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Abstract

Although rheumatoid arthritis, a chronic and inflammatory disease affecting numerous adults, has
a complex genetic component involving the human leukocyte antigen region, additional genomic
regions most likely affects susceptibility. Whole-genome scans may assist in identifying these
additional candidate regions, but a large number of false-positives are likely to occur using
traditional statistical methods. Therefore, novel statistical approaches are needed. Here, we used
a single replicate from the Genetic Analysis Workshop |5 simulated data to assess for marker-
disease associations in 1500 rheumatoid arthritis cases and 2000 controls on chromosome 6. The
statistical methods included a maximum-likelihood estimation approach and a novel Bayesian latent
class analysis. The Bayesian analysis "borrows strength" from multiple loci to estimate association
parameters and can incorporate differences across loci in the prior probability of association.
Because of this, we hypothesized that the Bayesian analysis might be better able to detect true
associations while minimizing false positives. The Bayesian posterior means for the log alleleic odds
ratios were less variable than the maximum likelihood estimates, but the posterior probabilities
were not as good as the simple p-values in distinguishing a signal from a non-signal. Overall, Bayesian
latent class analyses provided no obvious improvement over maximum-likelihood estimation.
However, our results may not be able to be generalized due to the large effect simulated in the
human leukocyte antigen-DR locus.
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Background

Rheumatoid arthritis (RA) is the most common cause of
inflammatory polyarthritis in adults [1]. This chronic,
inflammatory disease has a complex genetic component
involving the human leukocyte antigen (HLA) region. For
nearly two decades the association between the HLA
region and RA has been known and confirmed in numer-
ous population studies [2]. The HLA associations are
extremely complex and their exact biologic role in RA is
unknown. Furthermore, family and twin studies have
indicated non-HLA genes may play an important role in
RA.

Advancements in genotyping technology have facilitated
the ability to generate large amounts of genetic data. The
large numbers of single-nucleotide polymorphisms
(SNPs) genotyped by whole-genome scans may over-
whelm conventional statistical approaches such as maxi-
mum-likelihood estimation (MLE). A few novel statistical
approaches reducing the dimensionality of large data sets
and detecting the structural relationship between varia-
bles have been described elsewhere [3-5]. Simple associa-
tion tests may produce a large number of false positives;
therefore newer statistical approaches are needed to incor-
porate known information on disease etiology, thus
reducing the potential for these false-positive associa-
tions. Bayesian analysis might be better able to detect true
associations while minimizing false positives, because it
can "borrow strength" from multiple loci to estimate asso-
ciation parameters and it can incorporate differences
across loci in the prior probability of association. Appro-
priate Bayesian analysis should also reduce parameter
estimate variability, similar to penalized regression meth-
ods such as ridge regression and the lasso (which are
themselves special cases of Bayesian analysis [6]). As a
methodological exercise, we contrast a novel Bayesian
latent class analysis with MLE in a simulated data set of RA
for chromosome 6 markers from the Genetic Analysis
Workshop 15 (GAW 15 Problem 3). Although our analy-
sis is restricted to a subset of the data that would be avail-
able from a genome-wide scan, in principle, our method
could be applied to a whole-genome scan.

Methods

We randomly selected one RA case from the affected-sib-
ling pair (ASP) in the first replicate of the GAW15 simu-
lated data for Problem 3. After selecting all of the controls,
our final data set included 1500 cases and 2000 controls.
In order to ensure a significant finding we reviewed the
answers to the simulated data prior to our analyses. Since
the strongest signal for RA was simulated to the HLA
region on chromosome 6, we limited our analyses to the
dense genotyping for chromosome six. In total 17,820
SNPs were simulated on chromosome 6, yielding an aver-
age inter-marking spacing of 9586 base pairs. This corre-
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sponds to the density one would expect from a genome-
wide 300,000 K SNP set.

