in the model. At the longest times available, the rate of change

of diffusion for most species has slowed but not stopped,

leaving it unclear whether the remaining time dependence is

a crossover between two regimes of normal (if slowed) dif-

fusion, or if the asymptotic long-time behavior is that of

anomalous subdiffusion. For the smallest species, a distinct

kink starting above 10�5 s is a finite size effect, due to the

limited box size of the simulation. Since the box volume was

selected to roughly match E. coli cytoplasm volume at 1 fl, this

is showing the beginning of equilibration across the entire cell.

The hindrance to diffusion at a fixed time as a function of

crowding is displayed in Fig. 6 b. At low levels of crowding,

the diffusion approaches the aqueous level, as expected, re-

flecting the validity of the movement model in this regime. At

higher levels of crowding, however, mobility becomes time-

dependent, with longer times corresponding to effectively

lower diffusion rates, thereby displaying a type of anomalous

diffusion.

We next examined the effect of crowding on the barnase

system, a well-characterized, diffusion-limited biochemical

association reaction. In this reaction, barnase is known to

associate rapidly and tightly with its inhibitor, barstar. The

survival probability curves for free barnase in a system with

equal levels of barnase and barstar at three levels of crowding

are shown in Fig. 7. Crowding had biphasic impact on bar-

nase survival. At early times, the reaction was accelerated,

and barnase survival in the crowded systems was below that

of the dilute system. At later times, the crowded survival

curves were above the dilute curve, showing the impact of

hindered diffusion upon the ability of a barnase to find a

matching barstar. As demonstrated by this simulation, the

impact of crowding can therefore be to either increase or

decrease reaction rate, even in the same reaction, and in a

time-dependent manner, and thus introduces a level of

FIGURE 4 Reaction model conforms with theory for irreversible reactions, A 1 B / C . (a–c) Survival probability of reactant A as measured in simulations

(solid lines) and predicted from Eqs. 3–9 (dashed lines) versus iterations for the selected cases (a) g ¼ 0.01, (b) g ¼ 0.1, and (c) g ¼ 1.0, with other parameters

as indicated. (d) Rescaled time-dependent reaction rate k(t) versus rescaled t, for all cases. The shaded line is the universal predicted curve from Eq. 9.
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complexity that is difficult to account for without explicit

simulation.

DISCUSSION

The model

There are a variety of spatially sensitive biochemical pro-

cesses whose dynamic behavior cannot be easily captured

at the atomic scale of molecular dynamics nor by the mac-

roscopic description of mass-action kinetics afforded by

continuous approaches. The biochemical impact of macro-

molecular crowding is one of several issues that illustrate the

paucity of understanding of this biomolecular ‘‘no man’s

land’’. Unlike other particle-based simulation approaches

(42,43), we have accounted for these important volumetric

effects in this model by assigning molecules their physical

radius.

Before comparing our model with the underlying micro-

scopic model, it is worth discussing its limits of applicability.

Equations 1 and 2 of our reaction-diffusion model imply that

the particles engage in free diffusion, without intermolecular

forces, until they approach closely enough to define a colli-

sion. At sufficiently short length scales, this viewpoint is

obviously invalid: many macromolecules have charges that

exert electrostatic forces on each other, and the free diffusion

FIGURE 5 Reaction model conforms with theory for reversible reactions.

Survival probability S(t) for a single target A particle in the bimolecular

reversible reaction A 1 B 4 C, plotted as the normalized deviation from the

predicted equilibrium value SN¼ kd/(ka 1 kd), with DA¼DC¼ 0, DB¼ cB¼
1, ka ¼ 125, and box size 53. Solid lines are simulation results averaged over

1000 repetitions, dashed lines are theoretical predictions calculated according

to MPK1 multiparticle kernel theory, and dotted lines are theoretical predic-

tions calculated according to mass action. (a) kd ¼ 500. (b) kd ¼ 5.

