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Abstract
Rheumatoid arthritis is a complex disease caused by a combination of genetic, environmental, and
hormonal factors, and their additive and/or non-additive effects. We performed a linkage analysis
to provide evidence of rheumatoid factor IgM on linkage, based on Bayesian variable selection
coupled with the new Haseman-Elston method. For statistical inferences to estimate unknown
parameters, we utilized the perfect sampling algorithm, an emerging simulation technique that
alleviates concerns over convergence and sampling mixing. Our methods provide powerful and
conceptually simple approaches to simultaneous genome scans of main effects and all possible
pairwise interactions. We apply them to the Genetic Analysis Workshop 15 data (Problem 2)
provided by the North American Rheumatoid Arthritis Consortium (NARAC).

Background
Rheumatoid arthritis (RA) is a clinically heterogeneous
disorder with variability in severity, disease course, and
response to therapy. Although the exact cause of rheuma-
toid arthritis is still unknown, RA is known to be a com-
plex disease caused by a combination of genetic,
environmental, and hormonal factors, and their additive
and/or non-additive effects (epistases or gene × environ-
ment interactions). Genetic risk factors not only deter-
mine susceptibility for the disease but also correlate with
disease severity and phenotype. Among phenotypes, rheu-
matoid factor IgM is a significant and common measure
for diagnosis of RA. Therefore, genetic linkage analyses of
IgM levels may reveal major differences in chromosomal
regions showing evidence for linkage.

While recent interest has been focused on genome scans
using a large number of marker loci, the common
approaches of existing statistical methods produce often
inconsistent results. This is due in part to the fact that they
test markers one after another and fail to capture the sub-
stantial information of epistases among disease loci. The
use of Bayesian model selection has been the popular
method of remedying the pitfalls of conventional meth-
ods in recent years, whereby identifying loci with signifi-
cant effects is viewed as a model selection problem.
Unlike conventional methods suggesting a single best
model, Bayesian methods consider multiple possible
models along with their probabilities to incorporate
model uncertainty. One of the powerful Bayesian model
selection approaches is the use of stochastic search varia-
ble selection (SSVS) [1-4], in which Markov chain Monte
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Carlo (MCMC) sampling algorithms are used to sample
from the posterior distributions, thus making identifica-
tion of promising subsets even for many candidate varia-
bles (markers) feasible.

Although Bayesian approaches with MCMC techniques
have made intensive computations possible and efficient
on large-scale data sets arising in modern genomic and
genetic applications, an application of Bayesian model
selection is still quite challenging and limited from both a
computational standpoint as well as the sensitivity to the
choice of prior distributions. The usage of MCMC has
been often controversial due to the uncertainty of conver-
gence and the dependence on starting positions. In addi-
tion, the samples obtained by MCMC are correlated,
which can drastically reduce the efficiency of the
approaches. These drawbacks of MCMC, however, can be
overcome by perfect sampling, which was first proposed
by Propp and Wilson [5] under the name of coupling
from the past (CFTP). Perfect sampling uses a scheme of
coupling chains in order to guarantee that samples are
exactly from the target distribution of interest. The basic
idea is to run coupled chains that start from all initial
states from the past time -T and run them to time 0, in
which at any instant of time t ∈ [-T, 0), the same random
seed and an updating function are applied to all possible
chains. Once all the chains meet (coalesce), from this time
onward, due to the common random seed and an updat-
ing function, they follow the same path, and at a time 0
they arrive at the same state, which is then an exact sample
from the posterior distribution. Therefore, this procedure
guarantees that the effect of initial states wears off, yield-
ing an exact sample regardless of starting values. Although
perfect sampling suggests the ideal approach to draw an
exact sample, the framework of running chains from all
possible states is almost infeasible because of the large
number of markers involved.

