
BioMed CentralBMC Proceedings

ss
Open AcceProceedings
A mixture model approach to multiple testing for the genetic 
analysis of gene expression
Cyril Dalmasso*1, Joseph Pickrell2,3, Marianne Tuefferd1, 
Emmanuelle Génin2, Catherine Bourgain2 and Philippe Broët1

Address: 1JE 2492 Universite Paris-Sud, Hôpital Paul Brousse – Batiment 15/16, 16 Avenue Paul Vaillant Couturier, Villejuif CEDEX 94807, France, 
2INSERM UMR-S 535, Universite Paris-Sud, Villejuif F94807, France and 3Department of Human Genetics, The University of Chicago, 920 East 
58th Street, Chicago, Illinois 60637, USA

Email: Cyril Dalmasso* - dalmasso@vjf.inserm.fr; Joseph Pickrell - pickrell@uchicago.edu; Marianne Tuefferd - tuefferd@vjf.inserm.fr; 
Emmanuelle Génin - genin@vjf.inserm.fr; Catherine Bourgain - bourgain@vjf.inserm.fr; Philippe Broët - broet@vjf.inserm.fr

* Corresponding author    

Abstract
With the availability of very dense genome-wide maps of markers, multiple testing has become a
major difficulty for genetic studies. In this context, the false-discovery rate (FDR) and related
criteria are widely used. Here, we propose a finite mixture model to estimate the local FDR (lFDR),
the FDR, and the false non-discovery rate (FNR) in variance-component linkage analysis. Our
parametric approach allows empirical estimation of an appropriate null distribution. The
contribution of our model to estimation of FDR and related criteria is illustrated on the microarray
expression profiles data set provided by the Genetic Analysis Workshop 15 Problem 1.
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Background
In the context of genetic studies for which high-density
genetic maps are now widely available, a major multiple
testing problem arises due to the large number of statisti-
cal tests that are performed simultaneously. In a recent
study, Morley et al. [1] analysed microarray gene-expres-
sion data together with genome-wide single nucleotide-
polymorphism (SNP) genotyping in 14 three-generation
families to localize the genetic determinants underlying
gene-expression variability (data provided for Genetic
Analysis Workshop 15 (GAW 15) Problem 1). For the
genome-wide linkage analysis, the authors calculated a
non-parametric Haseman-Elston statistic and used the
genome-wide significance thresholds proposed by Lander
and Kruglyak [2] to identify linked loci. Thus, they con-
trolled the classical family-wise error rate (FWER), i.e., the
probability of falsely rejecting at least one null hypothesis.

Although the FWER is the oldest extension of the classical
type I error rate, FWER-based procedures are often too
conservative, particularly when numerous hypotheses are
being tested [3]. As an alternative and less stringent error
criterion, Benjamini and Hochberg introduced, in their
seminal paper published in 1995 [4], the false-discovery
rate (FDR), which is defined as the expected proportion of
false discoveries among all discoveries (here, a discovery
refers to a rejected null hypothesis). The opposing crite-
rion, the false non-discovery rate (FNR), corresponds to
the expected proportion of false non-discoveries among
all the non-rejected null hypotheses [5].

More recently, Efron et al. introduced the local FDR
(lFDR) [6], which can be interpreted as a variant of the
Benjamini and Hochberg's FDR that gives each tested null
hypothesis its own "measure of significance". While the
FDR is defined for a whole rejection region, the lFDR is
defined as the probability that a null hypothesis is true
conditional on a particular value of the test statistic. As
discussed by Efron [7], the local nature of the lFDR is
advantageous for interpreting results from individual test
statistics. Moreover, the FDR can be estimated directly
from the lFDR [6].

Efron proposed an empirical Bayes' procedure [7,8] to
estimate the lFDR without any assumption about the dis-
tribution under the alternative hypothesis. From this pro-
cedure, only an upper bound estimate can be obtained for
the lFDR and, indirectly, a lower bound for the FNR. One
important feature of this approach is that it considers an
empirical rather than theoretical null distribution.
Indeed, as noted by Efron, these distributions may be very
different and strong arguments support using the empiri-
cal one in genetic studies for which extensive data are
available [5].

In this work, and for variance-component linkage analy-
sis, we introduced a two-component mixture model based
approach that allows estimation of lFDR, FDR, and FNR.
We illustrate the contribution of our model to the analysis
of real GAW15 data. Our results highlight the importance
of correctly estimating the null distribution through the
proposed mixture model based approach.

