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ABSTRACT Coarse-grained elastic models with a Ca-only representation and harmonic interactions have been increasingly
used to describe the conformational motions and flexibility of various proteins. In this work, we will unify two complementary
elastic models—the elastic network model (ENM) and the Gaussian network model (GNM), in the framework of a generalized
anisotropic network model (G-ANM) with a new anisotropy parameter, fanm: The G-ANM is reduced to GNM at fanm ¼ 1; and
ENM at fanm ¼ 0: By analyzing a list of protein crystal structure pairs using G-ANM, we have attained optimal descriptions of
both the isotropic thermal fluctuations and the crystallographically observed conformational changes with a small fanm (fanm #

0.1) and a physically realistic cutoff distance, Rc ; 8 Å. Thus, the G-ANM improves the performance of GNM and ENM while
preserving their simplicity. The properly parameterized G-ANM will enable more accurate and realistic modeling of protein
conformational motions and flexibility.

INTRODUCTION

Understanding protein conformational dynamics holds the

key to decrypting protein functions at a microscopic level.

Simplified coarse-grained models (1–4) have been estab-

lished as valid and efficient means to probe protein confor-

mational motions and flexibility beyond the reach of

atomistic molecular simulations (5). Here we focus on two

coarse-grained elastic models: the elastic network model

(ENM) (6–8) and the Gaussian network model (GNM)

(9,10). Both models simplify the atomic interactions in pro-

teins by using elastic interactions between Ca atoms within a

cutoff distance Rc: GNM has been shown to perform better

than ENM in describing the thermal fluctuations of protein

structures measured by the isotropic crystallographic B fac-

tors (11–13). Additionally, the GNM-based calculation of

B-factors is insensitive to Rc in the range 7.3 Å # Rc # 15 Å

(14), but for ENM, a higher Rc value (15 Å # Rc # 24 Å) is

needed for optimal fitting of B-factors (13), which is beyond

the physical range (4.4 Å ; 12.8 Å; see Cieplak and Hoang

(15)) of residue-residue contact interactions. However, the

isotropic GNM cannot predict the directions of protein mo-

tions. Instead, the normal mode analysis (16) of ENM has

been shown to yield a handful of lowest normal modes that

quantitatively capture the conformational changes observed

between different protein crystal structures (8,17–20). There-

fore, GNM and ENM are complementary in describing the

thermal fluctuations and conformational motions in proteins,

but neither is satisfactory by itself.

In this work, we intend to unify GNM and ENM in the

framework of a generalized anisotropic network model

(G-ANM) with a new parameter fanm that defines the extent of

anisotropy between the longitudinal and transverse motions

between pairs of neighboring residues (or Ca atoms). At the

isotropic limit (fanm ¼ 1), the G-ANM is reduced to a GNM;

at the fully anisotropic limit (fanm ¼ 0) the G-ANM is re-

duced to an ENM. Then we explore the intermediate values

of fanm 2 ð0; 1Þ to quantitatively assess the performance of a

G-ANM in describing both the isotropic thermal fluctuations

and the observed conformational changes for a selected list of

18 test cases, each corresponding to a pair of protein structures

from the Protein Data Bank (PDB). The systematic evalua-

tion of this list allows us to understand the fanm-dependence of

the quality of G-ANM. We also consider a range of Rc values

(7 Å # Rc # 20 Å) to explore the Rc-dependence of the

quality of G-ANM.

Our main findings are as follows: by parameterizing

G-ANM at a small fanm (fanm # 0.1) and a relatively short

cutoff distance Rc ¼ 8Å, we are able to achieve optimal de-

scriptions of both the isotropic thermal fluctuations and the

crystallographically observed conformational changes, which

are comparable with the best descriptions of the thermal

fluctuations attained by GNM (for 8 Å # Rc # 12 Å) and the

best descriptions of the observed conformational changes

attained by ENM (for 8 Å # Rc # 12 Å). Therefore, this

study demonstrates an effective way to improve both GNM

and ENM without hurting the simplicity of these coarse-

grained models.

METHODS

Generalized anisotropic network model

Given the Ca atomic coordinates of a protein crystal structure, we define the

G-ANM potential energy as a weighted sum of two harmonic potentials to

describe the pairwise interactions between neighboring Ca atoms:
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EG-ANM ¼
1

2
+

i;j:d
0
ij , Rc

Cijffanmjx~i � x~jj2

1 ð1� fanmÞ½ðx~i � x~jÞ � n~0

ij�
2g; (1)

where 0 # fanm #1 is the anisotropy weight parameter (see below) and i or j is

the index for a Ca atom. d0
ij is the distance between the equilibrium positions

of i and j. x~i (x~j) is the three-dimensional (3D) displacement of i (j). n~0
ij is the

unit vector pointing from the equilibrium position of i to that of j. Cij is the

force constant of the spring between i and j: Cij ¼ 10 C if i and j are bonded,

and Cij ¼ C otherwise. C can be determined by fitting the crystallographic

B-factors (see below). The use of two force constants for the bonded and

nonbonded residue-residue interactions was shown to improve the perfor-

mance of ENM (21) and GNM (12).

