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Abstract
Morley et al. (Nature 2004, 430:743–747) detected significant linkages to the expression levels of
142 genes (of 3554) at a reported threshold of genome-wide p = 0.001 (LOD ≈ 5.3), using 14 three-
generation Centre d'Etude du Polymorphisme Humain pedigrees. Most of the linkages (77%) were
trans, i.e., more than 5 Mb from the expressed gene. However, the analysis did not account for the
expected anti-conservative effect of the skewed distribution of score- or regression-based statistics
in large sibships, or for the possible variance distortion due to correlations among tests. Therefore,
we re-analyzed their data, using a robust score statistic for the entire pedigrees and correcting the
p-values for skewness. We found that a LOD of 5.3 had a skewness-corrected genome-wide p-
value of 0.016 instead of 0.001 (a result that we confirmed using simulation), with around 50
expected false positives. We then further corrected for correlation among the (skew-corrected)
p-values by using Efron's method for obtaining the empirical null distribution. Setting a threshold of
FDR = 10% (Z = 6.4, LOD = 8.9), we detected linkage for the expression levels of 22 genes, 19 of
which are cis. Limiting the analysis to cis regions, linkage was detected to the expression levels of
46 genes with 4.6 expected false positives (FDR = 10%).

Background
In their study of genome-wide linkage of expression levels
of 3554 genes, Morley et al. [1] determined a genome-
wide p-value for each phenotype using Gaussian process
theory, and then used a form of Bonferroni correction,
without accounting for dependencies among the many
phenotypes being tested, to estimate the number of
expected false positives among their 142 positive findings.
However, Tang and Siegmund [2] have pointed out that in
large sibships, because of the dependencies among iden-

tity-by-descent (IBD) counts, score- or regression-based
statistics have a skewed distribution under the null
hypothesis of no linkage, even if the phenotypes are
exactly normally distributed. They have also provided a
skewness-corrected approximation to the genome-wide p-
value, which shows that approximations based on Gaus-
sian processes can be quite anti-conservative in small sam-
ples. Also, Morley et al. [1] reported (and we have also
observed, data not shown) that there are substantial cor-
relations of expression levels for many pairs of genes in
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their data. Efron [3] has shown that correlation among
many tests, if ignored, can lead to an excess or a deficit of
significant findings, and he proposed a method to correct
for this effect.

Therefore, we re-examined the linkage results of Morley et
al. [1], using a robust score statistic to map the expression
phenotypes, based on IBD counts for all relative pairs in
each of the 14 Centre d'Etude du Polymorphisme
Humain pedigrees. (Note that analyzing entire pedigrees
is more powerful here than considering only the sibships;
see below.) We corrected the p-values using the method of
Tang and Siegmund [2] and then determined the false-dis-
covery rate (FDR) using the method of Efron [4] to correct
for the correlations among tests. We compared the results
of this analysis to those based on a permutation-based
FDR procedure. Finally, because most of our significant
linkage signals were in cis regions (defined by Morley et al.
[1] as within 5 Mb of the expressed gene), we also deter-
mined whether our analysis would have been more pow-
erful if we had only tested linkage of each expression trait
to the markers within 5 Mb of the gene.

Methods
A robust score statistic to map quantitative trait loci (QTL) 
using extended pedigrees
For notational simplicity, we suppress the index for each
family. Let Y denote the phenotype for the members of a
pedigree. Let νij(t) denote the number of alleles IBD at
locus t between individual i and j, centered to have
expected value 0. Let Aν(t) be the IBD matrix with [Aν(t)]ij
= νij(t). Define Σ to be the phenotypic covariance matrix.
Assuming no dominant genetic effect, then according to
Tang and Siegmund [2], the conditional covariance matrix

ΣA = Cov(Y, Y | Aν (τ)) = Σ + αAα(τ),

where α ≥ 0 denotes the additive genetic effect.