FIGURE 6 Anomalous self-diffusion in the cytoplasm. (a) Self-diffusion

coefficient versus time at 34% cytoplasm occupied volume. Lines represent

different particle sizes, from smallest (top) to largest (bottom). (b) Measured

diffusion coefficients at t ¼ 10�4 s normalized by dilute values versus

cytoplasm density.

FIGURE 7 Barnase-barstar dimerization in a crowded environment.

Barnase survival probability versus time at 0%, 30%, and 50% added inert

cytoplasmic occupied volume fraction.
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equation applied here includes no electrostatics. Although in

a vacuum electrostatic forces are long-range power laws, in

physiological media these forces are muted by counterions

from dissolved salts. The question then becomes what length

scales are relevant to what type of model. Debye-Hückel

theory gives the potential around a charge q as

CðrÞ ¼ q
expð�KrÞ

r

expðKaÞ
4pee0ð1 1 KaÞ; (11)

where e is the dielectric constant of the media, e0 is the

permittivity of the vacuum, a is the closest approach distance

of the ion and the counterions, and K ¼ +qi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0

i =ee0kBT
p

; the

reciprocal of the Debye length, is defined in terms of the

number density of the counterions, n0
i ; their charges, qi;

Boltzmann’s constant, kB; and the temperature, T (63). Bare

ions are exponentially screened with a length scale 1/K,

which sets a limit on the distance over which electrostatic

forces can act. At a typical physiological salt concentration of

150 mM, the Debye length is 0.8 nm. Setting four Debye

lengths as a maximum, we conclude that local electrostatics

will exert effects only inside;3 nm. On longer spatial scales,

free diffusion is the appropriate description. This is not to say

that electrostatics has no effect on the reactions. On the con-

trary, on short scales, electrostatic effects can steer proteins

into appropriate alignment (64), and are ultimately respon-

sible for the eventual binding. This guiding and alignment

are accounted for in the experimentally measured binding

constants and therefore in reaction rate constants derived

from them.

It is evident from Fig. 4 that the model can accurately

represent bimolecular reactions over a wide range of reaction

rates, in systems ranging from strongly diffusion-limited to

completely reaction-limited. We note, however, that the con-

vergence to continuum results is limited, with a quantitative

discrepancy at the largest move lengths with the highest re-

action probability. As Dx decreases, of course, the results ap-

proach the continuous reaction-diffusion model. The demand

for numerical precision must therefore be balanced with sim-

ulation speed.

Reversible reactions represent a particular challenge for

hard-sphere reaction models and are worth some discussion.

When a bimolecular reaction A 1 B 4 C is reversible, the

associated complex C can dissociate into a pair, which may

either recombine with each other (geminate recombination)

or escape and combine with other particles. This process,

called diffusion-influenced dissociation or diffusion-influenced

reversible reaction, has attracted a considerable degree of

theoretical attention (56,65–67). The most precisely mea-

sured experimental systems are in fluorescence quenching

and excited-state proton transfer reactions (57,68), though

biological implications beyond the obvious impact on re-

versible enzyme catalysis have also been explored (69,70). In

principle, full analysis of the problem requires the solution of

a complex coupled N-body reaction-diffusion system. The

best available theories are able to make predictions of the

resulting reaction kinetics only for systems satisfying three

conditions: 1), dilute A particles, 2), noninteracting B parti-

cles, and 3), either the A or the B particles held stationary

(called the target and trap approximations, respectively). In

the standard Smoluchowski approach to irreversible reac-

tions, a change of variables is used to fix all A particles at the

origin, resulting in the B particles moving with a combined

diffusion constant, D ¼ DA 1 DB. This, however, induces

correlation into the relative motions of all of the B particles,

which, for reversible reactions, affects the analysis of the

dynamics after the dissociation of the complex. The problem

with both species diffusing in the irreversible case has re-

ceived some attention (71,72), but we consider only the target

problem described above.