The physical basis for the weighted combination adopted in Eq. 1 is as

follows. For a pair of contacting Ca atoms (i, j), x~j � x~i can be partitioned

into the longitudinal (parallel to n~0
ij) and the transverse (perpendicular to n~0

ij)

components (see Fig. 1). In ENM, the stiffness for the latter component (the

curvature of EtðxÞ in Fig. 1) is zero, which leads to a fully isotropic (orien-

tation-independent) interaction between i and j. In GNM, both components

have the same positive stiffness (same curvature for EtðxÞ and ElðyÞ in Fig.

1), so the interaction between i and j is anisotropic (orientation-dependent).

In G-ANM, fanm gives the ratio of stiffness between the transverse dis-

placement and the longitudinal displacement. Since fanm ¼ 0 corresponds to

the isotropic limit, fanm describes the extent of anisotropy in the contact in-

teraction between i and j (thus named an anisotropy weight parameter).

The G-ANM potential energy is reformulated as follows:

EG-ANM ¼
1

2
XTHG-ANMX

¼ 1

2
X

TffanmKGNM5I3 1 ð1� fanmÞHENMgX; (2)

where X ¼ ½ x~0 . . . x~N�1 �T is the 3 N-dimensional displacement vector

(N, number of residues or Ca atoms). HENM ¼ =2EG-ANMjfanm¼0 is the ENM

Hessian matrix. KGNM is the N by N Kirchhoff’s matrix as defined in GNM,

which is constructed as follows (9):

Kij ¼
�CijuðRc � d

0

ijÞ

�+
k 6¼i

Kik

i 6¼ j

i ¼ j
;

8><
>: (3)

where I3 is a 3 3 3 identity matrix, and uðxÞ is the Heaviside function.

At fanm ¼ 0, EG�ANM ¼ ð1=2ÞXTHENMX; and the G-ANM is reduced to

an ENM. Note that the ENM potential is normally expanded in a quadratic

form:

EENM ¼
1

2
+

i;j:d
0
ij , Rc

Cijjdij � d
0

ijj
2

� 1

2
+

i;j:d
0
ij , Rc

Cij½ðx~i � x~jÞ � n~0

ij�
2

(d0
ij is the distance between Ca atom i and j at equilibrium).

At fanm ¼ 1, EG-ANM ¼ ð1=2ÞXTfKGNM5I3gX ¼ ð1=2ÞYTKGNMY;where

Y ¼ ½ jx~0j . . . jx~N�1 j�T; and the G-ANM is reduced to a GNM (22).

Therefore G-ANM unifies GNM and ENM as its two limits.

For the Hessian matrix HG-ANM in Eq. 2, we perform the normal mode

analysis, which yields 3 N-3 nonzero modes and 3 zero modes (corresponding

to 3 translations) for fanm.0; and 3 N-6 nonzero modes and 6 zero modes

(corresponding to 3 translations and 3 rotations) for fanm ¼ 0 (the ENM limit).

Evaluation of G-ANM in describing the
crystallographic B-factors

By summing the nonzero modes of G-ANM, we compute the isotropic

thermal fluctuations Fi to simulate the isotropic crystallographic B-factor Bi

in a crystal structure as follows:

Fi

8p
2 ¼

kBTcrystal

3
+
m

v~
2

m;i

lm

; (4)

where kB is the Boltzmann constant, v~m;i is the 3D component of the

eigenvector of mode m at Ca atom i, lm is the eigenvalue of mode m, and

Tcrystal is the crystallographic temperature. The quality of G-ANM in fitting

the B-factors is assessed by the cross-correlation coefficient CC ¼ ð+
i
ðFi �

ÆFiæÞ � ðBi � ÆBiæÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+

i
ðFi � ÆFiæÞ2 �+i

ðBi � ÆBiæÞ2
q

Þ; where ÆFiæðÆBiæÞ is

the arithmetic average of FiðBiÞ over all Ca atoms.

