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Abstract
Tractography algorithms for diffusion tensor (DT) images consecutively connect directions of
maximal diffusion across neighboring DTs in order to reconstruct the 3-dimensional trajectories of
white matter tracts in vivo in the human brain. The performance of these algorithms, however, is
strongly influenced by the amount of noise in the images and by the presence of degenerate tensors
— i.e., tensors in which the direction of maximal diffusion is poorly defined. We propose a simple
procedure for the classification of tensor morphologies that uses test statistics based on invariant
measures of DTs, such as fractional anisotropy, while accounting for the effects of noise on tensor
estimates. Examining DT images from seven human subjects, we demonstrate that this procedure
validly classifies DTs at each voxel into standard types (nondegenerate DTs, as well as degenerate
oblate, prolate or isotropic DTs), and we provide preliminary estimates for the prevalence and spatial
distribution of degenerate tensors in these brains. We also show that the P values for test statistics
are more sensitive tools for classifying tensor morphologies than are invariant measures of anisotropy
alone.
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1. Introduction
Water molecules in the human brain are known to diffuse preferentially along the dominant
orientation of white matter (WM) fiber tracts [1–3]. Thus, diffusion tensor imaging (DTI),
which tracks the diffusion of water, can be used to map accurately in vivo the structure and
orientation of fiber tracts in the WM of the brain. The directional dependence of diffusion in
each voxel can be characterized by a 3 × 3 matrix, called a diffusion tensor (DT). In a spectral
value decomposition of a DT D, eigenvectors denote the three directions of diffusion, and the
corresponding eigenvalues represent the diffusivity of water in each of these three directions
[1–3]. Many tractography algorithms attempt to reconstruct major fiber tracts within the human
brain by connecting neighboring tensors consecutively along their principal directions (PD) of
diffusion [4–11], i.e., the primary direction in which the water molecules in a given voxel
diffuse. The reliability and validity of these tractography algorithms therefore depend critically
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on whether they can successfully determine the correct PD of diffusion in the presence of the
noise that is inherent to DT images.

The noise in DT images derives ultimately from the noise present in the set of diffusion-
weighted (DW) images from which the DT images are constructed. This noise introduces
variability into the estimation of eigenvalues and eigenvectors of both degenerate and
nondegenerate tensors [12,13]. A DT is degenerate if at least two of its eigenvalues are equal.
The three types of degenerate tensors are isotropic (λ1 = λ2 = λ3 > 0), oblate (λ1 = λ2 > λ3 > 0),
or prolate (λ1 > λ2 = λ3 > 0), where λi(i = 1,2,3) are the three eigenvalues of the tensor. A DT
is thus nondegenerate when all three of its eigenvalues are distinct (i.e., λ1 > λ2 > λ3). While
some DTs are, in truth, degenerate, estimated tensors are always nondegenerate because of the
influence of noise (e.g., bias introduced by sorting estimated eigenvalues by magnitude); thus,
DTs, whose eigenvalues cannot in reality be discriminated, can be misclassified as
nondegenerate [12], yielding erroneous estimates of PDs of diffusion. Fiber tracking based on
these erroneous estimates of PDs will, in turn, produce fiber pathways that are incorrectly
reconstructed, e.g., pathways that do not exist in the brain. Therefore, accounting for the
influence of noise and reducing the likelihood of incorrectly estimating the PDs of diffusion
is of utmost importance in improving the reliability and validity of fiber tracking using DT
images [13–18].

Because invariant measures of anisotropy are relatively robust in the presence of noise, these
measures have been used extensively to classify tensor morphologies in DT images [15,16,
19–21]. For instance, invariant measures of fractional anisotropy (FA) [19], linear shape (CL)
and planar shape (CP) [22] have been used to determine the degree to which a tensor's shape
is classified as isotropic, oblate or prolate, respectively. In practice, invariant measures of a
tensor are often compared against a fixed value, or threshold, to determine whether the tensor
is degenerate [10,23]. However, identifying an appropriate threshold is crucially important for
enhancing the likelihood that a tensor morphology will be correctly classified. A threshold that
is too low will increase the probability of misclassifying as “nondegenerate” a DT that is
actually “degenerate” (Type I error); a threshold that is too high will increase the probability
of misclassifying as degenerate a DT that is actually nondegenerate (Type II error). The
thresholds that are applied to these invariant measures, however, are usually selected arbitrarily
[16].

To classify tensor morphologies, we test sequentially at each voxel of the image three
hypotheses that together determine whether tensors are isotropic, oblate or prolate. We use
invariant measures as test statistics for each of these three hypotheses. Moreover, we select
appropriate thresholds of invariant measures by analytically deriving the limiting distribution
of the invariant measure under the null hypothesis, which, in turn, allows us to estimate the
probability of making a Type I error in the testing of each hypothesis. Finally, we use P values
of the test statistics to improve our classification of tensor morphologies in voxels where the
presence of noise obscures discrimination of differences among eigenvalues. Computer
simulations confirm that our classification scheme appropriately controls the rates of Type I
errors in classifying the morphologies of DTs. Human studies show that P values of the test
statistics increase the sensitivity and accuracy of tensor classification.

2. Theory
2.1. A statistical model for tensor estimation

A DT data set consists of n DW images acquired for each subject. A conventional DTI pulse
sequence provides m baseline images (i.e., images having zero diffusion weighting) and n−m
DW images at each b value. Each image contains N voxels, and thus n DW measurements are
made at each of these N voxels. We use the expression {(Si,ri,bi): i = 1,…,n} to denote the
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entire set of observations at each voxel, where Si represents the nuclear magnetic resonance
(NMR) signal at a voxel, ri = (ri,1,ri,2,ri,3)T represents the direction of the applied diffusion
gradient, the superscript T denotes the transpose and bi is the b factor for each DW image
[24,25].

