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Abstract
We used the simulated data set from Genetic Analysis Workshop 15 Problem 3 to assess a two-
stage approach for identifying single-nucleotide polymorphisms (SNPs) associated with rheumatoid
arthritis (RA). In the first stage, we used random forests (RF) to screen large amounts of genetic
data using the variable importance measure, which takes into account SNP interaction effects as
well as main effects without requiring model specification. We used the simulated 9187 SNPs
mimicking a 10 K SNP chip, along with covariates DR (the simulated DRB1 gentoype), smoking, and
sex as input to the RF analyses with a training set consisting of 750 unrelated RA cases and 750
controls. We used an iterative RF screening procedure to identify a smaller set of variables for
further analysis. In the second stage, we used the software program CaMML for producing Bayesian
networks, and developed complex etiologic models for RA risk using the variables identified by our
RF screening procedure. We evaluated the performance of this method using independent test data
sets for up to 100 replicates.
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Background
It is commonly believed that complex diseases are caused
not by single genes acting alone, but by multiple genes
and non-genetic factors interacting with one another. Due
to the large number of single-nucleotide polymorphisms
(SNPs) now available in genome-wide scans, the compu-
tational burden of testing each locus for main effects and
all possible two-way, three-way, and higher-order interac-
tions is overwhelming. One approach to reducing the
number of interactions to examine is to perform a two-
stage analysis. In the first stage, one identifies a subset of
SNPs for further analysis of interaction in the second
stage. Often, a univariate test (e.g., a chi-square test) is
used to identify SNPs associated with outcome in the first
stage. When risk-associated SNPs have small marginal
effects but large interaction effects in the population, uni-
variate methods will result in low power for detecting
these SNPs. "Multi-locus" approaches consider interac-
tions of multiple genes and environmental factors in iden-
tifying susceptibility loci for complex diseases [1].
Random Forests (RFs) [2] provide a powerful method for
detecting interacting risk susceptibility SNPs (rSNPs) [3].
However, this method does not provide a model that
delineates the interactions.

Bayesian networks (or directed graphical models) are
graphs in which the nodes represent random variables
and the arrows represent dependence relationships [4].
These methods have been successfully applied to generate
a model describing the relationship among SNPs in mul-
tiple candidate genes for a complex trait [5].

Methods
We used the 100 replicates of simulated data in Problem
3 provided by the Genetic Analysis Workshop 15
(GAW15). We performed analyses with knowledge of the
"real" answers but screened all of the 9187 SNPs, distrib-
uted on the genome to mimic a 10 K SNP chip without
regard to the generating model. We used disease status for
rheumatoid arthritis (RA) as the outcome and smoking,
sex and DR genotype (the simulated DRB1 genotype) as
covariates.

Subjects
To obtain biologically independent cases, for each repli-
cate we randomly selected one affected sibling from each
of 1500 nuclear families. These 1500 cases were then
divided at random into a training data set of 750 affected
subjects and a test data set of 750 cases. The GAW data
provided 2000 unrelated unaffected individuals for use as
controls. Two independent sets of 750 controls were
selected at random from the 2000 for use as training data
set and test data set controls. Thus, for each replicate we
had independent training and test data sets consisting of
750 cases and 750 controls.

Random Forests
RFs grow a large number of classification or regression
trees with no trimming or pruning. The RF method pro-
duces an importance score for each variable that quanti-
fies the relative contribution of that variable to the
prediction accuracy. We used this score to prioritize the
predictor variables. The RF also produces prediction errors
for the individuals, which we used for evaluation of the
method.

We used Random Forests version 5 [6] to analyze the
training data. We used an iterative process similar to a
strategy previously proposed for gene expression analysis
[7] in which, at each iteration, we built a random forest
using the training data, and saved the 50% of variables
with the highest importance scores to build the next for-
est. The random forests built at each iteration were named
IT0, IT1,..., ITn, and the prediction errors of the training
data set were estimated for the forest built at each itera-
tion. We call the forest with the best prediction error ITbp.
The variables included in ITbp were then used in second-
stage analysis. We compared the performance of the itera-
tive procedure that resulted in the forest ITbp, in terms of
keeping the true risk variables and removing noise varia-
bles, to a simple procedure of selecting the top 50 ranked
variables by importance from iteration 0, in the test data
sets. Specifically, we compared the prediction error of the
ITbp forest, the IT0 forest (all variables used; no selection),
and a forest built using only the top 50 SNPs from the IT0
forest ("ITtop50"). Because the iterative procedure averaged
53 SNPs in the final forest, we chose 50 SNPs from IT0 to
yield a forest with approximately the same number of
SNPs. We computed prediction error using the test data
("test"), and using the out-of-bag observations of the
training data set ("training").

