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ABSTRACT The elastic properties (stretching and bending moduli) of myosin are expected to play an important role in its
function. Of particular interest is the extended a-helical coiled-coil portion of the molecule. Since there is no high resolution
structure for the entire coiled-coil, a study is made of the scallop myosin II S2 subdomain for which an x-ray structure is available
(Protein Data Bank 1nkn). We estimate the stretching and bending moduli of the S2 subdomain with an atomic level model by
use of molecular simulations. Results were obtained from nonequilibrium molecular dynamics simulations in the presence of an
external force, from the fluctuations in equilibrium molecular dynamics simulations and from normal modes. In addition, a poly-
Ala (78 amino acid residues) a-helix model was examined to test the methodology and because of its interest as part of the
lever arm. As expected, both the a-helix and coiled-coil S2 subdomain are very stiff for stretching along the main axis, with the
stretching stiffness constant in the range 60–80 pN/nm (scaled to the 60 nm long S2). Both molecules are much more flexible
for bending with a lateral stiffness of ;0.010pN/nm for the S2 and 0.0055pN/nm for the a-helix (scaled to 60 nm). These results
are expected to be useful in estimating cross-bridge elasticity, which is required for understanding the strain-dependent
transitions in the actomyosin cycle and for the development of three-dimensional models of muscle contraction.

INTRODUCTION

The primary proteins involved in the process of muscle

contraction are myosin II (1) and actin, although other pro-

teins, such as tropomyosin and troponin, also play important

roles in regulation of muscle contraction. Myosin II consists

of two heavy polypeptide chains and two pairs of light chains

(two essential (ELC) and two regulatory (RLC) light chains).

By proteolytic cleavage (with enzymes such as trypsin or

papain), myosin II can be divided into several subfragments;

they are the S1 subfragment (the motor domain of myosin II

with the ATP and actin binding sites), the S2 subfragment

(the N-terminal portion of the myosin tail, which has an

a-helical coiled-coil structure), and light meromyosin (LMM)

(the myosin tail beyond the S2 subfragment). Heavy mero-

myosin (HMM) is a common name for two head domains

(S1) connected by their subfragment-2 (S2) regions and two

pairs of light chains, ELC and RLC. A schematic represen-

tation of myosin II and its subfragments is given in Fig. 1.

Actin filaments (F-actin) are polymers of monomer units

called G-actin. Two parallel strings of actin monomers twist

around each other, forming microfilaments, while groups of

microfilaments form the so-called thin filament. The sarco-

mere lattice is an assembly of myosin (thick) filaments and

actin (thin) filaments, as shown in Fig. 2. The filaments can

slide relative to each other and they are interconnected by

cross-bridges (2–6), formed by the S1 and S2 subfragments.

The actomyosin cycle, which involves the cyclic binding and

unbinding of myosin to actin, provides the driving force for

muscle contraction. It is regulated by the binding and hy-

drolysis of ATP and the resulting conformational changes of

myosin, which lead to the force-generating transition or

‘‘power stroke’’. A crucial aspect of the interaction of myosin

with actin concerns the way in which mechanical forces af-

fect its chemistry and vice versa. This part of the cycle is not

well understood, in part because x-ray structures are not

available. It has been suggested that the rates of some key

transitions (myosin binding to actin, power stoke, ADP re-

lease, and myosin detachment from actin) depend on the

force acting upon a cross-bridge.

Significant progress has been made in understanding the

structural, biochemical, kinetic, and mechanical aspects of

muscle contraction. An outline mechanism of the actomyosin

cycle was given by Lymn and Taylor (7) before knowledge of

any high resolution structures. Since 1993, a number of x-ray

and cryoelectron microscopy states have been reported (8–11)

and used for making specific models for the elements of the

Lymn-Taylor cycle.

These biochemical and structural findings, taken together

with the cross-bridge forces, the sliding distance generated in

each enzymatic cycle of the actomyosin ATPase, and the

duration of cross-bridge attachment measured in motility

assays, set the stage for development of sliding-filament

models of muscle contraction. The coupling between the
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biochemical cycle and sarcomere mechanics is complicated

by the strain dependence of the actomyosin cycle (12). The

cross-bridge stiffness (determined by the stretching stiffness

of S2, the lateral stiffness (bending) of the lever arm, and the

elasticity of the unstructured segment between lever arm

and the S2 subdomain) are the key elements in the strain-

dependent transition rates. Estimates of the total cross-bridge

stiffness from motility assays and intact fibers span a range

from 0.5 to 5 pN/nm (13–17). This has made it difficult to

develop a precise model for the behavior of a muscle fiber.

For many years, sliding filament models assumed that

actin and myosin filaments were rigid and that cross-bridge

compliance resided entirely in the S2 myosin subfragment.

Even in this simplified model, mechanical measurements of

muscle stiffness were insufficient to precisely separate cross-

bridge stiffness from the number of attached cross-bridges. It

has been established that both actin and myosin filaments

exhibit extensibilities comparable to or larger than the cross-

bridge itself (18,19). Goldman and A. F. Huxley (20) have

pointed out that this new evidence invites reexamination of

the theory of muscle contraction at the most basic level. In a

model study, one of the authors (21) has shown, for example,

that when filaments are extensible, small rapid length

changes of the sarcomere are not experienced simultaneously

or to the same extent by all attached bridges. The distortion

effect imposed by the extensibility of thin and thick filaments

further complicates the comparison between in vitro mea-

surements and measurements in intact fibers. For example,

the estimate of cross-bridge stiffness of ;0.7 pN/nm derived

from early tension recovery measurement (22,15–17) may

actually be three times greater if filament extensibility is

taken into account (21,23). Considering these uncertainties, it

is clear that independent estimates of the cross-bridge stiff-

ness from a study of its parts and their complexes are needed

to determine the contributions to the overall cross-bridge

compliance of S2, the lever arm (24), the unstructured seg-

ment between the lever arm and the S2 subdomain (the so

called ‘‘neck region’’), the myosin motor domain, and the

actin-myosin connection.