Thermal noise in the magnitude of an NMR signal conforms to a Rician distribution [26,27].
In the presence of minimal thermal noise, this Rician distribution is well approximated by a
Gaussian distribution [24]. Henceforth, we will focus on a statistical model for nDW
measurements at a given voxel that assumes the Gaussian distribution of noise:

(1)

where εi is a random noise component that has a mean of zero and a standard deviation of σi,
S0 is signal intensity in the absence of any DW gradient and the DT D = (Dk,j) is a 3 × 3 positive
definite matrix such that Dj,k = Dk,j holds for all j,k = 1,2,3. In the field of statistics, Eq. (1) is

termed a linear heteroskedastic model [28,29]. Let  be an estimate of θ =
(logS0,βT)T, where we define β = (D11,D12,D13,D22,D23,D33)T.

2.2. Invariant measures of degenerate tensors
Numerous invariant scalar indices of DTs have been proposed as summary measures of the
intrinsic structural features of fiber tracts at each voxel of the human brain. All of them are
functions of the three eigenvalues of a DT. Three principal invariants, {I1(β), I2(β) and I3(β)},
are related to the following characteristic equation [19,20]:

(2)

where |D−λI3 × 3| denotes the determinant of D−λI3 × 3 and I3 × 3 is a 3 × 3 identity matrix. The
three principal invariants [19,30] are defined as follows:

(3)

Another commonly used invariant of D is  [20].

FA and relative anisotropy (RA) normalized in (0, 1) are two of the most commonly used
invariant measures [31]. FA and RA are, respectively, defined as

(4)

Isotropic tensor at each voxel is represented by FA(β) = RA(β) = 0, and maximum anisotropy,
by FA(β) = RA(β) = 1. Other invariant measures of DTs include measures of CL and CP [8,
20,22,32]. The measures for CL and CP are defined as

(5)
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where ϕ∈[0,π/3] is defined in Eq. (15) in the Appendix. A CL(β) value approaching 1 indicates
that a tensor is nonoblate (i.e., the difference between λ1 and λ2 is large, indicating that the DT
is highly elongated, or “linear”), whereas a CL(β) value near zero, together with a large value
of CP(β), indicates that the DT is nearly oblate. A DT with a small CP(β) value (i.e., the
difference between λ2 and λ3 is small) and a large CL(β) is prolate.

2.3. Test procedure for classifying tensor morphology
We propose a three-step procedure that tests sequentially each of three hypotheses for the
presence of a degenerate tensor at a given significance level (i.e., the significance level of a
test is the probability of rejecting the null hypothesis when the null hypothesis is true) in each
voxel of the imaging volume:

Hypothesis 1 (to classify isotropic DTs). At the significance level α1, we use a statistic to
test the following hypotheses:

(6)

Hypothesis 2 (to classify oblate DTs). At the significance level α2, we use a second statistic
to test the following hypotheses:

(7)

Hypothesis 3 (to classify prolate DTs). At the significance level α3, we use a third statistic
to test the following hypotheses:

(8)

To classify DT morphologies, we need to combine information from all three hypotheses (a
flow chart for sequential testing of the three hypotheses is found in Fig. 1). If unable to reject

, we conclude that evidence for the presence of anisotropy in this DT is lacking and classify

this DT as isotropic. If, on the other hand, the null hypothesis  is rejected (i.e., the presence
of anisotropy is supported), we then test the second and third hypotheses. In that instance, if

the null hypothesis  is not rejected and the null hypotheses  and  are rejected, then
we have insufficient evidence that this DT is not oblate, and thus, we classify it as oblate. If,

in contrast, the null hypotheses  and  are rejected but the null hypothesis  is not

rejected, the DT is classified as prolate in shape. If all  (i = 1,2,3) are rejected, then the DT
is classified as nondegenerate (i.e., a PD for the DT can be assigned).

We propose the use of certain invariant measures as test statistics for each of these three
hypotheses. Note that in isotropic tensor, it follows from Eq. (4) that FA(β) = 0 is equivalent
to claiming that I2(β) = I4(β). To test statistically for the presence of isotropy in a voxel, we
can formulate the null hypothesis and its alternative as

(9)

Because  is used as the test statistic for the
isotropy hypotheses.

When testing the hypotheses pertaining to oblate and prolate DTs, we consider two additional
invariant measures [20]:
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(10)

These two invariant measures are related to the explicit expression of three eigenvalue–
eigenvector pairs [20]. In the Appendix, we show that  is
mathematically equivalent to λ1 = λ2. Similarly,  is equivalent to λ2 =
λ3. Thus, we can rewrite Eqs. (7) and (8) that test for the presence of oblate and prolate tensors
(i.e., using Hypotheses 2 and 3) as:

(11)

For the statistic that tests  against , we propose

(12)

Similarly, we propose  as the statistic for testing  against

.

Also, in the Appendix, we derive the asymptotic distributions of , , and  under
the null hypotheses as the total number of acquisitions (n) goes to infinity. We then propose a
scaled χ2 approximation for calculating the P value for each hypothesis (i.e., the probability
of having a test statistic more extreme than the one obtained under the assumption of the null
hypothesis) for moderate and large n (e.g., n ≥ 25). Computational demands for calculating the
three proposed test statistics and their corresponding P values are minimal because
reconstruction of tensor fields always includes computation of FA2 and other invariant
measures, as well as the three eigenvalue–eigenvector pairs, that are used to calculate the test
statistics.