Motivated by Huang and Djuric [6], we propose an effi-
cient implementation of perfect sampling for high-dimen-
sional data. Then, coupled with the new Haseman-Elston
method [7], we carry out screening to identify susceptibil-
ity alleles that are more closely linked to rheumatoid fac-
tor IgM. We further evaluate their possible epistases. Most
existing methods adopt a two-stage procedure to screen
epistases, in which epistases are only considered for previ-
ously selected markers with significant main effects, and
thereby they are bound to miss important loci whose
effects influence a trait primarily through epistasis. In con-
trast, we perform an efficient simultaneous screening both
on main effects and epistases. Our methods can handle
large problems involving up to thousands of markers
without any strict conditions in a reasonable running
time. We apply these methods to the RA data of Genetic
Analysis Workshop 15 (GAW15) (Problem 2).

Methods
Haseman-Elston method
The simple regression method of the Haseman-Elston [8]
offers an effective framework for studying linkage between
markers and disease. Later, Elston et al. [7] proposed
modifications to the original Haseman-Elston method [8]
to improve its power. It is based on regression of the
squared sum of mean-centered trait values, CPj = (Y1j -
m)(Y2j - m), with mean m on the estimated proportion of
alleles shared identically by decent (IBD) by the sibling
pair, Y1j, Y2j.

The model and prior specifications
Assume that there are p markers on the whole genome
with n dependent data (samples). Then, we form a model
that includes a number of different marker loci to study
their simultaneous effects, which can be best approached
in a linear regression fashion such as

where μ is the mean, yj is an observed phenotypic value

(CPj) for each sibling pair, xij is a proportion of IBD for ith

marker in jth sample, and βi is an effect of the ith marker.

The variance of the trait is assumed to be ε ~ N(0, φ-1I),

with φ being a precision parameter. To explore promising
subsets (a set of markers having evidence of linkage) over

the entire model space efficiently, a binary indicator γi is

used to represent an exclusion or inclusion of ith marker in

the model [1]. Then a model is represented by γ = (γ1,...,

γp) and Eq. (1) can be reduced to the pγ = Ipγ variables by

ignoring columns of X for which γi = 0. We denote the cor-

responding model as Xγ and coefficient parameters as βγ.

When epistases are considered, the indicator vector γ is

expressed as γ = (γ1,..., γp, γ(1, 2),..., γ(i, j),..., γ(p, p-1)), where

γ(i, j) is an indicator of an epistasis of ith and jth markers and

Eq. (1) is extended by adding  for an epistatic

effect,  between loci j1 and j2 ≤ p. Therefore, a general

model to describe both main effects and epistases can be

written Y = μ + Xγβγ + ε, where some of the columns of Xγ

are formed from the original variables by multiplication
of columns of X to build the design matrix for epistases

and βγ = [β1,..., β2, β1, 2,..., βp-1, p].

The prior distribution for unknown parameters Φγ = (βγ, γ,
φ-1) can be decomposed as π (βγ, γ, φ-1) = π (βγ|γ, φ-1) π (γ)
π (φ-1) under a simple independence assumption. We
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assume the prior Φγ to be in the conjugate normal-gamma
family, namely,

where c is an unknown positive scalar.

Posterior inference
The statistical inference for the identification of marker
loci having evidence of linkage is retrieved through the
posterior distribution of γ, which is given by Bayes' rule, π
(γ|Y) ∝ π (γ)f(Y|γ). After nuisance parameters βγ and φ-1are
integrated out from the marginalized likelihood, it is sim-
plified to

When there are a large number of markers involved, Eq.
(2) is estimated via MCMC algorithms by simulating sam-
ples from the posterior distribution without knowing the
normalizing constant, but at a risk of false inferences and
being subject to initialization biases. We use perfect sam-
pling described as follows.

Posterior simulation via perfect sampling
Under a non-epistatic model, γ = (γ1, K, γp), for example,
we simulate samples from Eq. (2) by updating γ in a com-
ponent-wise manner. Each component γi is chosen con-
secutively or via a random permutation on its index (1,...,
p). Then the probability of determining γi to be 1 condi-
tional on other latest updated components is given from
a Bernoulli trial such as

where γ(-i) = (γ1,...., γi-1, γi+1,..., γp) and γ(i) = (γ1,...., γi-1, 1,
γi+1,..., γp). There are 2p-1 possible configurations of Eq. (3).
The original perfect sampling method, CFTP [5], entails
running parallel chains from every possible 2p-1 state from
the past time -T to 0 repeatedly until it achieves coales-
cence. However, our approaches do not require running
all these chains based on two following ideas.