The major focus of this study is on the elastic properties of

the S2 subdomain and to a lesser degree on the elasticity of an

a-helix, which is an essential part of the lever arm of the S1

subdomain. The elasticity of both S2 and the lever arm

contributes to the overall elasticity of a cross-bridge in two

ways. It contributes to the compliance of the cross-bridge,

and more importantly to lateral flexibility of a cross-bridge

necessary for effective binding of myosin heads to actin sites

in the three-dimensional sarcomere lattice. The S2 domain has

an a-helical coiled-coil structure (25–27). Coiled-coil struc-

tural motifs are diverse; most commonly they are composed

of two intertwined a-helices. Ideally, each of the a-helices

has a heptad repeated sequence (a-b-c-d-e-f-g), where a and d

are usually nonpolar amino acids, which stabilize the coiled-

coil structure through strong ‘‘knob into hole’’ nonpolar in-

teractions (25–27). The lever arm consists of a single a-helix

associated with two regulatory and essential light chains (28).

Here we consider the elasticity of an a-helix, composed of 78

Ala residues, as an estimate of the lower bound of the lever

arm elasticity.

Another possibility is that the stability of S2 may play a

role in the actomyosin cycle. One group of experimental

studies (29,30) supports the idea that the unwinding, as well

as bending, of the S2 subfragment is needed for the proper

mechanical and regulatory function of myosin II. Another

group of studies (31,32) concludes that S2 is stable and that,

at least beyond the first heptad, uncoiling is not necessary for

its proper function. Knowledge of the elastic properties of the

S2 subfragment should aid in resolving this conflict.

This article is organized as follows: The following section

describes the general methods used for the calculations, the

systems studied, and the computational details of the simu-

lations. Then we give the results for the stretching and bending

moduli of the S2 subfragment and the a-helix. This is followed

by a Concluding Discussion section.

METHODS

Theory

The main goal of this study is to obtain the stretching and bending elastic

properties of an a-helix and the myosin II S2 subdomain. For detailed def-

initions and descriptions of the theory of elasticity of homogeneous material,

the reader is referred to classic texts (33,34). Only the key equations of the

elasticity theory relevant for our study are presented.

FIGURE 1 Schematic representation of the myosin II protein and its

subfragments (adapted from http://www.mrothery.co.uk/images/Imag108.gif).

FIGURE 2 Schematic representation of the sarcomere lattice (adapted from

http://www.cytoskeleton.com/products/actinbind/images/myosindrawing.jpg).
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According to Hooke’s law, the strain (the change of unit length) is pro-

portional to the stress (force per unit surface area) and the ratio of the two is,

therefore, a constant that is commonly called Young’s modulus. By defini-

tion, Young’s (stretching) modulus, EII, relates the tensile stress, the force per

unit cross-sectional area of the material, and the strain, the increase in length

due to the stretching of a standard rod divided by the rod original length:

FII

A
¼ EII

DL

L
; (1)

where FII is force (along the rod axis), A is the cross-section area, L is length,

and DL is change in the length (i.e., the elongation or displacement of the rod

end).

In addition to Young’s modulus, the stiffness or spring constant (kII) is

commonly used to express the stretching elasticity of the material. The

stiffness (kII), is defined as the proportionality constant between the force (F)

and displacement (DL):

FII ¼ kIIDL: (2)

Combining Eqs. 1 and 2, one gets the relationship between kII and EII:

kII ¼
AEII

L
: (3)

Analog expressions can be derived for the bending of a cantilevered rod

(beam). First, the relation between the bending force and the cantilever

deflection is:

F? ¼ 3IE?
Dy

L
3 ; (4)

where F? is perpendicular (bending) force, E? is Young’s modulus es-

timated from bending, I is the cross-sectional moment of inertia estimated

from the circular cross-section area of a-helix of 0.95 nm2, or from cross-

section area of coiled-coil (35) of 1.9 nm2 and double helix geometry as

described in Table 1, and Dy is the displacement (deflection) of the beam free

end in the direction perpendicular to the beam axis. Because of possible

uncertainties associated with calculation of I, we first determine the flexural

rigidity E?I and then estimate E?; which can be compared to EII obtained

from stretching.

Next, in analogy with Eqs. 2 and 3, the lateral stiffness (k?) is defined as

proportionality constant between force, F? and lateral displacement, Dy, is

defined as follows:

k? ¼
F?
Dy
¼ 3IE?

L
3 : (5)

The above expressions are only valid for small displacements and small

deflections. For the bending, it is also assumed that the beam is long in

comparison with the cross-section dimension.

There are several methods that can be used to obtain Young’s modulus, or

equivalently, the stiffness from known atomic structure. It is important to

compare different approaches to obtain a measure of sensitivity of the esti-

mated parameters to the approximations inherent in each of the methods.

Normal mode analysis

The first step in a normal mode (NM) analysis is to obtain and classify normal

modes according to the type of motion they represent, e.g., stretching,

bending, and torsion. Ideally the types are well resolved and there is no

mixing between them. Once the normal mode vectors and the corresponding

frequencies are obtained, they can be used to calculate the elastic properties,

in particular, to assess Young’s modulus from stretching (EII) and from

bending the flexural rigidity (E?I) and then assess E?: To connect NMs and

their frequencies with the mechanical coefficients of an ideal rod, vibrational

analysis of an isotropic, homogeneous rod was used. Details of the derivation

of the formulas connecting E? and the bending frequency can be found in

various studies of bending (e.g., DNA (36) and b-sheet (37,38, and refer-

ences therein)). The equation that connects the angular frequency (bending

mode) and the flexural rigidity E?I (Nm2) is

E?I ¼ v
2

bnM=ðp
4

nLÞ; (6)

where vbn (s�1) is the angular bending frequency of mode n, M is the total

mass (kg), L is the length of the rod (m), and pnL¼ 4.730, 7.853, 10.996, . . .

(for n ¼ 1, 2, 3 . . .) (35).

The frequencies of accordion-like vibrations can be related to Young’s

modulus (39–41), EII. The stretching vibrational frequency, vst; is connected

to the EII through the following equation:

vst ¼
1

c

� �
1

2L

� �
EII

r

� �1
2

; (7)

where vst (m�1) is the stretching frequency of a given mode, c (m/s) is the

speed of light, and r (kg/m3) is the density. Young’s modulus and stiffness are

converted from the International System of Units (SI) (N/m2 and N/m) into

more convenient units of pN/nm2 and pN/nm, respectively.