3. Materials and methods
3.1. Simulations

3.1.1. Type I and II error rates of the test statistics—We assessed the performance of

,  and  as test statistics for the three hypotheses pertaining to the isotropic,
oblate and prolate classifications of tensor morphology, respectively [Eqs. (6), (7), (8)], and
we evaluated rates of Type I and Type II errors associated with each of these test statistics. We

set λ1 = ρλ2 and λ2 = λ3 to evaluate . We used λ1 = ρλ2 = 2ρλ3 to evaluate , and we

set λ1 = 1.5λ2 and λ2 = ρλ3 to evaluate . Because the three hypotheses were constructed
to test for DTs having differing shapes, DTs of differing shape were used as the basis for
evaluating the performance of each of the proposed test statistics. We only considered a
diagonal DT D and simulated the DW images for each such tensor. Three differing degrees of
anisotropy, having ratios ρ = 1, ρ = 1.5 and ρ = 3 were studied. The mean diffusivity

 was set equal to 0.7 × 10−3 mm2/s, a value typical for normal cerebral
tissue [12]. NMR signals were generated using . Complex Gaussian noise
with a standard deviation σ0 was then added to the real channel signal, and the resulting DW
magnitude images were calculated. The distribution of noise in these DW images was Rician.
We fixed S0 at 1500 but varied σ0 to provide a range of differing signal-to-noise ratios (SNR
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= S0/σ0) of 10, 15, 20 and 25 in these DW images, respectively. The DTI acquisition consisted
of m = 5 baseline images with b = 0 s/mm2 and n−m = 25 directions of diffusion gradients
arranged uniformly in 3-dimensional space at b = 1000 s/mm2 [33]. For each simulation, two
significance levels (αs of 5% and 1%) were considered, and 10,000 replications were used to
estimate significance levels. A procedure described in the Appendix was used to estimate the
DTs and to calculate the P value for testing each of the three hypotheses. We also computed

FA,  and  for each simulated data set.

We further evaluated  and  under the null hypotheses. We investigated the

empirical behavior of  as a function of SNR when λ1 = λ2 = 0.84 and λ3 = 0.42, when

the true value of CL(β) was zero. Similarly we considered  as a function of SNR when
λ1 = 0.9 and λ2 = λ3 = 0.6, when the true value of CP(β) was 0. We generated 10,000 simulated

data sets to estimate the mean and standard deviation of  and  at 20 different values
of SNR varying from 5 to 40.

3.1.2. Evaluating the test statistics assuming the presence of fiber crossings—
We further examined the performance of the three test statistics when modeling the presence
of multiple fibers in a single voxel (as will occur when multiple fibers cross within the brain)
[34–37], a situation in which the single DT model for Eq. (1) can fail. For our simulated data,
we generated NMR signals for a voxel having two different fibers components:

(13)

where f∈[0,1] and 1−f are the signal fractions of the DTs D1 and D2. We added complex
Gaussian noise of standard deviation σ0 to the real channel signal. We set S0 = 1500 and varied
σ0 to obtain the NMR magnitude images with differing SNRs of 10, 15, 20 and 25, respectively.
We placed, within a single voxel, a DT, D1, representing WM in which [λ1,λ2,λ3] =
[1.4,0.35,0.35] and a second tensor, D2, representing the presence of either WM [1.4,0.35,0.35]
or gray matter (GM) [0.7,0.7,0.7] (units: 10−3 mm2/s). Thus, two combinations of D1 and D2
were studied: (1) WM+WM or (2) WM+GM. For the case of WM+WM, the angle between
the PDs of D1 and D2 was set to 90°. Two differing values for f, f = 0.5 and f = 0.25 were
studied. Ten thousand replications were used to estimate the rejection rates of the three test
statistics for each tissue combination at the significance level of 5%.

We further demonstrated that multiple fibers present within a single voxel can lead to
degenerate tensors when we used a model for a single DT [Eq. (1)]. Note that the estimated
tensor D cannot recover the two tensor components within the NMR signal of this voxel.
However, for a relatively small b value, the estimated D approximated a pseudo DT, Dpseudo
= f D1+(1−f)D2, which is the weighted sum of the two DTs, D1 and D2 [38]. When f = 0.5,
neither D1 nor D2 dominated signal within the voxel, whereas a D1 should have dominated the
two-DT model at f = 0.25. In the case of WM+WM, the three eigenvalues of Dpseudo were
given by λ1,p = 1.4(1−f)+0.35f, λ2,p = 0.35(1−f)+1.4f and λ3,p = 0.35f+0.35(1−f), respectively.
At f = 0.5, λ1,p = 0.875, λ2,p = 0.875 and λ3,p = 0.35; however, the three eigenvalues of
Dpseudo were given by 1.1375, 0.6125 and 0.35, respectively, at f = 0.25. Similarly, for the case
of WM+GM, the three eigenvalues of Dpseudo were 1.05, 0.525 and 0.525 at f = 0.5 (or 0.875,
0.6125 and 0.6125 at f = 0.25). Based on the above analysis, we expected that the null

hypotheses  (λ1 = λ3) and  (λ2 = λ3) would be rejected for the WM+WM case at f = 0.5
and that all three null hypotheses would be rejected for the WM+WM case at f = 0.25. For the
WM+GM case, we expected to classify the DT as prolate in morphology.
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3.1.3. In vivo human data—We acquired DT images of the brains of seven healthy adult
subjects (four men and three women; right-handed; mean age 28±4.2 years). Informed consent
was obtained from all participants according to guidelines set forth by the institutional review
boards at Columbia University and New York State Psychiatric Institute. Images were acquired
on a GE 3.0-Tesla whole body MRI scanner (Milwaukee, WI, USA). The data matrix of 128
× 128 was zero-padded to 256 × 256. Other imaging parameters were TE/TR = 73.5/6925 ms,
FOV = 24 cm, 3.0-mm slice thickness with no gap, 34 contiguous slices parallel to the anterior
and posterior commissure (AC–PC) line and NEX = 3. The DTI acquisition scheme was the
same as that detailed for the simulation studies above. Phase correction and Array Spatial
Sensitivity Encoding Technique (factor = 2) were applied.