At steady state, a reversible diffusion-influenced reaction

will approach the equilibrium value given by

SðNÞ ¼ ½AðNÞ�½Að0Þ� ¼
1

1 1 cKeq

; (12)

where c¼ [B]� [A] and Keq¼ ka/kd, where ka and kd are the

intrinsic rate constants for association and dissociation. Note

that this is the same equilibrium value that would be reached

in a well-stirred system, the diffusion-influenced aspect of the

dynamics being the dynamics of the relaxation to that

equilibrium value. At long times, nearing equilibrium, the

relaxation is known to ultimately obey a power law ;t�3/2

(66). When our simulation results are compared with well-

stirred mass-action chemical kinetics (Fig. 5), it is clear that

mass action fails dramatically. It approaches the correct

asymptotic value not as a power law, but exponentially,

deviating by orders of magnitude from the simulated system.

The best available approximate theory, on the other hand,

tracks the simulation precisely within noise limits (Fig. 5 and

(66)). The discrepancy between mass action and the actual

diffusion-influenced system demonstrates the importance of

incorporating diffusion effects, either through theory or

simulation.

The effects of crowding on diffusive transport

The potential effects of a crowded intracellular environment

on cellular processes are multifactorial and far from under-

stood. They may include impediments to diffusion such as

elevated viscosity, nonspecific intermolecular interactions,

and volumetric effects associated with space occupancy.

Realistically, the model described here is, for the moment,

limited to volumetric effects; however, as discussed below,

even these are not obvious.

Muramatsu and Minton introduced a version of scaled

particle theory (SPT) as an approach for examining the vol-

umetric effects of crowding on diffusion that was later

modified and extended by Han and Herzfeld (73–75). The

decrease of the diffusion coefficient as a function of crowding
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in Fig. 6 b is roughly exponential, in accordance with the

predictions of SPT. It is worthy of note that large complexes

such as ribosomes become almost stationary at higher levels

of crowding. However, attempts to fit SPT to the simulation

data presented do not quantitatively match the dependence on

crowding (data not shown). At first sight, this is surprising,

considering that SPT models involve molecular movement

that is the same as in the model described here (fixed moves

that may succeed or fail). However, SPT differs from this

model by assuming that all attempts at movement are inde-

pendent. In fact, failure of a particle to move reveals infor-

mation about the location of other nearby particles with the

consequence that successive movement attempts become

correlated. Indeed, without such correlations, diffusion would

be constant in time, in contradiction to the results shown in Fig.

6 a, as well as numerous experiments (18,76,77). In conclu-

sion, there are risks to applying SPT to systems exhibiting

anomalous diffusion that do not apply to this model.

The ability to simulate diffusion in a crowded, cytosol-like

environment provides some insight into protein mobility in

vivo. It has been reported that the diffusion of GFP expressed

in E. coli ranges from 6.1 to 7.7 mm2 s�1, ;10-fold slower

than its measured in vitro value of 87 mm2 s�1 (16,78). The

volumetric contribution to retardation as a result of crowding

can be estimated using our model. Although estimates differ

as to the level of excluded volume in E. coli cytoplasm, the

value 34% lies central to the range (10). A visual rendering of

the simulated cytosolic environment is shown in Fig. 2. At

this level, the diffusion of a particle with the approximate

mass of GFP (29 kDa vs. 27 kDa for GFP) is reduced only by

a factor of 2, from 84 mm2 s�1 to 39 mm2 s�1 at t ¼ 10�4 s.