Network inference

Bayesian networks (BN) are directed acyclic graphs for
representing the joint probability distribution of all varia-
bles. A network for discrete variables, e.g., Figure 1, is
specified by the graph structure (nodes and arcs) and the
conditional probability table (CPT) at each node (node
chr6_162 is shown). Each node is a variable, and each
directed arc implies association and direction of depend-
ency between the two variables. The origin node of an arc
is usually called the parental node, and nodes that an arc
points to are called child nodes. A child node is condition-
ally independent of other nodes given its parental nodes.
Thus, the joint probability of n variables can be simplified

to , where xil,
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a subset of x1, x2, xi-1,..., xi+1, xn. BN models are useful for

describing complex relationships among variables, as well
as for making predictions for variables that are regarded as
outcomes.

CaMML [8], Causal Minimum Message Length (MML), is
a program for generating Bayesian networks. The general
goal is to find a model that maximizes the posterior prob-
ability of that model given the data. CaMML searches over
all possible structures (models) using the Metropolis algo-
rithm. It uses MML as a metric that includes a penalty on
model complexity to control the resampling process. We
evaluated the performance of CaMML on a set of variables
used in the ITbp forest described above. We used the test
data set to predict case status and estimate prediction
error.

Results
We identified the best surrogates for all risk loci (A-G) as
the SNPs with the highest linkage disequilibrium (LD)
(r2) with risk loci from the answer files given with the
GAW15 data (Table 1). For locus C, three SNPs had r2 ≥
0.2; for locus D, two SNPs had r2 ≥ 0.2. When analyzing
the results, we considered these SNPs true positives, in
that they are the best proxies for the true risk loci that were
not genotyped.

Risk variables identified by RF
We compared ITbp and IT0 top 50 for choosing a set of var-
iables by comparing how often the best surrogates for loci
A-G appeared in the variable set. DR and the best surro-
gates for C, D, and F were included in 94 and 98 out of
100 replicates for the ITbp forest and the top 50 variables
for IT0 forest, respectively. The average number of varia-
bles included in the ITbp forest was 53 (range 8–287). The
ITbp forest occurred, on average, at iteration 7.64 (range 5–
10).

Estimate of prediction error
As seen in Table 2, the mean and median prediction error
for the training data sets is smaller than that for the test
data sets for the ITbp and ITtop50 methods (median differ-
ences -2.77, -0.93, p < 0.0001), which may indicate over-
fitting. The IT0 forest gives similar prediction error for test
and training data.

For the training data sets, the mean prediction error for
the ITbp forests is smaller than that for the IT0 forests; the
ITtop50 forests fall in between (Table 3). For the test data
sets, although both ITtop50 and ITbp outperform IT0, the ITbp
has larger prediction error than ITtop50 (difference in
median = 0.43, p < 0.0001), which might be due to over-
fitting for the iterative method.

Network inference
We used CaMML to analyze the variables selected from
ITbp for Replicates 1 to 50. Due to computational limits, if
more than 50 variables were selected by ITbp, only the top
50 variables were used for second-stage analysis. With the
maximum number of variables restricted to 50, the aver-
age number of variables used in CaMML across the 50 rep-
licates was 40. In the estimated BNs, an average of 11
variables were connected to RA status directly or indirectly
through other variables in a path of a network that
included RA status. The average prediction error using the
test data was 12.4% (Table 2), which is smaller than that
of ITbp (Table 4). An example BN with the conditional
probability table (CPT) for node chr6_162, using Repli-
cate 1 is displayed in Figure 1. In this BN, all SNPs
included in the analysis with r2 > 0.3 with one of the dis-
ease loci (Table 1) were connected directly or indirectly to
RA. Many SNPs on chromosome 6 were interconnected
due to LD between these markers. The CPT for node
chr6_162 showed 5.5-fold increased risk of RA for carry-
ing allele 3 versus allele 2.

Bayesian network based on variables of ITbp for Replicate 1Figure 1
Bayesian network based on variables of ITbp for Replicate 1.
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Table 1 displays the frequency of variables appearing in
the network for Replicates 1–50. We have 100% power to
detect SNP6_152, SNP6_153, SNP6_154 (surrogates for
locus C), SNP6_162 (surrogate for locus D), and
SNP11_389 (surrogate for locus F), all of which have
strong LD (r2 ≥ 0.418) with disease loci. We have lower
power (66%) to detect SNP6_160, a surrogate for D that

is in lower LD (r2 = 0.273). Despite its low LD with locus
C (r2 = 0.104), the power to detect SNP6_155 is 98%. This
may be due to the very strong effect of locus C. Impor-
tantly, CaMML identified all covariates (DR, sex, and
smoking) and almost all surrogates in LD with disease loci
(with exception of SNP6_160, which was not detected by

Table 2: Prediction error for random forest analyses

ITbp ITtop50 IT0

Statistics Training Test Training Test Training Test CaMML Test

Mean 11.28 14.05 12.73 13.60 14.60 14.73 12.42
SD 0.83 0.90 0.95 0.85 0.96 0.91 0.97
Min 9.80 12.20 10.93 11.60 12.27 12.20 10.35
Max 14.73 16.87 16.00 15.47 18.00 16.53 16.00
p-Valuea 5.26 × 10-18 1.35 × 10-9 0.25
Difference in median -2.77 -0.93 -0.17

ap-Value of the paired Wilcoxon rank test comparing training and test data prediction error.