For each subject, nonbrain tissue was deleted from the DT images using BET in MRIcro
[39]. A linear model for Eq. (1) was used to construct the DTs and three eigenvalue–eigenvector
pairs, and the invariant measures, including FA, CL(β) and CP(β), were calculated. For every
subject, we used the procedure described in the Appendix to compute at each voxel the test
statistic and its associated P value for each of the three hypotheses to classify tensor
morphology at each voxel, as well as the prevalence and distribution of degenerate tensors
across the imaging volume. Using these test statistics, we (a) assessed the relative performances
of tensor classification using the conventionally thresholded maps of invariant measures and
maps of −log10(P) for these measures created within our statistical framework; (b) classified
isotropic DTs using both maps of FA and −log10(P) maps of Ta(β); (c) classified oblate DTs
using maps of CL(β) and −log10(P) maps for Tb(β); (d) noted the general anatomical
localizations of the various classes of DT morphology within the human brain; (e) determined
the prevalence of the various classes of tensor morphology within the human brain.

4. Results
4.1. Simulations

4.1.1. Type I and II error rates of the test statistics using simulated data—Table

1 presents estimates for the rejection rates of the statistics ,  and  in our
simulated DTI data set at two significance levels (αs of 5% or 1%). We observe that in isotropic

tissues, the rejection rates of  are reasonably close to the respective significance levels
for this small sample of 30 DW measurements. Overall, the rejection rates in all cases were
accurate, and Type I (false positive) errors were not excessive (Table 1). Consistent with our
expectations, statistical power for detecting nondegenerate tensors increased with the
eigenvalue ratio ρ (the “power” of a test statistic is the probability that the test will reject a
false null hypothesis or that it will not make a Type II error; thus, the higher the power, the
greater the chance of obtaining a statistically significant result). Furthermore, an increasing
SNR reduced the Type II (false negative) error rate and improved the power of the test statistic

 to detect differences between λ1 and λ3. The rates of Type II errors for the statistic

 were low for SNRs near 10. Similar results were obtained for simulations using 

and , except that rejection rates at the 0.01 and 0.05 levels for  were slightly higher
than the corresponding significance levels when ρ = 1. We conclude, based on the Type I and
II errors of the three statistics in these simulations, that the three proposed test statistics can be
used to identify tensor morphologies and that they have satisfactory statistical properties under
the most commonly used statistical model for estimating DTs [Eq. (1)].

In Table 1, we also presented the rejection rates of comparing the invariant measures FA,

 and  against the conventional threshold of 0.20 for these measures in detecting
degenerate tensors. We observed that Type I errors for all three invariant measures were
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exceedingly high when the SNR was 10; when using FA as the classifier for degeneracy, for
instance, the Type I error rates were as high as 0.667, even though its Type II error rates were
low. Although increasing the threshold for FA decreased the rate of Type I errors, it was at the
expense of increasing Type II errors. When using FA as the invariant measure for detecting
degenerate tensors, we therefore must derive the distribution of FA in order to control the rate
of Type II errors for any given Type I error rate. Moreover, as SNR increased from 10 to 25,

the Type II error rate for  decreased slowly from 0.329 (= 1−0.671) to 0.286 (= 1−0.714),

while the Type II error rate for  decreased quickly from 0.597 (= 1−0.403) to 0.005 (= 1

−0.995). We attributed this slow decline in Type II error rates for  with increasing SNR
to the fact that the true CL(β) = 0.1667 happened to be close to the fixed arbitrary threshold of
0.20. In fact, if the true value of CL(β) even more closely approximated the fixed threshold

0.20, then the Type II error rate for  was as high as 0.50 even for large SNRs, because
CL(β) was a statistically unbiased estimate of CL(β) for nonoblate DTs, and the probability of

 being greater than CL(β) was 0.50. For  at ρ = 1.5, we observed that the Type II

error rate for  actually increased from 0.349 (= 1−0.651) to 0.383 (= 1−0.617) with
increasing SNRs (Table 1). This example demonstrated that using a fixed threshold for
invariant measures is inappropriate for the valid classification of tensor morphologies across
different SNRs.

We calculated the means and standard deviations of  and  under the null hypotheses
for detection of oblate and prolate DTs. Ideally, CL(β) and CP(β) should equal zero and, yet,

the mean values of both CL(β); and  were greater than zero, and their standard deviations

were relatively large (Fig. 2). As expected, the means and standard deviations of  [and

] decreased with increasing SNRs.

4.1.2. Evaluating the test statistics assuming the presence of fiber crossings—

Table 2 presents the estimated rejection rates of the statistics ,  and  at the
significance level .05 under the two-DT model. We conclude that the pseudo DT had an oblate
shape for voxels containing two DTs representing WM+WM at an f = 0.5 because the rejection

rates of  and  were high, while those of  were close to the significance level
of 5%. However, for the voxels containing two DTs representing WM+WM at f = .25, the
pseudo DT was nondegenerate. In voxels containing two DTs representing WM+GM, the
rejection rates of the three statistics suggest that the pseudo DT was prolate in shape for both
f = 0.25 and f = 0.5. Thus, these results indicated that multiple fibers present within a single
voxel can lead to misclassification of tensor morphologies.