For each test case, we compute the cross-correlation coefficient (CC)

as a function of fanm and Rc (we only fit the B-factors of the first structure

of the pair of structures in each test case). To remove sample heteroge-

neity, CC is normalized to CCnorm ¼ CC=CCmax; where CCmax ¼
Max0#fanm#1

7#Rc#20

fCCðfanm;RcÞg: Then the average (CCAVG
norm ) and standard devi-

ation (CCSD
norm) are computed for CCnorm among a selected list of 18 test cases

(Table 1). A high quality of G-ANM in fitting B-factors is reflected by a high

(low) value of CCAVG
norm (CCSD

norm).

Evaluation of G-ANM in describing the observed
conformational changes

The quality of G-ANM in describing the observed conformational changes is

assessed by the cumulative overlap (CO) for the lowest 15 modes: CO ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+15

m¼1
I2
m

q
; where Im ¼ ð+i

v~m;i � x~obs;i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+

i
jx~obs;ij2

q
Þ; v~m;i is the 3D com-

ponent of the eigenvector of mode m at Ca atom i, and x~obs;i is the observed

structural displacement at Ca atom i. We perform a similar normalization for

CO and then compute the average (COAVG
norm) and standard deviation (COSD

norm)

of COnorm for the 18 selected test cases (Table 1). A high quality of G-ANM

in describing the observed conformational changes is embodied by a high

(low) value of COAVG
norm (COSD

norm).

Comparison between the lowest modes of
G-ANM and ENM

We compute the cumulative similarity score between the lowest 15 modes of

the G-ANM and that of the ENM: SIM ¼ ð1=15Þ+15

m2¼1
+15

m1¼1
Iðm1;m2Þ2;

FIGURE 1 Physical basis of G-ANM potential function (see Eq. 1). The

relative displacement between Ca atom j and i (x~j � x~i) is partitioned into

longitudinal and transverse components that have different stiffness (see

Methods for details).
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where Iðm1;m2Þ ¼ +
i
v~G-ANM

m1 ;i
� v~ENM

m2 ;i
; and v~G-ANM

m1 ;i
(v~ENM

m2 ;i
) is the 3D compo-

nent of the eigenvector of mode m1 (m2) of the G-ANM (ENM) at Ca atom i.
If the two sets of modes span the same subspace, SIM ¼ 1; otherwise 0 #

SIM , 1. We note that as fanm/0; SIM/0:8 instead of 1 because the lowest

3 nonzero modes of the G-ANM converge to the 3 rotational zero modes of

the ENM. We compute the average (SIMAVG) and standard deviation

(SIMSD) of SIM for the 18 selected test cases as a function of fanm and Rc:

RESULTS

We quantitatively assess the performance of G-ANM in de-

scribing both the isotropic thermal fluctuations and the ob-

served conformational changes for a selected list of 18 test

cases, each consisting of a pair of protein structures from the

PDB. The list (Table 1) is compiled from an early work on

ENM (17) and our recent work (23,24). We only include the

crystal structures that do not have extensive interface be-

tween individual structural units.

Evaluation of G-ANM in describing the
crystallographic B-factors

The quality of G-ANM in fitting the crystallographic B-factors

is assessed by the CC between theoretical and experimental

B-factors (see Methods). We analyze the average (CCAVG
norm)

and standard deviation (CCSD
norm) of ‘‘normalized’’ CC over a

list of selected test cases (see Methods and Table 1).

CCAVG
norm and CCSD

norm as a function of fanm and Rc are shown

in Fig. 2, a and b. The fanm-dependence of CCnorm at fixed Rc

is as follows: for Rc ¼ 7 Å (8 Å), CCAVG
norm peaks at fanm ¼

0:01ð0:1Þ: For Rc $ 10 Å, the peak shifts to fanm ¼ 1 and its

height decreases as Rc increases. For 8 Å # Rc # 20 Å,

CCSD
norm rapidly decreases as fanm increases in 0 , fanm , 0.1,

and it becomes flat or slightly increases as fanm increases in

0.1 # fanm # 1. The observation that CCAVG
norm and CCSD

norm vary

substantially in 0 , fanm # 0.1 but change little in 0.1 # fanm

,1 suggests that the introduction of small isotropic interac-

tions (the first term of Eq .1) significantly improves the

quality of G-ANM in fitting the B-factors to a level compa-

rable with GNM. This improvement is much more pro-

nounced for Rc ¼ 7 Å or 8 Å than for Rc $ 10 Å: for Rc ¼ 8 Å,

CCAVG
norm increases significantly from 0.64 at fanm ¼ 0 to 0.94 at

fanm ¼ 0:1; and CCSD
norm decreases sharply from 0.22 at fanm ¼

0 to ,0.05 at fanm ¼ 0.1.

