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Abstract
In this report, we focused on the multiplicity issue in Problem 1 of Genetic Analysis Workshop 15.
We investigated and compared the performance of the stratified false-discovery rate control
method with the traditional aggregated approach, in an application to genome-wide linkage analyses
of single-nucleotide polymorphism-to-gene expression data. We showed the importance of
utilizing the available map information and demonstrated the power gained by conducting false-
discovery rate control separately for cis and trans regulators under three different frameworks:
fixed rejection region, fixed false-discovery rate, and fixed number of rejections.

Background
The routine use of multiple-hypothesis testing in infer-
ence for large-scale genetic and genomic data has gener-
ated controversies and discussions about appropriate
ways to adjust for the multiplicities. The conventional
control of family-wise error rate (FWER) strictly regulates
the probability of type I error but with a considerable loss
of power. The recent methodology based on false-discov-
ery rate (FDR) control [1] is an alternative that provides
better power yet controls the occurrence of false positives,
and its use has become common in the analyses of micro-
array gene expression data.

Of particular interest here is the use of auxiliary or prior
information in the FDR setting. The stratified FDR

method [2] was chosen for this analysis because the prior
information required is rather general and does not need
any distribution assumptions. Sun et al. [2] investigated
the performance of the method under two frameworks
and showed that under the fixed rejection region frame-
work, the aggregated FDR is a weighted average of the stra-
tum-specific FDRs; under the fixed FDR framework, the
stratified approach identifies more true positives.
Recently, Greenwood et al. [3] considered the stratifica-
tion principle under a third framework: fixed number of
rejections. They demonstrated that the stratified approach
provides an FDR control at a lower rate.

In this report, we focused on the stratified FDR method
[2] and applied it to Problem 1: Genetics of Gene Expres-
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sion in Humans in Genetic Analysis Workshop 15. We
considered the two-stage design of Morley et al. [4] in
which genome-wide linkage analyses of single-nucleotide
polymorphism (SNP)-to-gene expression data were first
carried out and significant results were then selected for
further studies. We were particularly interested in the
selection procedure and comparisons of the performance
between the stratified FDR method and the traditional
aggregated FDR control. The prior information considered
here is the map distance between a SNP and a gene whose
expression is the trait.

Methods
We first performed expression quantitative trait linkage
(eQTL) analysis using MERLIN regress v 1.0.1 [5,6]. We
zeroed out the genotypes of the child as well as those of
the grandparents when a Mendelian inconsistency was
detected. All other genotypes were retained. Marker allele
frequencies were estimated from the data and single-point
linkage analyses of gene expression data were performed
for all pairs of 3554 genes and 2819 SNPs, excluding the
ones (genes or SNPs or both) on the sex chromosomes.
We then stratified the linkage results by the map distance
between each SNP and the gene. Gene positions were
obtained from Build 36.1 of the UCSC Genome Browser
[7]. SNP locations were obtained from Build 126 of
dbSNP [8] (on Build 36.1 of the human genome). We
used the definition of Morley et al. [4] in which cis regula-
tors are the SNPs within 5 Mb of genes and trans regulators
are the remaining SNPs. Stratum 1 contained cis SNPs and
stratum 2 contained trans SNPs, and the aggregated group
included all SNPs ignoring stratification. We used m to
denote the total number of hypotheses among which m0
were true nulls, R to denote the number of rejections, and
p(i), i = 1,...,m to denote the linkage p-values while p(1) ≤
p(2) ≤ ... ≤ p(m) were the ordered p-values. We used super-
script (k), k = 1, 2 as the stratum indicator. Finally, we
applied the stratification principle [2] under the following
three frameworks.

Framework I: fixed rejection region

This framework chooses the rejection region in advance,
i.e., it rejects all hypotheses with unadjusted p-values less

than a pre-determined α value, e.g., α = 0.01%. The corre-
sponding FDR level among the R positives can then be

estimated by , where R = {p(i) ≤ α},

 is an estimate of the proportion of null hypotheses, π0

= m0/m, e.g., (λ) = #{pi > λ}/(m(1 - λ)) with λ = 0.5.

The rejection procedure remains the same for the stratified

method using the same α level (R(1) + R(2) = R). However,
the estimates of FDR among R(1) and R(2) can be consider-
ably different from the aggregated FDR, with one stratum

estimate closer to 0 and the other closer to 1. For both
cases, one thus obtains more information on the specifi-
city of the results.