4.1.3. In vivo human data
4.1.3.1. Assessing performance of tensor classification using maps of invariant measures
and maps of −log10(P) values of statistics for testing three hypotheses: Using a single
representative subject, we presented maps of invariant measures (Fig. 3A–C) and −log10(P)
maps (Fig. 3D–F) for testing hypotheses in axial images positioned through the dorsum of the
body of the caudate nucleus. The map of FA values (Fig. 3A) showed that significantly
anisotropic voxels (those with relatively large FA values) were located almost exclusively

within the WM. We observed a similar scenario in maps of  (Fig. 3B) and maps of

 (Fig. 3C). All −log10(P) maps represented images of the −log10(P) value for  (i =
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a,b,c). By convention, a voxel having a P value <.05, corresponding to a −log10(P) value >1.31
was regarded as significant. All −log10(P) values <5 were set equal to 5 in order to improve
the distribution of plotted P values. A DT having a value of −log10(P) for Ta(β) of 5 (i.e., P =
10−5) was highly anisotropic. The brightest voxels in the invariant measure maps (Fig. 3A–C)
typically corresponded to the brightest voxels in the −log10(P) maps (Fig. 3D–F). The maps

of  (i = a,b,c), however, identified more voxels as anisotropic, nonoblate and nonprolate
than did the maps of invariant measures.

4.1.3.2. Classifying isotropic DTs using maps of FA and maps of −log10(P) values for

Ta(β): The −log10(P) value for  seemed to be more sensitive and specific in classifying
the morphologies of DTs as anisotropic or isotropic than were FA values alone. The

−log10(P) map for  (Fig. 4C), for example, identified fibers within the narrow “bridge”
of tissue within the septum pellucidum that the simple FA map did not identify (Fig. 4D). In
addition, our procedure for the detection of degenerate tensors classified as isotropic the voxels
containing cerebrospinal fluid (CSF) that surround the septum (Fig. 4B and C), whereas the
conventional mapping of FA at those voxels indicated that their average FA value was 0.120
(S.D. = 0.06), close to the FA value in the septum pellucidum. Thus, the FA map was unable
to discriminate CSF from cerebral tissue in this region. Furthermore, values of −log10(P) for

the  test statistic in voxels within the caudate nuclei were relatively large (mean = 1.93,
S.D. = 1.32), indicating the presence of considerable anisotropy, whereas FA values here were
relatively small (mean = 0.15, S.D. = 0.04), incorrectly indicating isotropy when invoking
conventional FA thresholds (Fig. 4C and D). Thus, based on these preliminary in vivo data,

we conclude that the −log10(P) map for  identified some voxels that had small FA values
as being isotropic, and it correctly identified some voxels that had similarly small FA values
as being anisotropic.

Table 3 presents the number of voxels in a region of interest (ROI) from a representative subject
in which the morphologies of DTs were classified using either the conventionally thresholded

FA value (0.20) or the P value for  (either .05 or .01). We observed that comparing FA
values with a universal threshold would yield a high rate of false-negative errors in
classification. At the threshold of P <.01, for example, 133 of all voxels that had FA values <.
20 were still labeled as anisotropic. In contrast, if the 621 voxels with FA <0.20 were truly
isotropic, then about seven voxels would have been labeled as isotropic using a threshold for

the P value for  of <.01. We therefore expected a false-negative rate of approximately
20.42% (= 133/621−0.01 = ≈ 21.42%−1%) in the ROI.

4.1.3.3. Classifying oblate DTs using maps of  and maps of −log10(P) values for

: The map of −log10(P) values for  revealed that some tensors having a small

 value actually did have small differences between λ1 and λ2, whereas other tensors with

a small  value had statistically large differences between λ1 and λ2 and, thus, were
misclassified as oblate when using conventional measures of morphology outside of proper

statistical framework. Whereas the mean  value in the portion of an ROI containing

primarily CSF was 0.05 (S.D. = 0.03), values of −log10(P) for  were small in those same

voxels (Fig. 5B). Furthermore, values of −log10(P) for  were relatively large in voxels
within the caudate nuclei, indicating the presence of DTs having nonoblate shapes; the
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 values for DTs in these voxels, however, were relatively small (mean = 0.056, S.D. =
0.028) and incorrectly suggested the presence of DTs having oblate shapes (Fig. 5C–E). Indeed,
at a rejection rate of 0.05, 122 voxels within the caudate nuclei were misclassified using

 as being nonoblate (Fig. 5B).

Using a universal threshold for  values can also generate many false-positive errors in
the classification of DTs as having a CL. We assessed the use of invoking three arbitrary

thresholds for : 0.05, 0.10 and 0.15 (Fig. 5C–E). These thresholds classified tensors as
oblate, respectively, within 96.2%, 91.5% and 51.75% of voxels in the ROI (Fig. 5C–E). In

contrast, at P values of .05 or .01 for the  statistic testing for the presence of oblate DTs,
75.15% and 84.65% of the total number of voxels in the ROI, respectively, were categorized
as oblate (Table 3).