Table 1: Power estimate of ITbp and CaMML

Variables Disease locus R2 with disease locus ITbp 100 replicates ITbp Replicate 1–50 CaMML Replicate 1–50

DR genotypea NA NA 100% 100% 100%
Sex NA NA 100% 100% 100%
Smoking NA NA 96% 96% 96%
chr 6_154 C 0.958 100% 100% 100%
chr 6_153 C 0.563 100% 100% 100%
chr 6_152 C 0.418 100% 100% 100%
chr 6_155 C 0.104 97% 98% 98%
chr 6_150 C 0.027 13% 8% 4%
chr 6_149 C 0.014 6% 8% 4%
chr 6_139 C 0.009 18% 20% 10%
chr 6_138 C 0.009 17% 18% 10%
chr 6_140 C 0.007 1% 2% 2%
chr 6_134 C 0.007 4% 4% 4%
chr 6_137 C 0.006 2% 2% 2%
chr 6_130 C 0.006 8% 6% 2%
chr 6_148 C 0.005 9% 8% 4%
chr 6_147 C 0.004 9% 10% 8%
chr 6_135 C 0.002 3% 6% 2%
chr 6_145 C 0.001 35% 32% 24%
chr 6_132 C 0.0 7% 6% 6%
chr 6_162 D 0.902 100% 100% 100%
chr 6_160 D 0.273 67% 68% 66%
chr 6_156 D 0.001 11% 14% 2%
chr 11_387 F 0.135 5% 6% 6%
chr 11_388 F 0.064 5% 4% 4%
chr 11_389 F 0.934 98% 100% 100%
chr 11_391 F 0.031 1% 2% 2%
chr 16_29 A 0.001 1% 0% 0%
chr 18_269 E 0.171 51% 48% 10%
chr 8_442 B 0.001 0% 0% 0%
chr 9_186 G 0.021 0% 0% 0%
chr 9_189 H 0.014 0% 0% 0%

aSurrogates and covariates are in bold.
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CaMML in one replicate) as part of the RA network from
variables selected from ITbp.

Discussion
Using the simulated data from Problem 3, we assessed a
two-stage approach for identifying SNPs associated with
RA that employs random forests to identify important var-
iables, and Bayesian networks to further filter out noise
SNPs by reducing prediction error. The random forest
analysis reduced the number of variables for further Baye-
sian network analyses from 9190 to about 53. This screen-
ing strategy successfully filtered out many SNPs
unassociated with the disease loci, while keeping the sur-
rogates for risk SNPs for four out of nine of these loci (DR,
C, D, and F) in 94 of 100 replicates. Although ITbp seems
to give lower prediction error than ITtop50 in training data
sets, ITtop50 gives lower prediction error than ITbp in test
data sets. Therefore, the strategy of building a second for-
est using the top 50 SNPs from a first forest may be a better
variable selection method overall. However, the effects of
these loci in this data set are very strong, and it is not clear
that this result will generalize to data weaker association
signals. Further, it is not clear how to choose the number
of variables to select if one uses the simpler procedure.
Additional simulation studies are needed to determine
how to generalize our results to less ideal circumstances.
The fact that the difference in the median of prediction
errors for training and test data sets are large for ITbp sug-
gests overfitting; however, because we removed a large
(50%) proportion of "noise" in this first stage, ITbp is not
expected to be the optimal RF with the lowest prediction
error. It is possible to remove one noise variable at a time;
however, it is not practical in the context of thousands of
variables. We expected the BN analysis to further reduce

the number of noise SNPs and provide some guidance as
to important interaction effects.

Bayesian network analysis based on a subset of the varia-
bles (≤ 50) selected from ITbp captured most of the true
loci and the correct dependencies among them and fur-
ther decreased the test set prediction error. The network
model provides a method for predicting case status and
facilitates the understanding of complex relationships
between the disease and genetic and environmental fac-
tors. The limitations of BN include the difficulty to discern
the exact relationship between variables that are intercon-
nected and the exponential increase in computation time
with the number of variables. These make BN impractical
for genome-wide scan of dense SNPs. However, BN results
are at least useful to generate potentially biological mean-
ingful hypotheses to be confirmed by further statistical
analyses or/and biological experiments.
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