There are five possible explanations for this discrepancy: 1),

underestimation of in vivo excluded volume; 2), a high in-

tracellular viscosity; 3), nonspecific binding to other cyto-

plasmic constituents; 4), GFP dimerization; and, finally, 5),

caging or confinement. Despite the difficulty of estimating

excluded volume in vivo, from Fig. 6 b it is clear that the

volume packing would need to be .50% to achieve 10-fold

reduction in diffusion, a value that is not consistent with the

range of experimental estimates available. In vivo viscosity

has been measured via multiple methods, with the general

consensus being that cytoplasmic viscosity is near aqueous,

with a value around 1 cP, and certainly ,2 cP (1,19). Al-

though nonspecific binding has been shown to have minimal

impact on the hindrance of the small globular protein BCECF

in vivo (19), GFP has a hydrophobic patch that could po-

tentially interact nonspecifically with other cellular substi-

tuents. This hydrophobic patch also allows GFP to dimerize,

with Km ; 100 mM (78). If the dimerization state differs in

vivo from the in vitro reference, diffusion attributed to the

monomeric state will be reduced. Finally, caging effects that

are known to occur in gels may be present. We note that

biopolymers capable of gel formation, such as DNA and

mRNA, constitute ,4% of dry E. coli cell mass and therefore

contribute little to volumetric effects. Nonetheless, it is

known that gel states can be created at extremely low occu-

pied volume. Although this simulation alone does not pro-

vide sufficient evidence to distinguish among these potential

effects and their combinations, it does make clear that the

volumetric component of crowding alone is insufficient to

account for magnitude of this effect. A similar conclusion

was reached by Konopka et al. based on comparison of the

SPT crowding model with experimental hindrance measure-

ments at varying levels of hyperosmolality (78). Furthermore,

these poorly defined facets of cytoplasmic architecture illus-

trate the range of biophysical considerations that could ulti-

mately be incorporated into models such as this.

The impact of crowding on a simple
diffusion-limited reaction

As an illustration of the impact of crowding on a realistic

biochemical reaction, we chose to study the barnase-barstar

system. The extracellular bacterial ribonuclease barnase is

highly cytotoxic, and must be inhibited within the cell by

dimerization with barstar. Due to the high toxicity level of

unbound barnase, the binding between barstar and barnase is

both fast and tight, thereby minimizing the period during which

barnase could act on the cell’s own RNA. The barnase-barstar

system has thus become an exemplar of a diffusion-limited

protein dimerization reaction and has attracted substantial

attention due to the impact of local electrostatic steering on

the final stages of contact and binding (79). Although local

electrostatic forces contradict the pure diffusion with hard-

sphere repulsion model applied here, the effect is relatively

short range, as a typical Debye length for electrostatic screen-

ing in the cytoplasm is 1 nm, and the net effect of a local

interaction potential on a diffusion-influenced reaction could

in any case be accounted for through a rescaling of the

contact radius (56). More important, the hindrance due to

crowding in the cell will affect the speed with which barnase

can be inactivated, and acts at a longer range than any local

electrostatic effects.

In all cases, barnase will eventually bind to barstar (irre-

versibly on the timescale of the simulation). Therefore,

crowding will only affect the rate at which association occurs.

At early times, crowding increases the rate of association

(Fig. 7). This is an excluded-volume effect, in which the

activity (effective local concentration) of the reactants has

been increased by the crowders. At later times, however, the

association rate actually decreases as the diffusion-limited

nature of the reaction takes hold and it becomes more difficult

for partners to find one another. Thus crowding results in

antagonistic effects whose net impact depends on the degree

of diffusion limitation and the timescale examined.

These results may be surprising from some perspectives.

The impact of macromolecular crowding is often consigned

to be merely an excluded-volume effect, with the increase of

activity of the molecular players increasing equilibrium

constants and speeding reactions. Although this effect is
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valid, it is not dominant in all reactions. For systems where

transport is important (diffusion-limited enzyme catalysis,

spatial effects in signal transduction) the hindrance due to

alterations in cytoplasmic geometry can cause a substantial

decrease in reaction rates as reduced diffusion becomes rel-

evant. This effect is in accordance with predictions (73), but

is now demonstrated in simulation by these results.