4.1.3.4. Anatomical localizations of the various classes of DT morphology within the
human brain: We determined the anatomical location of the various classes of degenerate
DTs across the imaging volumes for our seven adult subjects using P values for the sequential
statistical testing of our three hypotheses for DT morphologies (Fig. 6D–F). Specifying
significance levels of (α1,α2,α3) = (0.05,0.05,0.05) when testing the three hypotheses, DTs
classified as isotropic were located primarily in CSF or GM. DTs classified as oblate were
positioned primarily along the boundaries of regions containing isotropic tissue, such as CSF
or GM, or else as small islands within intensely anisotropic tissues, such as WM. In each of
these general locations, both the directions and magnitudes of the DTs change abruptly across
voxels. The oblate DTs, therefore, were most likely the products of partial volume averaging
of the morphologies of DTs in voxels that contained two or more tissue types that differed in
structural organization. This interpretation is supported by maps superimposing the location
of oblate DTs on a conventional, 3-color map of the PDs of DTs (Fig. 6G–I); oblate DTs were
positioned primarily at locations of fiber crossing and along the boundaries of differing tissue
types. DTs classified as prolate were located primarily within the intensely anisotropic WM
of the corpus callosum, longitudinal fasciculus and association fibers directly beneath cortical
GM, as well as in certain GM structures, such as the thalamus and body of the caudate nucleus.
DTs classified as either anisotropic or nondegenerate were positioned mainly within cortical
and subcortical WM.

4.1.3.5. The prevalences of various classes of tensor morphology within the human brain:
We assessed the prevalence of the four morphological classes of DTs (nondegenerate, oblate,
prolate and isotropic) within the brains of our seven adult subjects (Table 4). We found that
34.29% were isotropic, 12.1% were oblate, 28.1% were prolate and 25.5% were nondegenerate.
Most tractography algorithms can track fibers across voxels containing either anisotropic or
prolate DTs; these classes of tensors, which together accounted for 53.6% of the total number
of voxels in the brain (with more than half of these being prolate), were located primarily within
white and GM, as expected. Attempting to track fibers through other (degenerate) tensor types
will necessarily lead to errors [23]. We identified a prevalence of degenerate tensors that was
60-fold greater than those detected using a previous method [18].

5. Discussion
Our procedure for detecting degenerate tensors differs substantially from a previously proposed
method [18] in that our approach tests for the presence of specific morphological features of
DTs within a statistical framework that accounts for the noise that is inherent in all DTI data.
Unlike the prior method, ours is applicable to the classification of DTs within individual voxels,
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without relying on information from DTs at neighboring voxels. It allows determination of the
prevalence and spatial locations of nondegenerate, isotropic, oblate and prolate DTs throughout
the brain. Moreover, using the P values associated with the proposed test statistics maximizes
the probability of correctly classifying the shapes of DTs because these P values account for
the amount of noise within a given voxel, the number of DW images, the acquisition scheme
and the model for noise in the data. Indeed, both our simulated and in vivo human data support
this claim.

The previously proposed method for detection of degenerate tensors assumes that the tensor
field is smooth when it uses information from surrounding voxels to search for degeneracy
[18]. Although assuming the smoothness of fiber tracts in general may be reasonable, our
findings show clearly that it is unjustified at the boundaries of tissues that differ substantially
in their degree of anisotropy or in the orientation of their DTs (Fig. 6). Searching for degenerate
tensors in the entire imaging volume under the assumption of smoothness of the tensor field
may therefore lead to misclassification of tensor morphologies, particularly near the boundary
between differing tissue types. That our method identified a vastly larger number of degenerate
tensors than did the prior method and in, precisely, these anatomical regions of discontinuity
in DT orientation and degree of anisotropy, further suggests that an assumption of smoothness
will lead to erroneous classification.

In order to use invariant measures of anisotropy as test statistics, we needed to characterize
their distributions. A bootstrapping method [40,41] was recently used to approximate the
distributions of invariant measures in DT images [16,42]. Bootstrapping [16,42], however,
cannot be used to calculate P value for testing hypothesis in DT images because it cannot
approximate the distribution of a test statistic under the null hypothesis [43]. Moreover,
bootstrapping at each of the large number of voxels in the human brain would likely prove
computationally intensive and, therefore, prohibitive. Instead, we derived analytically the
asymptotic null distributions of the test statistics (see Appendix) and used these null
distributions to test sequentially three hypotheses that together classified the morphologies of
tensors at each voxel. This analytic approach is also computationally satisfactory because
calculating a P value using a scaled χ2 approximation is much faster than is use of numerical
simulations such as bootstrapping. Our simulations demonstrated empirically that the scaled
χ2 distribution provides good statistical power for the detection of degenerate tensors, while
simultaneously limiting Type I (false positive) errors.

The P value for testing each of three sequential hypotheses quantifies the degree of tensor
degeneracy at each voxel. For example, for the isotropic hypothesis, a small P value in a voxel
denotes a low probability of obtaining a particular FA value in that voxel under the null
hypothesis (λ1 = λ3). In practice, we can choose a fixed significance level (such as .05 or .10)
as a universal threshold, with P values higher than that threshold being classified as isotropic
(or as oblate or prolate).