Forced molecular dynamics simulations

The direct connection between the stiffness constants and the results of ap-

plying a force comes from the basic equations of the theory of elasticity for an

elastic rod: Eqs. 1 and 2 for stretching, and 5 for bending. For these simple

relations to hold, the deformation has to be small, so that linearity is pre-

served. Stiffness constants are obtained as the slope of the curves repre-

senting the external force as a function of change in length (or deflection)

with respect to a reference value; the linearity of this curve determines

whether this is in the small deformation regime or not.

Equilibrium molecular dynamics

Nonequilibrium dynamic simulations (see above) introduce an unphysical

timescale by inducing dynamic changes in the system much faster than they

would happen in an experimental setting. It is not clear how much this will

affect the elastic properties, but it is important to compare the values obtained

from equilibrium molecular dynamics (MD) simulations, in which only

‘‘naturally’’ occurring fluctuations are considered. It is possible to show that

Young’s modulus can be related to the equilibrium fluctuations. The re-

sulting equations are

EII ¼
L

A

� �
kT

ÆðDxÞ2æ

� �
(8a)

E?I ¼ L
3

3

� �
kT

ÆðDyÞ2æ

� �
; (8b)

where k (J/K) is the Boltzmann constant, T is temperature (K), and ÆðDxÞ2æ
(m2) and ÆðDyÞ2æ (m2) are the mean-squared axial (stretching) and lateral

(bending) equilibrium fluctuations, respectively.

Combining Eqs. 8a and 3, with Dx ¼ DL ¼ (Lt � Lave), where Lave is the

time average over dynamic trajectory of the defined length and Lt is the in-

stantaneous value over the time, the axial stiffness is given:

kII ¼
kT

ÆðDLÞ2æ
: (9)

Computational methods

The S2 coiled-coil subdomain (terminal segment of the scallop myosin II,

Protein Data Bank (PDB) code name 1NKN, ;10 nm long) (42) of myosin II

was used for this study. This was the only existing crystal structure for even
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part of the myosin II S2 domain, which is 60 nm in length, when this article

was completed. Since then, a crystal structure for the human b-myosin S2

fragment appeared (PDB code name 2FXM) (43); this structure is not con-

sidered here. For the simulation, only two chains (A and B) were extracted

from the crystal structure, which consists of a dimer of coiled-coils. The total

number of amino acid residues is 150 in the coiled-coil (75 per chain). The

sequence of the fragment used in the simulations is given in Appendix A. All

calculations presented here were done with the CHARMM program (44).

Both vacuum and implicit solvent calculations were used. To treat the effects

of solvent, the EEF1 (45) implicit solvent model was used with the

CHARMM 19 force field. Nonbonded interaction parameters were set to

EEF1 default values. The distance cutoff in generating the pair list is 10 Å,

the distance at which the switching function reduces the interactions to zero is

9 Å, and the distance at which the smoothing function begins to reduce a

contribution is 7 Å. Besides being very fast, the EEF1 method has analytical

second derivatives, which provides an accurate and rapid way of calculating

the Hessian matrix required for calculating the normal modes.

S2 subdomain

NM analysis. To obtain the NM of the S2 subdomain, the crystal structure

was energy minimized. It is ideal to have true minima (all translational/

rotational modes equal to zero), without at the same time deviating too much

from the crystal structure. A balance between the two requirements was

achieved with an energy gradient of 0.002 kcal/molÅ for the gas phase

system, and 0.00003 kcal/molÅ with EEF1; the calculated translational/ro-

tational frequencies were ,0.06 cm�1 in both cases. The root mean-square

deviations (for the minimized structures) were ;2.6 Å and ;1.3 Å for gas

phase and EEF1, respectively. After minimization, the mass weighted second

derivative of the energy (Hessian) matrix was diagonalized and the lowest

frequency modes (1000 out of a total of 4665) were obtained. The lowest

frequency modes were inspected and classified according to the types of

motion they represent. The frequencies for the first bending and stretching

modes were used to calculate bending (according to Eqs. 6 and 5) and

stretching elasticity (according to Eqs. 3 and 7).

Equilibrium MD. After a short energy minimization of the crystal structure

(1000 Adopted basis Newton-Raphson (ABNR) steps), to eliminate large

forces due to possible atomic overlaps, the system was gradually heated from

0 to 300 K in 10 K increments for 200 ps in the presence of harmonic re-

straints (mass weighted force constant of 5 kcal/molÅ2), which were applied

on all heavy atoms (to prevent thermal uncoiling of the system). The time

step for the MD simulation was 1 fs and coordinates were saved every 100

steps. An equilibration phase of total length 2 ns was calculated during which

the harmonic restraints were gradually reduced to zero. To achieve and test

convergence of the equilibrium MD simulation, canonical ensemble (Nose-

Hoover thermostat) (46,47) simulations were done for 5 and 10 ns.

Nonequilibrium MD. The same setup was used for the MD simulations with

external force. Ten snapshots (at 100 ps intervals) were taken from the

equilibrium MD simulations and used as initial conformations for the forced

MD simulations. During the nonequilibrium MD, the molecule was oriented

along the x axis and the C-terminal end was fixed (as it is in the thick filament

of the myosin II tail). Starting from 10 different initial geometries, non-

equilibrium MD simulations were run for 2 ns using the atomic force mi-

croscopy (48,49) CHARMM constant force module to investigate stretching

properties and the PULL command (imposes externally applied (pulling)

force in a specified direction) to investigate bending properties (constant

force applied in the y direction). The essential element in these methods is an

additional energy term of the form W ¼ F~ � r~; where F~ is the external force

and r~is the pulling direction, added to the molecular mechanics Hamiltonian.

Force is applied on two atoms (stretching) and it is equal in magnitude and

acts in the opposite direction. For more details on the implementation and

theoretical background the reader is referred to Nose (46) and Hoover (47). In

the case of bending, forces defined in the PULL command pull selected

atoms in the specified direction.