Model

For each SNP i, we modeled the 2 x 2 allele-by-disease sta-
tus table using a hypergeometric likelihood with OR =
exp[A] [7]. The prior on the log allelic odds ratio g is a
mixture of point mass at 0 with a distribution of N(y;, o),
where j = 1,.., J, and J is the number of non-null classes.
For example,

B =0+ 2]‘:1,...] 1[X; = jlB;

where ;is ~N(y;, ;) and X;is binomial or trinomial (0,..,
J) with probabilities

(1- 21:1,_.,1”1’”1""”1)'

We considered two ways to separate the markers into asso-
ciated (non-null, X > 0) and non-associated (null, X = 0)
classes. First, we naively assume all non-null loci are
derived from the same distribution (J = 1). Second, we
assume some markers are positively associated with the
outcome, i.e., OR > 1, and others are inversely associated
with the outcome, i.e.,, OR< 1 (J = 2).

A vast majority of the disease-marker associations will be
null, so we used conjugate priors to update y; and g;. Con-
jugate priors are helpful when the number of non-null
loci is small and they may provide information distin-
guishing between classes, i.e., OR < 1 or OR > 1, for the
model where J = 2. In principle non-identifiability is a
problem; however, by putting very small prior probabili-
ties on identical alternative parameterizations we may
avoid this issue [8]. The conjugate priors for 4 and o;were
Hilo~ N(uy, 05/x5) and o ~ Inv-2%(0;, 14). The hyperpa-
rameters we used were,

forj=1
Hy=10g(2), Ky =5, vy=5, 6y = log(2)/2,

and forJ =2

tyg=10g(2), Kky9=5, vio =5, 0y¢? = 10g(2)/2,

o =-108(2), o= 5, Va9 =5, 0y¢” = 10g(2)/2.
We put Dirichlet priors on 7z = (.., 7). For example,
when J = 1, z ~Dirichlet (1, 999). To account for differ-
ences in prior probability of association, we also varied
Dirichlet hyperparameters across regions. We selected
three candidate regions with identical, high prior proba-

bility of association after reviewing the answers for the
simulated data and performing a literature search on RA.

Page 2 of 5

(page number not for citation purposes)



BMC Proceedings 2007, 1(Suppl 1):S112

The HLA region, where the causal SNP was simulated, and
two upstream regions from the literature search were up-
weighted. The two upstream regions contained several
genes, including WISP3 and VIP, with a potential biologic
role in RA [9,10]. We fixed the ratio of prior odds of asso-
ciation between candidate regions and non-candidate
regions at = 53. For example, when ] = 1 we set z~Dirich-
let(1, 999) in non-candidate regions and 7z ~Dirich-
let(0.25, 4.75) in candidate regions. In the interest of time
and to reduce the computational burden we chose every
fifth SNP from the dense data on chromosome 6, for a
total of 3564 markers. Of these, 62 were in the HLA region
and 22 in each of the two upstream regions. In principle
the latent class analysis has no limit as to the number of
SNPs that can be analyzed, and given optimized code,
more computing resources and more time, an analysis of
300,000-500,000 markers from a genome-wide scan is
feasible. Each analysis presented here took approximately
12 hours on three nodes (each with two 3.2 GHz CPUs),
so a scan with 300,000 markers would take less than five
days on a 30-node cluster.

Model fitting

We used three parallel Gibbs sampling chains with 3000
iterations each in order to fit the model. The parameters
4, 0, and 7; could be updated by directly sampling from
their conditional posterior distributions. The parameters
S and X were simultaneously updated using the Metropo-
lis-Hastings algorithm.

Results and discussion

The posterior means for the log allelic odds ratios are pre-
sented by marker position for the MLE (red) and Bayes
(black) models in Figure 1. Parameter distributions were
similar across chains, so all models appeared to converge
(results not shown). Figure 1A and 1B show the two Bayes
models without weighted priors. The Bayes estimates in
Figure 1C and 1D are from the models in which the priors
were either weighted as associated (candidates) or non-
associated (non-candidates). Across the panels the peak
lies within the HLA region. However, the log allelic odds
ratio () estimates from MLE are more dispersed than the
Bayes estimates. In Figure 2 the posterior probabilities of
true-positive results are presented for the MLE model
(red) and Bayes models J = 1 and J = 2 (black). The top
panels represent the model without weights and the bot-
tom panel represents the model with weights. The proba-
bilities for a true-positive result are nearly evenly
dispersed across the markers for the Bayes estimates,
whereas the MLE probabilities peak near the HLA region
and decrease substantially elsewhere (Fig. 2).