In practice, any procedure that directly compares FA values (or  or  values) to a
fixed, arbitrary threshold without considering their stochastic behavior can yield high false-
positive and false-negative error rates for the detection of degenerate tensors. The stochastic

properties of FA values [or  or  values] are mainly influenced by the DT at a
particular voxel, the number of DW images used in estimating the DT, and the SNR
characteristics of the DW images. Similar observations have been reported previously for
RA2 and other anisotropy indices [12,15,44]. Based on our findings, we conclude that the
stochastic behavior of these invariant measures must be adequately characterized before the
invariant measures themselves can be used reliably to classify tensor morphology.
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Further research should determine whether combining information from invariant measures of
anisotropy, such as CP(β), with the P values for the classification of tensor morphologies, can
improve the analyses of DT images, including the performance of fiber tracking algorithms.
For example, our human studies have shown that oblate tensors account for 12.1% of voxels
located in regions containing both GM and WM or crossing fibers (Fig. 6). Moreover, our
simulations have shown that a combination of two WM tensors in a voxel can lead to
classification of the pseudo tensor in that voxel as oblate. Once our procedure has identified a
tensor as oblate, we can then further investigate whether the tensor's oblate shape is caused by
a combination of WM and GM or by crossing fibers. If the tensor contains multiple fibers, we
can estimate the component DTs and apply our classification procedure to each component.
The resulting information on the shape of each tensor can then be used for fiber tracking itself
or for further development of fiber tracking algorithms that can function better in areas where
fibers cross.

Many related topics warrant further research. First, because we used the asymptotic
distributions of the invariant measures to classify tensors, our results are limited to data sets
containing DW images that are moderate or large in number (e.g., n ≥ 25). For a small number
of DW images (e.g., n ≤ 12), we can resort to parametric bootstraping methods [43] for
accurately approximating the distributions of invariant measures, such as Ta(β), under our null
hypotheses. Bootstrapping at each voxel in the human brain will nevertheless remain
computationally intensive, even with a smaller number of images. Second, we used the least
squares estimate for the statistical model in Eq. (1) to reconstruct DTs. Tensor estimates may
therefore be subject to substantial biases under a low SNR, because Eq. (1) is not a good
approximation of NMR signals. Using a weighted linear fit may improve slightly the accuracy
of estimated DTs for moderate and high SNRs. Moreover, because our method is limited to a
single-tensor model for Eq. (1), other possible causes of degenerate tensors, such as the
presence of multiple tensors within a voxel, should be investigated further [36–38]. Also,
because structural artifacts in DW images, including brain pulsation and involuntary movement
of the subject, can generate unusual behavior of the data that diverge substantially from that
in a normal or Rician model, post-processing techniques such as correction of eddy current
distortions must be used before applying the test procedures proposed here. Moreover, the
findings based on the ROI located between ventricles could be affected by the effects of cardiac-
related pulsations. Finally, although we focused here on use of invariant measures as test
statistics for the classification of tensor morphology, other statistics, such as those based on
eigenvalues, may prove helpful in further characterizing tensor morphologies and in identifying
the presence of degenerate tensors.
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Appendix
We derive the asymptotic null distributions of Ta(β), Tb(β) and Tc(β) in the Appendix. We first
review several standard results for the model (1) [28,29,45]. We then present the key ideas of
deriving the asymptotic null distributions of Ta(β), Tb(β) and Tc(β). We also propose a simple
method of approximating P values of the three test statistics. Finally, we include a detailed
procedure for computing the P values of the three test statistics.
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For the statistical model shown in Eq. (1), we can calculate a least square estimate of θ, denoted

by , where

. Let
 be the true value of θ and n, the number of DW images for each subject.

Under certain conditions [28,45], we can show that as n → ∞,  converges to Z in
distribution, where Z is a normal random vector with mean zero and covariance matrix Σθ,
denoted by N{0,Σθ}. The covariance matrix Σθ is estimated as follows:

(14)

where  is a residual and  [32]. Because β is a subvector

of θ,  converges to N{0,Σβ}, where Σβ is the corresponding matrix of Σθ.

We define φ in the CL and CP measures for Eq. (5) as follows:

(15)

and S(β)2 ≤ V(β)3 [20]. If RA(β) > 0, we have the following equivalent relationships:

Notation
We introduce some notation as follows. Let f(β) be a function of β. The first derivative of f
(β) with respect to β is a 6 × 1 vector given by ∂ βf(β). The second derivative of f(β) with respect

to β is a 6 × 6 matrix given by . For instance, the (1,2)th element of the matrix

 is . A Taylor expansion of f(β) at β* is given by

(16)

where β*i is the ith element of β* and β′ is a point in a neighborhood of β*.

Asymptomatic null distribution of 

We first study the asymptotic null distribution of  below. If
the diffusion ellipsoid is isotropic, then we have Ta(β*) = 0 and ∂ βTa(β*) = 0. Using Eq. (16),
we can employ the delta method [46] to show that
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(17)

where op(1) denotes that a sequence of random vectors converges to zero in probability, and

. It follows from Eq. (4) that Σ1 is a constant matrix. Let γi(i = 1,…,6) be six

eigenvalues of ΣβΣ1. As n → ∞,  converges to a weighted χ2 distribution Z with

representation  in distribution, where zi(i = 1,…,6) represents six independent
 random variables and  denotes a χ2 distribution with one degree of freedom.

Asymptomatic null distribution of Tb(β)

For Tb(β), we can similarly establish its asymptotic distributions under . If the diffusion
ellipsoid is oblate in shape, then we have Tb(β*) = 0 and ∂ βTb(β*) = 0. Using Eq. (16), we can
again employ the delta method [46] to show that

where . Let  be six eigenvalues of ΣβΣ2(β*). As n → ∞,

 converges to a weighted χ2 distribution Z with representation  in distribution.
The last step is to estimate Σ2(β*). We suggest calculating Σ2(β*) under the null hypothesis

. If λ1 = λ2, then . We can obtain estimates of (log
S0,λ1,λ2,e3)T by minimizing the residual sum of squares as follows:

(18)

Finally, we can obtain  and then evaluate . Based on the
preceding steps, we obtain the estimated  for i = 1,…,6. In our experience, this algorithm has
proven effective.