Methods
Consider the variance-component linkage analysis
between a particular phenotype (here, the expression level
of a defined gene) and a specific marker. The null hypoth-
esis of no linkage (additive genetic variance due to the
studied quantitative trait locus (QTL) equals zero) is
tested by comparing the likelihood of this restricted
model with that of a model in which the variance is esti-
mated. Under the null hypothesis, the theoretical asymp-
totic distribution of the likelihood-ratio statistic X is a
50:50 mixture of a χ2 and a point mass at 0 [9]. When test-
ing n markers, n likelihood-ratio statistics Xi, (i = 1,...,n)
are available, with each Xi following either the null or the
alternative distribution.

For modeling of the marginal distribution of X, we con-
sider the following two-component mixture model, in
which the marginal cumulative distribution FX of X is:

FX(x) = ω1 × {θ × 1{X=0} + (1 - θ) ×
F1(x|α1, β1)} + ω2 × F2(x|α2, β2),

where ωc is the mixing proportions for the c components
(c = 1, 2; ωc ∈ [0, 1]; ω1 + ω2 = 1). Here, c = 1 corresponds
to the null hypothesis component and c = 2 to the alterna-
tive hypothesis component, respectively. The parameter θ
∈ [0, 1] is the weight of the point mass at 0 for the null
hypothesis component.

In this model, the conditional distributions Fc(x|αc, βc) are
gamma distributions with parameters αc and βc, where αc
is the mean and αc/βc the variance of the distribution.
Here, we impose that α1 <α2.

As discussed in the Background, the empirical distribution
under the null hypothesis can be very different from the
theoretical distribution [8]. Therefore, we decided to not
consider theoretical values (θ = 1/2, α1 = 1, and β1 = 1/2)
for the first component distribution parameters but rather
to estimate them. For the second component, we used a
gamma distribution, which represents a convenient and
parsimonious way to model the non-null distribution.

Parameters of interest are inferred by sampling from their
joint posterior distributions using Monte Carlo Markov
chain (MCMC) samplers implemented in WinBUGS soft-
ware [9]. All results presented correspond to 25,000
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sweeps of MCMC algorithms following a burn-in period
of 25,000 sweeps (period required to achieve algorithm
stability). Convergence is checked by visual inspection of
the curve of the plots for the different parameters of the
mixtures.

For each marker, the posterior probabilities of belonging
to the null hypothesis can be estimated directly from the
algorithm output, using empirical averages. These proba-
bilities are natural estimates of the lFDR for each marker.
They can be used to compute model-based estimates of
the observed FDR and FNR (conditionally to the data)
[10,11].

Results
We started from the cell intensity files (*.CEL) obtained
from the GeneChip® Human Genome Focus Array Hgfo-
cus [12] that provide gene-expression measurements of
8794 probe sets for 276 samples. We normalized and
summarized those measurements using the robust multi-
array average (RMA) method proposed by Irizarry et al.
[13]. A multipoint variance-component linkage analysis
was performed with MERLIN [14] on the normalized phe-
notypes using all 194 individuals from the 14 Centre
d'Etude du Polymorphisme Humain (CEPH) families and
the 2819 autosomal SNP data. Using the proposed mix-
ture model, we then estimated the lFDR at each marker,
and FDR and FNR. Here, we present only the results
obtained for the following 10 genes discussed in the arti-
cle by Morley et al. [1]: CHI3L2, DDX17, PSPHL, IL16,
HOMER1, ALG6, CBR1, TNFRSF11A, TGIF, and DSCR2.

Table 1 gives the estimated parameters of the two-compo-
nent mixture model for the expression of each of the 10
genes (phenotypes). The estimated values of the null dis-
tribution parameters differed markedly from the theoreti-
cal values. For the 10 selected genes, the maximal
differences between the theoretical and empirical values
were: 0.11 for θ (PSPHL), 1.96 for α1 (DDX17), and 1.08
for β1 (ALG6). For example, Figure 1 illustrates the histo-

gram distribution of the (non-null) observed likelihood-
ratio statistic X, and superimposed theoretical null hypo-
thesis, marginal and null hypothesis densities estimated
from the mixture model for the DDX17 gene. The marked
difference between the theoretical and estimated null dis-
tributions strongly supports the use of the estimated null
distribution rather than the theoretical one. As noted by
Efron [8], these differences can substantially affect any
simultaneous inference (including FDR estimation and
FWER control). It is worth noting that when the FWER is
controlled at 5% with a classical Bonferroni procedure,
the p-values for the DDX17 gene calculated from the the-
oretical null distribution yielded 52 significant results,
while the p-values calculated from the estimated null dis-