First, for t ∈ [-T, 0), instead of attempting to run all possi-
ble chains, we construct, sandwich distributions, which
bound all the possibilities of Eq. (3) such as

so that an update is done only on these two distributions.
This is because the coupling of these sandwich distribu-
tions implies the coalescence of all other chains in

between. Second, rather than tracing , we

generate its support  to keep track of only

possible values, which further reduce the computational

burden. That is, for a random seed  generated from a

uniform distribution on (0, 1), if

 is taken as true and its

support  is assigned as the same value. On the other

hand, if  is indeterminate and  records

uncertain values, {0, 1}. Then, for all i = 1, 2,..., p, an
updating rule is formulated as

Coalescence is achieved when all supports become settled

at time 0, i.e., | | = 0 for all i. This procedure in imple-

mented iteratively as follows. At T = -1, for each  ∈ St,

we decide two sandwich distributions and update S0

based on Eq. (5). If the coalescence is achieved, a support
S0 is reported as a draw from the target posterior in Eq. (2).
Otherwise, we move back at T = -2 and repeat updating for

t ∈ [-2, 0], and then check coalescence at 0. The whole pro-
cedure is repeated, and a sample is drawn only if coales-
cence occurs at 0. Otherwise, the starting time is shifted
further back, preferably at -2T [5] and the updates perform
by reusing the same random seed, which is critical to pre-
clude the space from growing [5]. One of the main keys in

our methods is to construct two bounds,  and . We

have recently proposed how to build these bounds,
approximately to succeed the perfect sampling even for
high dimensional spaces. The manuscript may be
obtained upon request.

Model space prior for epsitases
To account for epistatic effects, we consider two different
model space priors of π (γ). An independence prior is usu-
ally used when it is believed that effects of markers influ-
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ence the trait entirely independently of each other. In this
case, we have

where w1 and w2 are hyper-priors for the inclusion of main
effects and epistases, respectively. It is reasonable to
choose that w2 ≤ w1 ≤ 0.5. Alternatively, we can embed the
dependent structure of main effects and epistases [9] such
as

where the conditional probability for an epistasis to be
included, γ(i, j) = 1 takes on four different values depending
on the main effects,

This dependent relationship can be advantageous in that
we can reduce the size of the model space by limiting cer-
tain epistases to be included in the model. For example, if
we believe that an epistasis should be considered only if
at least one of the main effects is significant, we let w00 =
0. However, because we might miss important marker loci
that might affect a phenotype primarily through epistasis,
it may be more reasonable to have 0 ≤ w00 ≤ w01 ≤ w11 ≤
0.5. The hyper-priors, (w1, w2) in Eq. (6) and (w11, w01,
w00) in Eq. (7), can indirectly control the expected num-
bers of effects in the model. Therefore, small values are
essential because we expect there are a small number of
markers linked to the trait.

Selection criterion
After we collect samples using perfect sampling, the iden-
tification of markers that are tightly linked to the genes is
given by estimates of marginal posterior probabilities. To
this end, we simply count the relative frequencies of
model visits in the samples, and the marginal posterior of
the ith marker being important is estimated by summing
over the posterior of models containing this marker.
Then, we list the estimates of marginal posterior probabil-
ities in a numerical order. Their patterns are used to gauge
the importance of effects. When the decision is made, the
model space prior (w1, w2) in Eq. (6) and (w11, w01, w00)
in Eq. (7) play an important role as threshold values. If the
marginal posterior probability of the marker is higher

than these values, we decide that the corresponding effect
of this marker is significant.

Data
We used rheumatoid factor IgM as the quantitative trait
values and microsatellite scans for 511 multiplex families
over the 22 autosomal chromosomes. The IBD values
were obtained using the statistical software MERLIN [10].
A total of 590 independent sib pairs and 407 microsatel-
lite markers were used in the analysis.

Our programs were written in MATLAB and each was run
on Super Macintosh G5 with a 2.66 GHz quad-processor.