Asymptomatic null distribution of 

For , we can similarly establish its asymptotic distributions under . In particular, it

follows from Eq. (16) that  where

. Let  be six eigenvalues of ΣβΣ3(β*). As n → ∞, 

converges to a weighted χ2 distribution Z with representation  in distribution. We
easily estimate Σβ as discussed before. The next step is to estimate Σ3(β*) under the null

hypothesis . When λ1 = λ2, we know that . We obtain estimates
of (log S0,λ1,λ2,e1)T by minimizing the residual sum of squares as follows:
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(19)

Finally, we obtain  and then evaluate .

Approximation of P values
In each voxel, the P value of testing the isotropic hypothesis can be calculated as:

(20)

The weighted χ2 distribution Z can be approximated by substituting the estimated
. Instead of relying on the precise mixture distribution, we use the moment

matching technique to match the mean and variance of c0χ2(v) with those of Z, that is,

 and , which gives  and

. The scaled χ2 approximation works well in the test hypothesis for

isotropy [47]. Similarly, we can construct a scaled χ2 approximation for  and .

Our procedures for computing the P values of the three test statistics are:

Step 1. Compute , Σθ and Σβ based on Eq. (14).

Step 2. Compute , Σ1 and the six eigenvalues of Σ1Σβ, γi(i = 1,…,6).

Step 3. Compute  and estimate  in Eq. (18).

Compute , , and the six eigenvalues of ,
.

Step 4. Compute  and estimate  in Eq. (19).

Compute , , and the six eigenvalues of ,
.

Step 5. Compute c0 and v based on γi (i = 1,· · ·,6). Approximate the P value by using

.

Similarly, we can calculate the P value of for  (or ) by using  (or
).
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Fig. 1.
Path diagram for the classification of tensor morphologies.
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Fig. 2.

Results from a simulation study of evaluating  and  under the null hypotheses.

Panels (A) and (B) show the mean value and the standard deviation of  and  as a
function of SNR based on 10,000 simulated data sets. (A) Twenty differing SNRs, from 5 to
40, were evaluated. The DT was specified as λ1 = λ1 = 0.84 and λ3 = 0.42, and the true value
of CL(β) equaled zero. (B) The DT was specified as λ1 = 0.9 and λ3 = λ2 = 0.6, and the true
value of CP(β) equaled zero.
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Fig. 3.
Maps of the invariant measures and −log10(P) values associated with test statistics in a single
subject. Shown here is an axial slice through the dorsal aspect of the body of the caudate nucleus
and the body of the corpus callosum. (A) FA values depicting the degree anisotropy in each

voxel. (B)  values depicting the degree of nonoblate morphology in each voxel. (C)

 values representing the degree of nonprolate shape in each voxel; the color bar denotes
differences between brain regions in the value of invariant measures. The scale of the color
coding ranges from 0 to 1, with black representing the lowest value (0) and white representing

the highest value (1). (D) The −log10(P) values of test statistic: . (E) The −log10(P) values

of test statistic: Tb(β). (F) The −log10(P) values of test statistic: . The color scale reflects
the size of the values of −log10(P), with black to blue representing smaller values (0–1), and
red to white representing higher values (1.88–5). (G) The corresponding slice of the T1-
weighted anatomical image. CC = corpus callosum; LF = longitudinal fasciculi; CA = cortical
association fibers.
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Fig. 4.
A comparison of the information provided by the map of FA values and the corresponding map

of −log10(P) values for . Shown here are maps from a single subject in an axial slice at
the level of the fornix, genu of the internal capsule, and head of the caudate nucleus. (A) An
FA map with the ROI highlighted in green. (B) The corresponding anatomical T1-weighted
image of this slice, with a rectangular box indicating the portion of the image magnified in

panels (C) through (F). (C) The map of −log10(P) values for  in the ROI. The color scale
reflects the magnitudes of values of −log10(P), with black to blue representing smaller values
(0–1) and red to white representing larger values (1.88–5). (D) The FA map within the ROI.
The green circle identifies a voxel on a narrow bridge of tissue in the septum pellucidum that
appears as anisotropic in the −log10(P) map (C) but does not appear anisotropic in this FA map.
(E and F) The FA maps within the ROI masked by FA thresholds of 0.10 and 0.20, respectively.
The color bar denotes the values of FA, with black to blue representing smaller values (0–0.20)
and red to white representing larger values (0.4–1). Voxels in the head of the caudate nucleus
are incorrectly classified as having degrees of anisotropy similar to CSF using each FA
threshold, whereas the −log10(P) map discriminates these two types of tissue successfully in
(C).

Zhu et al. Page 21

Magn Reson Imaging. Author manuscript; available in PMC 2008 May 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.

Maps of  and the −log10(P) values for  in a single slice from a single subject. (A)
The rectangular ROI of the T1-weighted anatomical image. (B) The same rectangular ROI in

the map plotting the value of −log10(P) for . (C–E)  maps within the ROI masked
with thresholds of 0.15, 0.10 and 0.05, respectively. Nearly all voxels in the head of the caudate
nucleus and in the CSF are incorrectly classified.
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Fig. 6.
Maps of tissue types and the weighted PD in three slices from a single subject. Rows from top
to bottom show slices from progressively more dorsal axial slices. (A–C) The T1 weighted
anatomical images. (D–F) Maps of tissue types: white = nondegenerate DTs; red = oblate DTs;
yellow = prolate DTs; blue = isotropic DTs. (G–I) Principal direction maps: yellow = overlay
indicating DTs having an oblate shape.
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