Histogram distribution of the (non-null) observed likelihood ratio statistic, theoretical null hypothesis density, and mar-ginal and null hypothesis densities estimated from the mix-ture model for the DDX17 geneFigure 1
Histogram distribution of the (non-null) observed likelihood 
ratio statistic, theoretical null hypothesis density, and mar-
ginal and null hypothesis densities estimated from the mix-
ture model for the DDX17 gene.

Table 1: Estimated parameters of the two-component mixture model for each of the ten genes analyzed

Gene θ α1 β1 α2 β2

CHI3L2 0.41 1.72 0.41 40.40 0.47
DDX17 0.47 2.96 0.24 33.90 0.32
PSPHL 0.39 2.76 0.25 63.04 0.73
IL16 0.50 1.08 0.90 5.14 1.85
HOMER1 0.45 1.02 0.92 3.36 1.25
ALG6 0.53 0.79 1.58 9.71 2.77
CBR1 0.41 0.74 1.37 2.42 2.15
TNFRSF11A 0.52 1.27 0.68 7.34 2.97
TGIF 0.54 0.70 1.35 3.96 1.47
DSCR2 0.52 0.83 1.17 3.57 1.38
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Estimated posterior probabilities (lFDR) for the 10 selected genes along the 22 chromosomesFigure 2
Estimated posterior probabilities (lFDR) for the 10 selected genes along the 22 chromosomes. Significant results 
at FDR threshold 0.05 are plotted in red.
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tribution gave only 13 significant results. In this example,
considering the theoretical null distribution clearly
tended to overestimate the number of significant results.

Summary statistics calculated from the full output of the
MCMC algorithm (after discarding the burn-in samples)
provide information on the posterior probabilities of
belonging to the null hypothesis component. Using these
estimates, probabilistic classification of the data (in terms
of discoveries and non-discoveries) can be obtained con-
comitantly with the estimations of FDR and FNR [10,11].
Herein, we decided to consider as discoveries (linkage)
the markers with posterior probabilities below a thresh-
old value, which can be different for each phenotype and
was chosen to ensure 5% FDR. Figure 2 shows the esti-
mated posterior probabilities (equivalent to the lFDR)
along the 22 chromosomes for the 10 phenotypes. Mean-
while, the estimated FNR ranged from 23% (PSPHL) to
28% (HOMER1) (data not shown). The selected markers
with an lFDR estimate below the defined threshold are
plotted in red. These selected markers differed substan-
tially from those obtained by Morley et al. [1]. For exam-
ple, we found multiple cis-acting and trans-acting
regulators for DDX7 and IL16, while Morley et al. [1]
found only cis-acting regulators for these genes.

However, it is difficult to directly compare the two
approaches because the selection strategies rely on com-
pletely different criteria. Moreover, it is worth noting that
while the Bonferroni procedure depends on the order of
the p-values, our procedure depends on the order of the
posterior probability (lFDR) values, and the two can be
completely different.

Conclusion
Herein we described a mixture model based approach to
estimate FDR, FNR, and lFDR in the context of variance
component linkage analyses. This approach allows the
selection process to take into account both false positives
and false negatives. Moreover, it provides an estimate of
the empirical null distribution, which is a key component
for any simultaneous inference procedure.

Indeed, in many situations, the empirical null distribu-
tion deviates from the theoretical one [8], leading to
incorrect statistical inferences and resulting decisions. Tra-
ditional estimating methods in linkage analysis used sim-
ulation approaches in which marker alleles were
randomly dropped from the genealogies. When markers
are numerous or pedigrees are complex, that method can
become very burdensome, with computations requiring
several days of running time. New genetic studies for
which large amounts of data are available open new
opportunities by allowing the estimation of appropriate
null and alternative densities without resorting to simula-

tions. Hence, our approach is much easier to handle
because examination of each of the different phenotypes
analysed required less than 1 hour of computer time. It is
important to note that this approach can be extended by
incorporating different null distribution parameters for a
set of phenotypes in a single model. In conclusion, we
think that new insights on linkage analysis using genome-
wide technologies might emerge from a mixture model-
based approach.
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