Then we examine the Rc-dependence of CCnorm at fixed

fanm: for fanm ¼ 0 (the ENM limit), CCAVG
norm (CCSD

norm) is max-

imal (minimal) at Rc ¼ 20 Å and minimal (maximal) at Rc ¼
7 Å, suggesting that the optimized fitting of the B-factors by

ENM requires high Rc (beyond the physical interaction range:

4.4 Å ; 12.8 Å, see Cieplak and Hoang (15)). However, the

above Rc-dependence is changed for 10�4 , fanm , 0.1: the

maximum (minimum) of CCAVG
norm (CCSD

norm) is moved to Rc ¼
7 Å or 8 Å, which is now within the physical interaction range.

When fanm and Rc are both variable, the optimal fitting of

the B-factors by GNM is attained at a physically realistic

Rc ;8 Å and a small fanm ; 0.1, instead of the ENM limit or

the GNM limit.

Evaluation of G-ANM in describing the observed
conformational changes

The quality of G-ANM in describing the crystallographically

observed conformational changes is assessed by the cumu-

lative overlap (CO) between the 15 lowest modes and the

observed changes (see Methods). We analyze the average

(COAVG
norm) and standard deviation (COSD

norm) of ‘‘normalized’’

CO over a list of selected test cases (see Methods and Table 1).

COAVG
norm and COSD

norm as a function of fanm and Rc are shown

in Fig. 2, c and d. The fanm-dependence of COnorm at fixed Rc

is as follows: for Rc ¼7 Å (8 Å), COAVG
norm is maximal at fanm ¼

0.001 (0.003); for Rc $ 12 Å, the maximum shifts toward

higher fanm and its height decreases gradually as Rc increases.

Similarly, for Rc ¼ 7 Å (8 Å), COSD
norm is minimal at fanm ¼

0.001 (0.003); for Rc $ 12 Å, the minimum shifts toward

higher fanm and its value increases gradually as Rc increases.

Notably, with the exception of Rc ¼ 7 Å, COAVG
norm and COSD

norm

change little in 0 , fanm , 0.01, but vary substantially in

0.01 , fanm # 1. Therefore, small isotropic interactions (the

first term of Eq .1) do not significantly degrade the quality of

G-ANM in describing the observed protein conformational

changes when compared with the ENM. Instead, for Rc ¼ 7 Å

and 8 Å, an improvement in such quality is found.

Next we study the Rc-dependence of COnorm at fixed fanm:

for fanm ¼ 0 (the ENM limit), COAVG
norm (COSD

norm) is maximal

(minimal) at Rc ¼ 8 Å and minimal (maximal) at Rc ¼ 20 Å,

TABLE 1 List of 22 pairs of protein structures from PDB

Protein No. of residues

PDB codes

and chains

Adenylate kinase 218 1aky, 2ak3A

Alcohol dehydrogenase 373 8adh, 6adhA

Annexin V 317 1avr, 1avhA

Calmodulin 144 1cll, 1ctr
Che Y protein 128 3chy, 1chn

Enolase 436 3enl, 7enl
HIV-1 protease 99 1hhp, 1ajxA
Lactoferrin 691 1lfh, 1lfg

LAO binding protein 238 2lao, 1lst

Maltodextrin binding protein 370 1omp, 1anf

Thymidylate synthase 264 3tms, 2tscA

Triglyceride lipase 265 3tgl, 4tgl

Tyrosine phosphatase 278 1yptA, 1lyts

Guanylate kinase 186 1ex7A, 1ex6A
Serum transferrin 328 1bp5A, 1a8e

Ras p21 protein catalytic domain 169 4q21, 5p21

Transducin-a 314 1tag, 1tndA

5-Enol-pyruvyl-3-phosphate synthase 427 1eps, 1g6sA

Oligo-peptide binding protein 517 1rkm, 2rkmA

RNA helicase 435 8ohm, 1cu1A

Myosin 730 1vom, 1mma

Rb69 DNA polymerase 897 1ih7A, 1ig9

Four pairs eliminated from the analysis are in bold (the selection removes

those low-quality test cases if CCmax , 0.5 or COmax , 0.5). The re-

maining 18 pairs are used for the evaluation of G-ANM.
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suggesting that the optimized description of the observed

conformational changes by ENM requires a relatively small

Rc (contrary to the fitting of B-factors). With the exception of

Rc ¼ 7 Å, the above Rc-dependence is essentially maintained

in 0 , fanm # 0.01, and the maximum (minimum) of COAVG
norm

(COSD
norm) remains at Rc ¼ 8 Å.