The average estimated log allelic odds ratios varied
slightly across the MLE and Bayes models (Table 1). The
average fvalues are given for four regions and a combined
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region. Although the estimates were nearly equal for the
non-candidate region, the average f values for the HLA
region differed slightly. The Bayesian models produced
nearly equal values (-0.305 with priors and -0.329 with-
out priors), whereas the MLE average was greater (-0.575).
For candidate region 2, the estimates were nearly equal
across the models, but the average £ values differed for
candidate region 1. The average £ from the MLE model
was greater in candidate region 1.

Conclusion

We developed and implemented a Bayesian latent class
analysis because we hypothesized that by "borrowing
strength" across multiple loci and incorporating prior
probabilities of association, such an analysis might be
more sensitive and specific than p-values from maximum-
likelihood based tests. We applied this latent class analysis
to the GAW15 simulated chromosome 6 data, but found
that the latent class models provided no obvious improve-
ment over MLE. However, our overall results may not be
generalizable due to the large simulated effect in the HLA-
DR locus.

As can be seen in Figures 1 and 2, the Bayesian posterior
means for f is less variable than the MLE. This suggests
that if researchers are choosing markers to follow up on
the basis of estimated effect size, some sort of smoothing
procedure could be useful. MLEs for rare SNPs may be
very unstable. Smoothing MLEs to a group mean will
account for differences in information across SNPs and
hence could reduce the false-positive report probability
[11].

On the other hand, the posterior probability of associa-
tion Pr(X > 0) from the latent class analyses was not as
good as simple p-values distinguishing a signal from a
non-signal. Negative consequences, although minor,
occur when up-weighting regions that are not true candi-
dates (Table 1). In the GAW15 simulated data set, when
the HLA signal was extremely large, the weighting of can-
didate regions did not appear helpful.

There are clearly drawbacks to the latent class approach as
we have implemented it. The posterior probability of
belonging to a non-null class, Pr(X # 0), is much too large
for a majority of the loci. Setting f(f) equal to point mass
at 0 may be too stringent. One potential solution is to
allow for some noise to distinguish signals near, but not
directly at, zero from true effects. Additionally, it appears
the priors are overwhelmed by the large amount of data
(loci). Because a majority of the loci are likely null, the
prior sample size (e.g., & or the absolute magnitude of 7))
could be increased. Other drawbacks to our implementa-
tion include the facts that the ratio of priors comparing
candidate regions to non-candidate regions is fixed, and
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The beta estimates from the MLE and Bayes models. The Bayes (black) and MLE (red) beta estimates for model | = |
and | = 2. The Bayesian estimates are the mean of the posterior. The x-axis is the marker position and the y-axis is the log OR.
Panel A, model I; Panel B, model 2; Panel C, model |, non-associated/associated weights; Panel D, model 2, non-associated/
associated weights.
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Figure 2

The probabilities for a true-positive result using the MLE and Bayes models. The posterior probabilities of true-pos-
itive results for priors plotted against the marker position. The posterior probabilities are transformed frequent p-values,
0.0001/(p + 0.0001). The red plots are from the MLE estimates and the black plots are from the Bayesian estimates. Panel A,
MLE estimates; Panel B, model |, Bayesian estimates; Panel C, model 2, Bayesian estimates; Panel D, MLE estimates; Panel E,

model |, Bayesian estimates, non-associated/associated weights; Panel F, model 2, Bayesian estimates, non-associated/associ-
ated weights.
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Table I: Average beta estimates from the MLE and Bayes models across candidate and non-candidate regions

Model Non-candidate HLA Region | Region 2 HLA + Region | + Region 2
MLE? -0.005 -0.575 0.014 0.01 -0.331
Without priorsb -0.004 -0.329 0 0.005 -0.191
With priorst -0.004 -0.305 0.001 0.007 -0.177

aMaximum likelihood estimates

bBayesian estimates. With priors is weighted and without priors is unweighted.

only loci in regions sharing the same prior contribute to
estimating the posterior odds of association in those
regions. A hierarchical Bayesian approach may be more
appropriate because it estimates both baseline and rela-
tive odds of association from the data, rather than fixing
them [12]. By not fixing the prior odds in non-candidate
regions, the hierarchical Bayesian approach may also be
more sensitive to true associations in unexpected regions
(e.g., regions with little biologic annotation).
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