From the working assumption that at a trait locus τ, con-

ditional on Aν(τ), Y follows a multivariate normal distri-

bution, one can derive a robust score statistic for testing

whether there is an additive genetic effect at τ [2] in the

form Z(τ) = lα(τ)/[E0 (τ)]1/2. Here,

lα(τ) = 2-1∑[-trΣ-1Aν + trΣ-1AνΣ-1YY'].

lα
2

Full pedigree analysis is more powerful than sibship analysisFigure 1
Full pedigree analysis is more powerful than sibship analysis. The left panel gives the test profiles for two traits 
reported in Morley et al. [1]. The right panel gives the scatter plot of the scan statistics using full pedigree and sibships. For 
largest values of the statistics (very likely to be true positives), most of the points are above the 45° line, which suggests that 
full pedigree analysis provides more power than sibship analysis to detect true linkages.
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In practice, unobserved values of the IBDs in lα(t) are

replaced by their conditional expectation given the geno-
typic data, while their variances are estimated from
multipoint genotypic data. To make the test robust to the

normality assumption of the traits, we use Z(τ) = lα(τ)/

[E0( (τ) | Y)]1/2.

Generation-specific effects in extended pedigrees were
allowed in estimating the mean and variance of each trait,
while the phenotypic correlations ρ1 for grandparent-
grandchild and ρ2 for sibs were estimated by maximum-
likelihood estimation (MLE) with the genetically natural
constraint ρ1 ≤ ρ2/2. The sex-average genetic map provided
to Genetic Analysis Workshop 15 by Sung et al. [5] was
used. The expected IBD counts were computed by MER-
LIN [6] using all 2819 SNP markers and full pedigrees.
The score statistic was then computed at marker locations
using the estimated IBD counts. Let Zn(t) be the score sta-
tistic at marker t for the nth phenotype. We defined the
genome scan statistic to be Zn = maxtZn(t) over all marker
loci for trait n. The genome-wide p-value for each Zn (i.e.,
for each of the 3554 traits) was then computed using the
skewness correction described in the Appendix.

Our theoretical calculation shows that, for these 14 pedi-
grees, using only sibships causes a loss of power equal to

roughly 35% of the sample size. Here, we compare linkage
scores for sibships and for entire pedigrees, and then we
use the more powerful pedigree-based tests for analysis of
the effects of our correction procedures.

Control FDR based on the empirical null distribution
One useful method for addressing the multiple testing
problem is to control the FDR [7]. For our problem, a suc-
cessful FDR procedure requires 1) accurate evaluation of
the genome-wide p-value for each trait, and 2) adjustment
for the correlations among the genome scan test statistics.
Here, we correct FDR using Efron's method to estimate the
empirical null distribution [4]. For trait n, we computed
the genome scan statistic Zn and approximated the
genome-wide p-value pn using the skewness-correction
method described in the Appendix (accuracy is checked
using a Monte Carlo simulation). We then transformed pn
to the normal quantile qn = Φ-1(1 - pn) and applied Efron's
method on {qn} to estimate the empirical null distribu-
tion N(μ, σ2) The expected number of false positives for
threshold q is 3554Φ((q - μ)/σ) and the FDR is estimated
as FDR = 3554Φ((q - μ)/σ)/#{qn > q}. Here, we have
implicitly assumed that the proportion of traits without
linkage signals is close to one.

Control FDR using permutations

To validate the FDR results obtained by correcting for
skewness and for the empirical null distribution, we used
1000 permutations to determine the number of false pos-
itives and hence the FDR following Efron's method [3].
For permutation n, we computed the genome scan statis-

tics , and computed  and

 for b > 3.5, where 3.5 is the median

value of Z. The correlation among the genome scan statis-

tics causes  to be correlated. So we can fit a lin-

ear regression model Y1(b) = a1 + a2Y0 + ε to the 1000 pairs

of ( ). For the observed data, we computed the

genome scan statistics, Y0 and Y1, then computed the

expected number of false positives among the Y1(b) posi-

tive findings as a1 + a2Y0. The estimated FDR for threshold

b was then (a1 + a2Y0)/Y1. The permutation-based FDR

procedure does not require accurate evaluation of
genome-wide p-values or appropriate correction for the
correlations among tests, but it is computationally inten-
sive.