When both fanm and Rc are variable, the optimal description

of the observed protein conformational changes is achieved

at a physically realistic Rc ¼ 8 Å and a small fanm ; 0.003,

which is slightly better than at the ENM limit.

Comparison between the lowest modes of
G-ANM and ENM

To further understand the fanm-dependence of the quality of

G-ANM in describing the observed conformational changes,

we will evaluate how much the lowest modes of the G-ANM

differ from that of the ENM as fanm varies using a cumulative

similarity score SIM (see Methods).

The fanm-dependence of SIMAVG at fixed Rc resembles that

of COAVG
norm (Fig. 2 e): for Rc ¼ 7 Å and 8 Å, SIMAVG is peaked

at fanm ¼ 0.001; for Rc $ 10 Å, the peak disappears and the

curve’s right-side edge shifts toward higher fanm as Rc incre-

ases. For fixedfanm; SIMAVG (SIMSD) is lower (higher) at Rc ¼
7 Å or 8 Å than at Rc $ 10 Å. Thus, for fanm , 0.01, the lowest

modes of the G-ANM differ significantly from that of the

ENM only if Rc is relatively small (Rc # 8 Å). Such difference

is mainly due to the occurrence of extra zero modes in ENM

for Rc # 8 Å (in addition to the 6 translational and rotational

zero modes), which overestimate the mobility of the sparsely

connected regions in ENM (such as a surface loop). The

addition of the isotropic interaction energy (the first term of

Eq. 1) in the G-ANM eliminates these additional zero modes

in all the 22 test cases, thus removing a major source of errors

in ENM.

DISCUSSIONS AND CONCLUSIONS

This work is, to our knowledge, the first attempt to unify GNM

and ENM for the simultaneous modeling of both the thermal

fluctuations and conformational motions in protein structures,

despite recent efforts for model improvement within the

framework of either GNM (12) or ENM (25). Our optimal

solution is a generalized anisotropic network model parame-

terized with a physically realistic cutoff distance Rc¼ 8 Å and

a small anisotropy parameter fanm # 0.1. The optimal values

of fanm for describing thermal fluctuations and conformational

motions are both small, although they are numerically dif-

ferent: the former (;0.1) is higher than the latter (;0.003).

The contradicting parameter optimizations in ENM (the

B-factors’ fitting demands high Rc whereas the description of

observed conformational changes requires low Rc) are re-

solved in G-ANM: the optimal descriptions of both quantities

are achieved at Rc ; 8 Å.

The use of a relatively small Rc is more advantageous

because:

1. It agrees with the physical range of residue-residue con-

tact interactions (including van der Waals and screened

electrostatic interactions).

FIGURE 2 Average (a) and standard deviation (b) of the normalized cross-correlation coefficient between the experimental and theoretical B-factors.

Average (c) and standard deviation (d ) of the normalized cumulative overlap for the lowest 15 modes. Average (e) and standard deviation (f ) of the cumulative

similarity in the lowest 15 modes between the ENM and the G-ANM.
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2. It enables more realistic modeling of medium-range

(8–20 Å) interactions and couplings, which are crucial

in allostery but obscured by large Rc:
3. Smaller Rc also leads to lower computational cost in the

normal mode analysis of ENM (or GNM), because the

Hessian (or Kirchhoff) matrix is more sparse (note that

the Hessian matrix of G-ANM is as sparse as that of ENM;

thus the computational cost of the G-ANM is similar to that

of ENM).

Due to the anisotropic geometry of amino acid side chains,

the physical interactions between two contacting residues are

intrinsically anisotropic: they depend on both the distance and

the orientation between the two residues. The orientation-

dependence, which is absent in the ENM potential, is incor-

porated in the G-ANM by introducing a new parameter fanm .

0 that defines the extent of anisotropy between the longitu-

dinal and transverse motions between pairs of contacting

residues. Our result, in favor of a small fanm; suggests that the

transverse motions are far less restrained energetically than the

longitudinal motions, which may be explained by the high

flexibility of side chains that facilitates easy accommodation

to transverse motions between residues. This finding also

validates the ENM as the zero order approximation to the

G-ANM.

In our future studies, through proper parameterization of

G-ANM (fitting the thermal fluctuations and/or the observed

conformational changes with fanm and Rc), we will strive to

probe several key aspects of conformational dynamics in

proteins such as the allosteric couplings (21,26) and the ligand-

binding induced conformational motions (27). It will be in-

teresting to assess the performance G-ANM in describing the

anisotropic displacement parameters from crystallography

(28) or structural fluctuations from NMR data (29). Compar-

ison with other efforts to improve GNM (for example, see

Song and Jernigan (30) and Erman (31)) also will be useful.
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