To obtain flexural rigidity, lateral stiffness, and elastic modulus (from

bending) of the coiled-coil S2 subdomain, the molecule was oriented along

the x axis, and an external force was applied in the y direction; 2 ns forced

MD simulations were performed for each value of force (2, 4, 5, and 6 pN)

starting from 10 different initial conformations. The C-terminal Ca atoms of

A and B chains were fixed to mimic experimental conditions, such as those

used by Schwaiger et al. (50). Ten atoms close to the N-terminal end of S2

were chosen for an additional averaging of the y direction displacement.

Specifically, the experimental coordinates of Ca and Cb atoms: 852–856

(residue number) were used for this purpose; the residue numbers of the A

chain of the S2 fragment go from 846 to 919 (42). For each of those atoms,

fluctuations were averaged over 10 initial geometries. To scale the result from

each length of the S2 subdomain (L), which is equal to the distance between

the C-terminal (Ca residue 918) and atom (852–856) on the N-terminal), to

the so-called long S2 (60 nm long S2 subdomain) (51), the lateral stiffness

was multiplied by the conversion factor: (L nm/60 nm)3, assuming that the

flexural rigidity (E?I) is uniform along the S2 fragment. Since both the

distances (L) and the fluctuations are almost independent of the type of atom

(Ca versus Cb), results are presented only for the Ca atoms.

To obtain the stretching stiffness, a constant force in the range of 10–40

pN (5 pN steps) was applied. These values of the forces were chosen because

they are expected to be in the elastic regime. This assumption was tested by

graphing the change in length along the main coiled-coil axis as a function of

the applied force. The linearity of this graph supports the assumption that for

small forces, the coiled-coil (S2 fragment) behaves as an elastic rod. The

change in length of the S2 coiled coil for each force is given by

DL ¼ ÆLæ� Lo; (10)

where Lo (nm) is the initial end-to-end distance (defined as 10 different

lengths—the Ca atom of residue 852 (nine amino acids from the N-terminus)

and the Ca atom of residue 910 (nine amino acids from the C-terminus): Ca

854–Ca 908, Ca 856–Ca 906, Ca 858–Ca 904, Ca 860–Ca 902, Ca 862–Ca

900, Ca 855–Ca 912, Ca 855–Ca 911, Ca 855–Ca 910, and Ca 855–Ca 909;

with residue numbers the same as in the original PDB file. ÆLæ refers to the

corresponding length time averaged over a forced MD simulation.

Choosing 10 different Ls helps to avoid ‘‘end effects’’, such as uncoiling,

and gives better statistics. Axial stiffness was estimated as the slope of the

F ¼ f ðDLÞ graph. Once the slope is obtained for each value of Lo; it was

multiplied by the corresponding length, to get the ‘‘length independent’’

stiffness (so that different sets of results could be compared directly).

a-Helical test system

We have chosen 78-residue long poly-alanin a-helix as a model system,

because a-helices have been studied extensively, both experimentally (39–

41) and theoretically (52). Also it is of interest because the lever arm part is a

long a-helix (;88 Å). The choice of this particular a-helix was based on the

study of Choe and Sun, who examined its elastic properties (52). The cal-

culated flexural rigidity and lateral stiffness could directly be compared with

their results, and served as a test for the S2 stiffness calculations. Only certain

methods that were applied on the S2 fragment were tested on this model

system (as given below).

The poly-Ala a-helix, consisting of 78 amino acid residues, was con-

structed by fixing the dihedral angles to typical a-helix values (f ¼ �57�,

c ¼ �47�). The EEF1 solvation model was used, as for the S2 subdomain,

so that similar assumptions are introduced in the treatment of both systems.

Nonbonded interaction cutoffs were set to the default values for the EEF1

model (given above).

NM and quasiharmonic NM analysis. Once a minimized structure for the

poly-Ala helix was obtained, all atom diagonalization of the Hessian matrix

was performed and NM vectors and frequencies were obtained. Since NM

frequencies are approximate, in the sense that anharmonic effects are not

taken in account, it was desirable to check their values against some more

accurate method. We have chosen to compare the NM analysis (NMA)

results with quasiharmonic values (from converged, 30 ns, constant tem-

perature, equilibrium MD simulations described below). Quasiharmonic

frequencies of the normal modes were obtained from the equilibrium MD

3782 Adamovic et al.

Biophysical Journal 94(10) 3779–3789



simulation to be compared to NMA, which was performed on the minimized

poly-Ala a-helix (generalized root-mean square ¼ 0.0001 kcal/molÅ). The

1000 lowest frequency normal modes were obtained and compared.

Equilibrium MD. The poly-Ala helix was minimized for 1000 steepest de-

scent steps, followed by 1000 ABNR steps. The heating phase was run for

200 ps, using a 1 fs time step with the same harmonic constraint as in the S2

case. During the equilibration phase, the harmonic constraints were gradually

reduced to zero, with the exception of terminal Ca atoms. Atoms on the

C- and N-termini were restrained by use of geometrical (internal) restraints

on the last three O-N pairs, for example: distance O(1)–N(5) (1 and 5 are

residue numbers) was kept to ;3 Å, to keep proper helical geometry and to

keep from spontaneous uncoiling during the simulations. Equilibrium MD

simulations were performed for 30 ns and 60 ns to check the convergence

of the simulations.

RESULTS

The lateral and stretching stiffness for the a-helical model

system and the S2 subdomain are reported. Both the bending

and stretching values are determined by nonequilibrium,

equilibrium, and normal mode analysis. The structural pa-

rameters used for the a-helix and S2 coiled coil are given in

Table 1.

Model system results

Normal mode analysis and equilibrium MD were used for the

a-helix.

NM analysis—lateral stiffness (bending)

The normal modes of poly-Ala a-helix are well resolved, so

that certain normal modes (and their frequencies) of the helix

could be easily associated with the particular type of motion.

The first two NMs with the nonzero frequencies, which

correspond to bending in lateral directions, are almost de-

generated with a frequency of ;0.8cm�1 (these modes are

shown as a movie file in the Supplementary Material (see

Movie S1 and Figs. S2 and S3 in Supplementary Material,

Data S1). Using this bending frequency and Eqs. 5 and 6, the

lateral stiffness for the 10 nm long the poly-Ala a-helix is

;1.2 pN/nm. This result is in excellent agreement with the

study of Choe and Sun (52); their estimate from the calcu-

lated persistence length (;100 nm) is ;1.23 pN/nm.