Framework II: fixed FDR

Under this framework, the targeted FDR level is pre-cho-

sen at a γ level, e.g., γ = 5%. Storey [9] showed that con-

trolling FDR at the γ level is equivalent to rejecting all tests

with q-values ≤ γ, and the q-values can be estimated by

, and . This

method is equivalent to the FDR adjusted p-value method
[10,11]. To fairly compare the performance of the strati-
fied FDR method with the aggregated one, we controlled
the FDR at the same level for both Strata 1 and 2 and the
aggregated group using the above q-value method. The
objective was to show that the total number of rejections
R(1) + R(2) under stratification is greater than R under
aggregation.

Framework III: fixed number of rejections

In this case, the total number of significant results R that
merits further study is pre-determined based on, for exam-
ple, the budget and capacity of a particular chip platform.
Without stratification, the choice of R hypotheses is
straightforward, i.e., the R tests with the smallest p-values:
p(1),...,p(R). The corresponding FDR level can be estimated

by . Under stratification, one needs

to find the optimal configuration of R(1) and R(2) such that
R(1) + R(2) = R and the overall FDR is minimized, where

. The

goal is to show that stratification leads to a smaller FDR
rate given the same number of positives allowed. More
importantly, the configuration of R(1) and R(2) obtained
using stratification can differ markedly from the aggrega-
tion case. Without stratification, the distribution of R
rejections between the two strata is roughly proportional
to the number of hypotheses in each stratum; while with

stratification, the stratum with smaller π0 (less noise) and

higher power to detect true signals proportionally rejects
more hypotheses.

Results
Among the 9,069,390 tests with valid results, more than
half (5,000,428) had p-values equal to 1. We eliminated
the tests with H2 = 0, where H2 is the estimated locus-spe-
cific heritability, because we observed a significant associ-
ation between p-value = 1 and H2 = 0 (p < 0.0001). Among
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the remaining 3,855,428 tests, 16,018 were in the cis stra-
tum and 3,839,410 in the trans stratum.

The distributions of the aggregated p-values and parti-
tioned p-values in cis and trans strata were roughly uni-
form. (Figures illustrating these distributions are available
at http://www.utstat.toronto.edu/sun/publications.) As
expected, the cis stratum contained a relatively higher pro-
portion of true signals than the trans stratum, which was

further confirmed by the smaller estimates of π0 shown in

Table 1 (88.18% vs. 95.06%) and the higher density of
small p-values close to zero. Results in Table 1 clearly
demonstrated that the stratified method outperformed
the aggregated approach under all three frameworks. For
example, under the fixed rejection region approach,
among the 8043 rejections with aggregated FDR of 4.56%,
129 belonged to the cis stratum with a much lower stra-
tum-specific FDR of 1.09%. In fact, among the expected
366 false positives, only 1 was expected to be from the cis
group, a clear gain of information by the use of stratifica-
tion. Under the fixed FDR framework, the stratified
method provided 57 more true positives while controlling
the FDR at the same rate as the aggregated approach.
Under the fixed number of rejections framework, e.g., R =
2000 in Table 1, the aggregated FDR method rejected the
tests with the smallest p-values regardless of the map
information. Among the 2000 rejections, 55 belonged to
cis stratum and 1945 to trans stratum corresponding to an

overall  = 2.05%. In contrast, the stratified FDR
approach allowed different rejection configurations in the
two strata, with R(1) = 133 and R(2) = 1867 being the opti-

mal one corresponding to an overall  = 2.00%.
Besides the obvious advantage of achieving a smaller FDR,
the stratified method allocated proportionally more rejec-
tions out of the 2000 to the cis stratum (133 vs. 55), a pref-
erable result given the different characteristics of the cis
and trans regulators. Other choices of the total number of
rejections, i.e., R = 500, R = 1000 and R = 8000 gave sim-
ilar results. (Figures illustrating these results are available
at http://www.utstat.toronto.edu/sun/publications.)