Results
Choice of hyper-parameters
Before we ran perfect sampling, we had to decide hyper-
parameters (c, w1) under a non-epistatic model, and (c,
w1, w2) in Eq. (6) or (c, w11, w01, w00) in Eq. (7) under an
epistatic model. To specify these values, rescaling and sen-
sitivity analysis may be advisable. We checked the sensi-
tivity of our methods toward the choice of c by re-running
our algorithms for several values of c between 1 and 10.
The results were not sensitive (data not shown). Choosing
(w1, w2) and (w11, w01, w00) in the model space prior is
rather straightforward. A smaller value should provide
smaller estimates of marginal posteriors, but our results
were robust to these values since we took them as thresh-
old values to select important effects. Therefore, in this
paper, we only reported the results by fixing (c, w1) = (5,
0.01) for a non-epistatic model and (c, w1, w2) = (5, 0.01,
0.01) in Eq. (6) and (c, w11, w10, w00) = (5, 0.01, 0.01,
0.005) in Eq. (7) for an epistatic model for comparison.

Main effects
We first performed screening of main effects only. We col-
lected 500 samples from perfect sampling. The average
coupling time to achieve coalescence for one sample was
about 1 minute. Figure 1 displays an empirical frequency
of each effect to estimate a marginal posterior probability,
π (λi = 1|Y). We found the highest peak on chromosome
6, and suggestive peaks on chromosomes 2, 4, 5, 11, 19,
and 21, which had estimated marginal probabilities
greater than w1 = 0.01.

Total effects (main and interaction effects)
To assess the evidence for epsitases, we included all main
effects and two-way pairwise interaction terms in the
model. Therefore, the total number of effects considered
was 83,028. We compared two different assumptions Eq.
(6) and Eq. (7). We collected 500 samples. The average
coupling time to achieve coalescence for one sample was
about 25 minutes under Eq. (6) and 21 minutes under Eq.
(7). The summary of the results is given in Table 1. The
same significant main effects as in the above "main
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effects" were found. Additionally, we found three sugges-
tive interactions effects between chromosomes 6 and 16,
6 and 19, and 6 and 21 under both Eq. (6) and Eq. (7)
prior assumptions.

Conclusion
We have applied Bayesian variable selection via perfect
sampling to the RA data of GAW15 to identify markers
linked to rheumatoid factor IgM. Our methods can
accommodate a large number of markers, permit epistatic
effects to be considered in the models, and evaluate all

effects simultaneously. Therefore, they have significant
advantages over the classic approaches. As opposed to
other Bayesian methods, our methods do not require any
tunings relating to convergence issues of MCMC tech-
niques and there is no dependence on initial values.
Therefore, they are reliable even from a small number of
drawn samples.

Our analyses have revealed that there is a strong evidence
for main effects on chromosome 6, and also marginal evi-
dence for epistases between chromosomes 6 and 16, 6

Marginal posterior probabilities of component λFigure 1
Marginal posterior probabilities of component λ. The highest peak on chromosome 6, and suggestive peaks on chromo-
somes 2, 4, 5, 11, 19, and 21. All had estimated marginal probabilities higher than the model prior w = 0.01 (dotted line).

Table 1: Ranking of empirical estimations of marginal posterior probability of significant effects under two prior assumptions

(w1, w2) = (0.01, 0.01) (w1, w11, w10, w00) = (0.01, 0.01, 0.01, 0.005)

Ranking Chromosome Relative frequencya Ranking Chromosome Relative frequency

1 Chr 6 0.35 1 Chr 6 0.37
2 Chr 5 0.28 2 Chr 4 0.35
3 Chr 4 0.21 3 Chr 5 0.28
4 Chr19 0.17 4 Chr19 0.11
5 Chr 6 × Chr 19b 0.15 5 Chr 2 0.08
6 Chr 2 0.09 6 Chr 6 × Chr 16 0.05
7 Chr 6 × Chr 16 0.05 7 Chr 6 × Chr 21 0.04
8 Chr 6 × Chr 21 0.03 8 Chr 6 × Chr 19 0.02

Others <0.01 Others <0.005

aRelative frequency corresponds to the frequency appeared in the samples. Effects that appeared more than once are displayed.
b"A × B" stands for an epistasis between chromosomes A and B.
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and 19, and 6 and 21. To increase the accuracy, we may
collect more samples.
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