Fig. 3 shows the overall root mean-square fluctuation

(RMSF) for the Ca atoms calculated from NM, quasi-

harmonic, and MD simulations at 300 K; the quasiharmonic

modes were obtained from the latter. In Fig. 3, a fourth-order

polynomial fit to the MD RMSF is shown. Detailed results

are presented in Fig. S1 (Data S1); the values for the indi-

vidual Ca atoms fluctuate with the helical periodicity. The

quasiharmonic approximation results are essentially identical

to those of full MD simulations and the NMA follows the

general behavior shown in Fig. S1 (Data S1), but with overall

larger fluctuations. Since the MD simulation is expected to be

the most reliable, the vibrational analysis based on the qua-

siharmonics approximation should be also. In Table S1 (Data

S1), the overlap matrix for the first 25 normal mode vectors

from NMA and quasiharmonic analysis is given. Many of the

lowest modes are similar (large overlap), or interchanged in

frequency, or involve mixing of two modes; the higher modes

are more mixed. Fig. 4 compares the vibrational frequencies

obtained from two models. The values of the NM are in ex-

cellent agreement with the quasiharmonic frequencies for

the lowest bending modes (0.70 cm�1 vs. 0.80 cm�1 and

0.81 cm�1 vs. 0.80 cm�1). These results suggest that the

FIGURE 3 Magnitude of the RMSF for Ca atoms of the 78-residue poly-

Ala a-helix from NM and fourth-order polynomial fit of the RMSF obtained

from the MD simulations. Quasiharmonic and MD curves are essentially

identical (see also Fig. S1).

FIGURE 4 Frequencies from NM and quasiharmonic analysis.

TABLE 1 Summary of the S2 and a-helix parameters

A (nm2) L (nm) M (10�27 kg) I (nm4)

S2 subdomain 1.90 9.48 29802.87 0.32

a-Helix 0.95 10.00 9236.23 0.07

A is cross-section area, L is length, and I is the cross-sectional moment of

inertia Isingle helix ¼ ðpr4Þ=ð4Þ; where r is helix radius, whereas Idouble helix ¼ffiffiffiffiffiffiffiffi
I1I2

p
; where I1 ¼ 10ðR4pÞ=ð4Þ and I2 ¼ 2ðR4pÞ=ð4Þ: All parameters were

obtained from the model used in the simulations.
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frequency-based (frequencies obtained from NMA) calcu-

lations of the lateral stiffness should be also reasonably

accurate for the S2 construct. However, overall the NM fre-

quencies tend to be higher, as expected, so the slope of the

line in Fig. 4 is 1.39.

Stretching stiffness: NM analysis

Analysis of NM vectors shows that vibrational mode 17 is an

accordion mode, describing stretching motion along the helix

axis (see Movie S2 in Data S1). An analogous mode was also

found in the quasiharmonics analysis (mode 25). The fre-

quencies of the stretching mode are 9.19 cm�1 in NMA and

5.47 cm�1 in the quasiharmonic analysis. These values are

much larger than the first bending frequency, as expected.

The ratio between the quasiharmonic and NM frequencies is

;1.7. The calculated stretching stiffness and Young’s mo-

dulus for a 10 nm long a-helix, obtained from Eq. 7, are kII ¼
2808 pN/nm, EII ¼29.558 3 109 N/m2 from the NMA and

kII ¼ 995 pN=nm;EII ¼ 10:4723109 N=nm2 from the qua-

siharmonic analysis. Scaled to 60 nm long, the a-helix NMA

gives kII ¼ 468pN=nm; whereas the quasiharmonic analysis

gives kII ¼ 166 pN=nm: The values for EII are in good

agreement with those obtained in earlier studies ((41) (23.1 3

109 N/m2)). The difference between harmonic and quasi-

harmonic values suggests that the stretching motion is sig-

nificantly more anharmonic than the bending motion. The

importance of anharmonicity in the fluctuations was ob-

served previously (53) in studies of shorter a-helical systems.

However, the fact that even the quasiharmonic approxima-

tion gives too high a value for the Young’s modulus relative

to the full equilibrium dynamics (see below) indicates that the

stretching energy surface is quite complex.

Stretching stiffness: equilibrium-MD simulation

A 30 ns equilibrium (EQ)-MD simulation with a fixed

C-terminus (the first three Ca atoms) was performed and

Eq. 9 was used to determine the stretching stiffness. Ten

different pairs of atoms were chosen to represent the axial

coordinate. These atom pairs are residues 6 and 72 (6 residues

from the N-and C-termini), 8 and 70 (8 residues from the

N-and C-termini), 10 and 68 (10 residues from the N-and

C-termini), 12 and 66 (12 residues from the N-and C-ter-

mini), 14 and 64 (14 residues from the N-and C-termini), 16

and 62 (16 residues from the N-and C-termini), and combi-

nations 10 and 72, 10 and 70, 10 and 66, and 10 and 64. Even

though these distance fluctuations are not independent be-

cause of the correlated motion of the atoms, the averaging

provides better statistics. To minimize end effects, all of the

chosen pairs were at least 6 residues from the N-and C-termini.

Changes in distance (length) between pair of atoms (L),

time average length (ÆLæ), and apparent stretching modulus

(the stretching constant multiplied by the length, i.e., kII � L;
a distance independent variable so that it can be easily com-

pared) are given in Table 2. Once multiplied by corresponding

distances, the average apparent stretching modulus is ;3850

6 785 pN. For an a-helix that is 60 nm long (in analogy to the

S2 length) the corresponding stiffness (spring constant) value

is kII ; 64 pN/nm. Even for 30 ns, however, there are still

convergence issues: apparent stretching modulus (for the first

10 ns) ;5376 pN, (for the second 10 ns) ;5010 pN, and (for

the third 10ns) ;3158 pN. To further check convergence, a

60 ns EQ-MD simulation with a fixed end (as above) was

performed. The average apparent stretching modulus is

;4024 6 837 pN, slightly larger than the 30 ns value. For an

a-helix, 60 nm long, kII is ;67 pN/nm. Since the 30 ns and

60 ns simulations give almost the same stretching stiffness,

the results appear to be relatively well converged. An analysis

that measures fluctuations of the contour length of the a-helix

gave a result in reasonable agreement (kII ¼ 84 pN=nm; for a

60 nm long a-helix). This additional analysis was done by

dividing the a-helix into parts that are ;10 amino acids long,

following the length of these parts during the MD trajectory

and adding the lengths together to get the total length of the

helix. Its fluctuations are calculated as a standard deviation of

the total length.