Discussion
The stratified FDR method of Sun et al. [2] provides a sim-
ple way of incorporating the available auxiliary or prior
information to improve power in the context of multiple
hypothesis testing. We applied their stratification princi-
ple to the linkage analyses of gene expression data of
Problem 1 under three different frameworks. Framework
II represents the traditional view of type I error control in
which a desirable error rate is pre-determined. However,
the nominal level could be too optimistic for a given data
set, leading to no rejections, or too liberal, resulting in too
many significant results for follow up studies. Therefore,
in many applications Frameworks I and III are more appli-
cable and meaningful. Results of our analyses demon-
strated clearly that it is advantageous to utilize the
available map information under any of the three frame-

FDRˆ

FDRˆ

Table 1: Summary statistics and results under the three frameworks

Stratum

Parameter Aggregated cis trans

Summary statistics
No. tests 3,855,428 16,018 3,839,410

 (%) 95.03 88.18 95.06

Minimal q-value 2.23 × 10-7 1.12 × 10-9 4.44 × 10-7

Framework I, α = 0.0001
No. rejections 8,043 129 7,914

 (%) 4.56 1.09 4.61

E [No. false positives] 366 1 365
Framework II, γ = 0.05

No. rejections 8,541 339 8,262
E [No. true positives] 8,114 322 7,849

Framework III, R = 2,000
Rejection without stratification 2000 55 1945
Rejection with stratification 2000 133 1867

Overall  (%) 2.05 2.00

π̂0

FDRˆ

FDRˆ
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works considered. However, the stratified method did not
outperform the aggregated approach by as large a margin
as we had expected given the known characteristic differ-
ence between cis and trans regulators. One possible expla-
nation is that the large number of trans regulators
overwhelms the potential gain using the current measure
of efficiency.

To demonstrate that the smaller FDR estimate in the cis
stratum was not an artifact of sampling variation or the
highly skewed subset size of the tests but the true biologi-
cal difference in cis- and trans-acting loci, we randomly
sampled a set of 16,018 p-values as the "cis" stratum and
performed the corresponding Framework I analyses, and
this procedure was repeated 20 times independently. The

means of the estimated π0 and FDR were 94.76% (SE =

0.67%) and 4.73% (SE = 0.9%), respectively. Accounting
for the sampling variation, these values differed signifi-
cantly from those obtained using the available map infor-

mation (  = 88.18%,  = 1.09%), while they were

essentially the same as those under aggregation (  =

95.03%,  = 4.56%). In addition, the average number
of rejections (i.e., tests with p-values < 0.0001) over the 20
random samples is 33.25 (SE = 6.6), which is close to the
expected number of rejections (8043*16018/3855428 =
33.42) in a random sample of 16018 p-values; while the
original cis stratum, defined based on the map distance,
had 129 rejections (i.e., higher density of small p-values
than a random sample).

In our analyses, we used the criterion of Morley et al. [4]
to define the cis and trans regulators. Other definitions are
possible and will change the FDR results quantitatively
but not qualitatively. This is clearly demonstrated by the
results shown in Table 2 for which we redefined cis regu-
lators as the SNPs within 3, 10, or 20 Mb of genes. The
more interesting and challenging question is the identifi-
cation of the optimal stratum indicator. Searching
through a list of candidates is an obvious but biased
approach because it added another level of multiplicity
[2].

It is also possible to exploit the available map information
in other ways. For example, one could apply the weighted
p-value method [12] by using the map distance as the
weighting factor. That is, perform the FDR control on
weighted p-value pw = p/w, where p is the original linkage
p-value between a pair of SNP and gene, and w is the cor-
responding weight inversely proportional to the map dis-
tance. Similar to the stratification case above, the choice of
a specific weighting scheme is not unique and the identi-
fication of the optimal one remains an open problem. In
addition, the comparison and connection between the
weighted p-value method and the stratified approach is of
interest.
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Table 2: Results of using different distance criterion to define cis regulators

3 Mb 10 Mb 20 Mb

Parameter cis (<) trans (≥) cis (<) trans (≥) cis (<) trans (≥)

No. tests 9,699 3,845,729 29,827 3,825,601 52,853 3,802,575

 (%) 87.68 95.05 89.32 95.08 89.62 95.11

Framework I, α = 0.0001
No. rejections 69 7,974 204 7,839 302 7,741

 (%) 1.23 4.58 1.31 4.64 1.57 4.67

E [No. false positives] 1 365 3 363 5 361
Framework II, γ = 0.05

No. rejections 200 8,398 519 8,113 761 7,927
E [No. true positives] 190 7,978 493 7,707 723 7,531

Framework III, R = 2,000
Rejection without stratification 29 1971 90 1,910 127 1,873
Rejection with stratification 67 1933 184 1,816 222 1,778

Overall  (%) 2.03 1.99 1.99

π̂0

FDRˆ

FDRˆ
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