Even in this specific example, not only the rate but also the

kinetics is altered. Diffusion-limited systems cannot be de-

scribed by a rate-coefficient alone, as the spatial correlations

induced by diffusion limitation result in nonmass-action ki-

netics. This effect is altered by the changes induced by

crowding agents, and the system no longer can be described by

the approximate theory applied to the dilute system in Fig. 5.

The in vivo implications of these results are interesting.

Although the situation modeled is not directly representative

of in vivo levels, either in terms of absolute concentrations or

details of initial conditions, it does provide insight into how

macromolecular crowding affects transport-driven processes.

Biologically, the relevant criterion is how many RNA strands

are cut by a newly translated barnase before it meets and is

inactivated by a barstar. The impact of crowding on explored

volumes shown in Fig. 6 and on reaction rates on the case

simulated in Fig. 7 demonstrates that the effective hindrance

due to crowding is more pronounced at longer distances and

longer timescales. It should therefore be no surprise that

barnase and barstar production are regulated separately,

which allows the organism to adjust barstar levels to ensure

that a barstar is sufficiently close to a barnase to prevent

excessive cellular damage.

In a broader sense, these simulations show the difficulties

faced by simple theories of the spatial effects of protein-

protein interactions. Many reactions approach the diffusion

limit, but that limit is affected by the crowded intracellular

environment. The complex time dependence of diffusion-

limited reactions does have well-studied theoretical approx-

imations that are effective in certain limiting cases (target

approximation, dilute systems, uncrowded systems), but

these cases are far from typical conditions for the cell. Sim-

ulations are therefore a necessary tool for studying the impact

of cytoplasmic environment on transport-limited biological

reaction processes.

CONCLUSION

It is becoming clearer that spatially distributed particle-based

models have a role to play in elucidating cellular behavior at

scales that are for the moment beyond the computational

capability of molecular dynamics, and lie outside of the

conceptual context of continuum-based models (24,42–44,

80,81). They do so by sacrificing detail at the atomic level in

favor of both endurance and population complexity. This

model, for example, is able to simulate complex populations

of several million molecules (the biomolecular complement

of a simple cell) for up to 10�4 s of real-time duration, a

system 10 orders of magnitude or more beyond atomic-scale

molecular dynamics.

A feature that is unique to this model, compared with others

of its type, is the assignment of physical size to its particle

components. This feature has allowed us to explore the volu-

metric consequences on molecular diffusion and reaction of a

simulated approximation of the E. coli cytosol. Under these

conditions, diffusion becomes limiting, with significant con-

sequences for biochemical reactions. Moreover, the impact of

crowding is anomalous, whereby diffusion and reaction co-

efficients lose their time-constant nature, an effect that in-

creases disproportionately with increased molecular mass and

decreased copy number. One obvious application of this

simulation approach, therefore, is in the calibration of existing

in vitro experimental measurements to more accurately reflect

the crowded conditions of the cytoplasm.

The inability to fully account for the reduced in vivo dif-

fusion rate of GFP by simulation illustrates that excluded

volume is only one of several contributors to a potentially

complicated mix of biophysical factors. This point empha-

sizes the value of simulation in defining the magnitude and

complexity of natural phenomena in terms of what is known

and what remains to be known.

The mathematical simplicity of the particle-based ap-

proach means that its application to large and complex

physiological systems is limited by computational capacity

alone. Continued adherence to Moore’s Law would translate

into incremental advances in model sophistication and ca-

pability. Conversely, major advancements in hardware per-

formance would have an immediate and dramatic impact on

model evolution, combining greater molecular detail at the

lower scale with the capability of handling larger and longer

problems at the higher scale. If the computational challenges

of particle-based modeling can be overcome, then the ap-

proach provides an accessible and flexible strategy for the

construction of spatially dynamic networks that can be

moved seamlessly from the stochastic behavior of small

biomolecular populations to the continuous behavior of large

biomolecular populations. Time will tell.
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