When the above values (60–80 pN/nm) are compared to

the stretching stiffness calculated from vibrational analysis

(kNMA ¼ 468 pN=nm and kIQASI ¼ 166 pN=nm), it is seen

that the vibrational methods overestimate stiffness by ;6-fold

(NMA) or ;2-fold (quasiharmonic). The change is large

(three times) when the anharmonicity is taken into account

approximately with the quasiharmonic method, but it still

does not reach MD value. In comparison to the bending

surface, the energy surface involved in stretching seems to be

more complex (53).

S2 subdomain—lateral stiffness (bending)

NM analysis of S2 subdomain

The lowest frequency normal modes of a given system

generally describe the most important conformational fluc-

TABLE 2 Stretching stiffness of 78 residue poly-Ala a-helix

Segment

residue

numbers

Æ(L–Lo)2æ
(Å2)

Length

L (Å)

Apparent

modulus (pN)

6–72 1.29 96.65 3100.3

8–70 1.16 90.85 3248.9

10–68 1.09 85.06 3217.2

12–66 0.90 79.27 3636.9

14–64 0.74 73.49 4086.0

16–62 0.52 67.73 5369.5

10–72 1.14 90.86 3292.2

10–70 0.87 88.04 4171.5

10–66 0.69 82.28 4950.9

10–64 0.96 79.27 3416.6

From 30 ns MD simulations; L is the axial length and Lo is the average

length; see text for details. Stretching stiffness multiplied by length.
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tuations of a molecule (54). In the case of the S2 subdomain,

as for the a-helix, the first normal mode (with frequency

different than zero) clearly corresponds to a bending motion

and can be used to estimate flexural (bending) rigidity ac-

cording to Eq. 6. The frequency of this mode is 0.76 cm�1.

Taking into account the parameters of the system (see Table

1), the estimated lateral stiffness is 3.1pN/nm for 9.48 nm

long construct. This stiffness is of the same order as the lateral

stiffness of the a-helix of similar length ;1.2 pN/nm (L¼ 10

nm). The S2 subdomain is a coiled-coil structure made of two

a-helices, so this system is expected to be stiffer than a single

a-helix. To obtain the lateral stiffness of the 60 nm long S2,

the calculated value for the 9.48 nm long S2 (3.1 pN/nm)

should be scaled by (9.48 nm/60nm)3, according to Eqs. 5

and 6. This yields the lateral stiffness for S2 of k? ¼
0:0122 pN=nm:

Equilibrium MD

The lateral stiffness can be estimated through the equilibrium

fluctuations of a chosen coordinate for a particular set of

atoms (close to the N-terminus, with the C-terminus clamped

in the equilibrium position; see above). Combining Eqs. 8 b

and 5, the lateral stiffness constant is given:

k? ¼
kT

ÆðDyÞ2æ
: (11)

Atomic fluctuations over set of five atoms, close to the

N-terminus (as described in the previous section), were

chosen to represent the bending coordinate. Five 10 ns EQ-

MD simulations, described above, were used to extract time

averages of the y fluctuations in the chosen atomic positions.

Table 3 gives the summary (average over five 10 ns EQ-MD

simulations) of those fluctuations and corresponding lateral

stiffness. For an average S2, L¼ 9.48 nm, the average lateral

stiffness is 2.63 pN/nm, in excellent agreement with a non-

EQ-MD value of 2.2 pN/nm. Scaling up to a 60 nm long S2

gives k? (long S2) ¼ 2.63 3 (9.48/60)3 ¼ 0.0104 pN/nm.

Nonequilibrium MD

Since one end has to be fixed to study the effect of applying

an external force, fixing different numbers of terminal Ca

atoms was studied for 5pN force and the results are sum-

marized in Table 4. As can be seen from the table, fixing 4, 6,

8, or 12 Ca atoms at the C-terminus does not influence the

final result for the lateral stiffness to a large extent. The

minimal number of Ca atoms that could be fixed without

rotation developing on the C-terminal was four, and all the

following calculations were done with four C-terminal Ca

atoms fixed.

Five data sets for the ÆDyæ values as a function of the force

were generated and slopes of those graphs were obtained (see

Fig. 5). The quantity ÆDyæ is a geometrical parameter deter-

mining the flexural rigidity and lateral stiffness, ÆDyæ ¼ Æyæ�
yo; where yo is the value of the y coordinate in equilibrium

(starting geometry from corresponding EQ-MD) and Æyæ is

the time average over a 2 ns MD simulation. The linearity of

the plot is in accord with the S2 coiled-coil behavior as an

elastic rod in this force regime. Each of these slopes is then

multiplied with the corresponding average length of S2 (60

nm), and a ‘‘distance independent’’ (k?) lateral stiffness was

obtained; one example is given in Fig. 5 (for point: Ca residue

No. 152, B chain).

Slopes from five graphs described above for different

lengths, lateral stiffness (slope of the graphs), apparent mo-

dulus (slope times length L), and Young’s modulus (E?)

estimated from the flexural rigidity (E?I) are given in Table

5. The length-independent apparent bending modulus is in-

troduced so that results obtained for different values of L can

be compared directly. As can be seen from the table, these

apparent moduli are very similar and all fluctuate around an

average value of 21.2 pN. For an S2 fragment studied here,

which is 9.48 nm long, the average lateral stiffness is 2.2 pN/

nm. To interpolate to long S2, assumptions are that all vari-

ables from Eq. 5 are the same in the short and long fragment,

except length. The lateral stiffness for long S2 (60 nm) is

;2.2 3 (9.48 nm/60nm)3 ; 0.00866 pN/nm. The lateral

stiffness is much smaller (;104 times) than stretching stiff-

ness (see below) of the S2 subdomain. Young’s modulus, E?;
is estimated using Eq. 5 (taking I ¼ 0.317 nm4) to be ;1967

pN/nm2.

TABLE 3 Bending (lateral) stiffness analysis for S2 from EQ-MD

Atom

studied Æ(Y–Yo)2æ (Å)2

Lateral stiffness

(k?) (pN/mm)

852 CA 181.50 2.4

853 CA 174.88 2.5

854 CA 165.13 2.7

855 CA 160.06 2.8

856 CA 153.40 2.9

852 CB 186.82 2.4

853 CB 179.70 2.5

854 CB 168.80 2.7

855 CB 165.45 2.7

856 CB 157.60 2.8

Averages over five 10 ns EQ-MD with fixed C-terminus; Æ(Y–Yo)2æ are

squared fluctuations in the y direction. For lateral stiffness calculations, see

Eq. 11

TABLE 4 Influence of fixing different numbers of Ca-terminal

atoms on the bending characteristics of the S2 subdomain

No. of fixed residues* DYy (Å) kz
? (pN/mm)

3 Rotation occurs Rotation occurs

4 8.98 5.56

6 12.05 4.15

8 13.66 3.66

12 7.88 6.35

*All atoms in the residues were fixed.
yDY is the displacement (deflection) of the free end in the direction

perpendicular to the S2 axis with the 5 pN force.
zValues were used in Eqs. (4) and (5) to obtain the lateral stiffness k?.
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The results from three applied techniques, described

above, are in very good agreement: the calculated lateral

stiffness k? (nonequilibrium)¼ 0.0086 pN/nm, k? (EQ-MD)¼
0.0104 pN/nm, and k? (NM) ¼ 0.0122 pN/nm.

S2 subdomain—stretching stiffness

NM analysis

The vibrational analysis shows that mode 24 is an accordion

mode, describing the stretching motion along the coiled-coil

axis. The frequency of this mode is 6.92 cm�1. The calcu-

lated stretching stiffness obtained from Eq. 7 is kII ¼
805pN=nm (for a 60 nm long S2 subdomain). Taking the

ratio between the quasiharmonic and NM analysis, obtained

in the a-helix calculations (1.7), one can estimate that the

quasiharmonic frequency for the S2 would be 4.07cm�1 and

the corresponding stiffness constant would be kII ; 280pN/

nm. As for the a-helix, the stiffness calculated from NM (or

estimated from the quasiharmonic modes) analysis is .3

times larger than from the other methods, indicating that

anharmonic contributions are significant (53).

Equilibrium MD

To obtain the axial stiffness from the equilibrium simula-

tions, fluctuations of the distance between two end points

(length) were extracted from 10 ns MD, and using Eq. 9, the

stretching stiffness is calculated.

Table 6 gives a summary of squared, averaged fluctuations

of the length (averaged over five different ‘‘end to end’’

distances) and apparent stretching modulus. The average

value of the apparent stretching modulus is ;3448 pN (av-

erage of the last column from Table 5). This value is averaged

over five, 10 ns EQ-MD simulations, with the C-terminal

fixed (Ca atoms on the C-terminal of both the A and B chain),

starting with four different initial geometries. For 10 ns MD

simulations, the averaged value of the axial stiffness for long

S2 fragment is ;58 pN/nm. This is also in good agreement

with both the experimental estimate (lower bound) ;60 pN/

nm and the non-EQ-MD calculation of ;80 pN/nm.

Nonequilibrium MD

Details of the simulations and the methodology used to ob-

tain stretching stiffness are described in the Computational

Methods (Nonequilibrium MD) section. The average value

(over 10 distances) for the apparent stretching modulus is

;4800 pN. The fluctuation in the axial distance between end

points as a function of the force is given in Fig. 6. Again,

linearity of the graph confirms the assumption that the S2

fragment acts as an elastic rod in this force regime (10–40

pN). For an S2 fragment (L ; 9.48 nm), kII is ;506.3 pN/nm.

The stretching stiffness of long S2 (;60 nm) is ;80 pN/nm.

This value is used to estimate EII; from Eq. 3, and for long S2,

taking that A ¼ 1.9 nm2, EII ; 2526 pN/nm2.

The experimentally estimated stretching stiffness from

coiled-coil persistence length (Lp ¼ 100�200 nm) (35) and

also from overall stiffness of the myosin filament is in the

range between 60 and 80 pN/nm for 60 nm long S2.

CONCLUSIONS

Several different methods (i.e., NM analysis, equilibrium,

and nonequilibrium MD) were used to study the stretching

and bending elasticity of an a-helix and the structurally

characterized S2 subfragment of myosin II. Test calculations

FIGURE 5 Bending stiffness of an S2 from the non-EQ-MD simulations.

The force was applied to the N-terminus perpendicular to the coiled-coil

axes and ÆDYæ is the average lateral displacement obtained in the simulations

(for details see text).

TABLE 5 Apparent bending modulus from non equilibrium

MD simulations (see text)

Point*

Slope*

(pN/Å)

L*

(Å)

Apparent

modulusy (pN)

E�?
(pN/nm2)

CA 152 0.217 96.9 21.1 2057

CA 153 0.216 96.1 20.8 1997

CA 154 0.222 95.1 21.1 1989

CA 155 0.230 92.6 21.3 1902

CA 156 0.237 91.3 21.7 1879

*Point is defined as Ca residue number 152 (153, 154, . . ., 156) on the B

chain used to measure ÆDyæ; the slope of the graph of ÆDyæ (lateral

displacement) as a function of the applied force; L is the length, and E?
is Youngs bending modulus (see text).
yValue of the apparent module is obtained as product of slope and L

(length) values; it represents length independent of stiffness (see text).

TABLE 6 Axial stiffness analysis for S2 from EQ-MD

Residue

numbers*

Æ(L–Lo)2æ
(Å2)

Length

Lo (Å)

Apparent stretching

modulus (pN)

854–908 1.26 79.61 2789.7

856–904 1.00 68.04 3142.6

960–902 0.59 62.03 4759.6

862–900 0.56 56.75 4307.9

Averages over four 10 ns EQ-MD with Ca atoms on the C-terminus of both

the A and B chain fixed; Lo is the equilibrium axial length, Æ(L–Lo)2æ are

squared length fluctuations.

* Residue numbers refer to the number of the residues that were followed in

the simulations to obtain the length fluctuations (see text).
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using the same methodology for a 78-residue poly-Ala

a-helix model showed that results of satisfactory accuracy

could be obtained. This conclusion is based on a comparison

of the results presented here with estimates from experi-

mental studies and other published simulations. Interestingly,

the bending motion appeared to be better described using the

harmonic approximation than the stretching motion. The

energy surface that describes stretching was found to be

significantly anharmonic in a previous study (53).

For the S2 subdomain, which is of primary interest, the

flexural rigidity and lateral stiffness results calculated with

the three methods (non-EQ-MD, EQ-MD, and NM) are in

very good agreement. This finding is particularly important

because for systems like the whole S2 subdomain (60 nm),

the required MD simulations would be very time consuming.

The results indicate that an NM analysis, which provides an

affordable alternative, can be used to estimate the flexural

rigidity and lateral stiffness (I. Adamovic, unpublished).

Very high flexibility (small lateral stiffness ;0.01 pN/nm for

L ¼ 60 nm) shows the importance of incorporating bending

motion in a model of actomyosin in a three-dimensional

sarcomere lattice.

Our results are in very good agreement with previous

experimental studies (55–57) of the elastic properties of

different coiled-coil structures. These studies estimated per-

sistence length of various coiled-coil (tropomyosin, myosin

tick filament, S2 subdomain) to be in the range from 130 to

170 nm, which translates into a lateral stiffness of ;0.008–

0.01 pN/nm, in very good agreement with the calculated

lateral stiffness k? (nonequilibrium) ¼ 0.0086 pN/nm, k?
(equilibrium MD) ¼ 0.0104 pN/nm, and k? (NM) ¼ 0.0122

pN/nm. Based on our study and the comparison with the

experimental studies just cited, it appears that there is a

‘‘generic’’ value of the coiled-coil bending stiffness in the

range from 0.008 to 0.01 pN/nm. Specific value may depend

on the particular amino acid sequence, but this was not in-

vestigated in this report.

When stretching stiffness is determined and the results are

compared with literature values, the main conclusion is that

both the a-helix and S2 coiled-coil are much stiffer in the

axial direction than in the lateral direction. An experimental

study by Hvidt et al. (55) found that the stretching Young’s

modulus is 1.3 109 N/m2, which translates into a stretching

stiffness of kII of 32 pN/nm (for 65nm long S2). This result,

when scaled by (65/60)3 to obtain a value for 60 nm long S2,

is ;41 pN/nm. When compared with other experimental

estimates of 60–80 pN/nm (35), their value appears some-

what too low.

Young’s moduli for stretching (EII ; 2.526 109 N/m2) and

for bending (E? ; 1.967 109 N/m2) have similar values. The

difference between E? and EII reflects the specific geometry

of the cross section of S2 at the molecular level.

A comparison of the bending modulus of the coiled-coil

and a-helix was made in the study by Wolgemuth and Sun

(58). They found that the coiled-coil bending modulus is

lower than twice that of the a-helix. Lateral stiffness con-

stants from our study are k? (nonequilibrium) ¼ 0.0086 pN/

nm, k? (equilibrium MD) ¼ 0.0104 pN/nm, and k? (NM) ¼
0.0122 pN/nm, whereas the a-helix estimate is 0.0056 pN/

nm (NM). Thus, our results also indicate that the stiffness of

S2 is less than or equal to (depending on the method) twice

that of the a-helix.

The cross-bridge stiffness includes the stretching stiffness

of S2, the lateral stiffness of the lever arm, and the elasticity

of the neck region (the unstructured part between the lever

arm and the S2 subdomain). The stretching stiffness of S2 is

much larger than the lateral stiffness of the lever arm and

probably the stiffness of the neck of the myosin head. Thus,

the stretching elasticity of S2 is expected to play a minor

role in cross-bridge stretching. This is fortunate because the

stretching stiffness is more difficult to calculate since the

simple vibrational approximation has been shown not to be

very accurate, e.g., the NM method tends to overestimate

stretching stiffness. By contrast, the lateral stiffness of S2

could be of crucial importance in the binding of myosin to

actin in three-dimensional sarcomere lattice.

An important finding is that S2 and a-helix (model for the

lever arm) have similar elastic properties. Both the stretching

and lateral stiffness of these two elements are the same orders

of magnitude. This indicates that in correct contractile

models, the elasticity both of these elements needs to be taken

in account.

It is expected that the results obtained here will aid in

developing improved models of muscle function.

APPENDIX A

Sequence of the scallop myosin II S2 subdomain in three-letter code:

MET LYS GLU GLN LEU LYS GLN MET ASP LYS MET LYS GLU

ASP LEU ALA LYS THR GLU ARG ILE LYS LYS GLU LEU GLU GLU

GLN ASN VAL THR LEU LEU GLU GLN LYS ASN ASP LEU PHE GLY

SER MET LYS GLN LEU GLU ASP LYS VAL GLU GLU LEU LEU SER

FIGURE 6 Stretching stiffness of S2 from the non-EQ-MD simulations.

The force was applied to the N-terminus along the coiled-coil axes and ÆDlæ
is the average axial displacement obtained in the simulations (for details see

text).
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LYS ASN TYR HIS LEU GLU ASN GLU VAL ALA ARG LEU LYS LYS

LEU VAL GLY GLU ARG GLU GLU GLU MET LYS GLU GLN LEU

LYS GLN MET ASP LYS MET LYS GLU ASP LEU ALA LYS THR GLU

ARG ILE LYS LYS GLU LEU GLU GLU GLN ASN VAL THR LEU LEU

GLU GLN LYS ASN ASP LEU PHE GLY SER MET LYS GLN LEU GLU

ASP LYS VAL GLU GLU LEU LEU SER LYS ASN TYR HIS LEU GLU

ASN GLU VAL ALA ARG LEU LYS LYS LEU VAL GLY GLU
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