Search for cis-regulated genes
If most linkages prove to be in cis regions, then the power
to detect these linkages could be increased by considering
only the markers within 5 Mb of that gene, because

lα
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False discovery rate threshold (analysis of full pedigrees)Figure 2
False discovery rate threshold (analysis of full pedi-
grees). Shown are the numbers of expected false-positive 
findings and of observed positive findings, for each threshold 
of Z estimated using our corrected method (full pedigree 
analysis). The threshold for FDR = 10% is Z = 6.4. At this 
threshold we detected 22 significant linkages and expect that 
2.2 are false positives. See text and Table 1 for comparison 
with uncorrected results.
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genome-wide p-values would have to be corrected only for
this small proportion of markers for each expression trait.
We searched the location of the 3554 gene names on
http://sky.bsd.uchicago.edu/genequery.html. The mark-
ers within 5 Mb of each target gene were identified and the
scan statistic was obtained as the maximum score for these
markers. Because the number of markers and the genetic
lengths in the cis region are highly variable, we evaluated
the region-wide p-values empirically. We ran 8000 permu-
tations and fit a quadratic curve (log pn = αn,0 + αn,1b +
αn,2b2) to the results to predict the region-wide p-value for
the nth trait. The form of the p-value is suggested by the for-
mula in Appendix. We then transformed pn to normal
quantile qn and estimated the empirical null distribution
based on the quantitles. The expected number of false
positives and the FDR are based on the estimated empiri-
cal null distribution.

Results
Genome-wide p-value
To evaluate the validity of the skewness correction proce-
dure described in the Appendix, we used that procedure to
estimate the genome-wide p-value associated with the
LOD score threshold of 5.3 (Z = 4.94) assumed by Morley
et al. to have a genome-wide p-value of 0.001 based on
Gaussian process theory [1]. Our skewness-correction
procedure, however, determined that Z = 4.94 has a
genome-wide p-value of 0.016. We then carried out 1600
Monte Carlo simulations (assuming no linkage) of geno-
types for 2800 SNP markers (with minor allele frequen-
cies from 0.25 to 0.5 assigned randomly) at 1.2-cM
spacing, in 14 families with eight siblings and two parents
per family. The genome-wide p-value for Z = 4.94 was
found to be 0.0195 (SD = 0.0035), in close agreement
with the skewness-corrected theoretical result, which sup-
ports the validity of the correction. Note that in the
remainder of our analyses, we applied an FDR threshold
of 10% (Z = 6.4) rather than a p-value threshold. When a

large number of true positive results is expected, assessing
significance by FDR might have more practical value than
a family-wise error rate.

Analysis of sibships vs. pedigrees
Figure 1 illustrates differences between linkage results for
sibships and for pedigrees. In the two panels to the left,
the score statistic results are shown for two expressed
genes (ZP3 and TM7SF3) for the chromosome on which
the gene is located, with the gene location in these two
cases being directly under the peak score. Larger scores are
observed for full pedigree analysis. In the panel to the
right, the score based on sibship data is plotted against the
score based on full pedigree data for 3554 traits. The larg-
est (most significant) scores are larger using the full pedi-
gree data.

Corrected vs. uncorrected linkage results
Following Efron [4], we estimated the empirical null to be
N(0.25, 1.052). The Zn threshold of 6.4 for FDR = 10% was
determined as shown in Figure 2. Using this threshold, we
observed 22 gene expression levels with significant evi-
dence of linkage (Tables 1 and 2). Among those genes,
three were mapped to trans loci and 19 to cis loci. Using
only sibships, we applied the same procedure and found
evidence of linkage for only six genes at FDR = 10%. Sim-
ilar results were obtained using permutation-based FDR
method: 19 gene expression levels have significant evi-

Table 2: Expression phenotypes with significant linkage signals

Gene Location Z cis/trans

ZP3 7q11.23 9.62 cis
LRAP 5q15 8.92 cis
LOC388796 20q11.23 8.79 cis
HLA-DQB1 6p21.3 8.18 cis
RPL31 2q11.2 7.92 cis
HSD17B12 11p11.2 7.82 cis
CHI3L2 1p13.3 7.78 cis
EIF5A 17p13 7.61 cis
CSTB 21q22.3 7.59 cis
TM7SF3 12q11 7.56 cis
CGI-96 22q13.2 7.50 cis
HLA-DPB1 6p21.3 7.47 cis
DDX17 22q13.1 7.42 cis
EGR2 10q21.1 7.15 trans
DSCR2 21q22.3 7.03 trans
PEX6 6p21.1 6.98 cis
TGB1BP1 2p25.2 6.92 cis
PSPH 7p15.2 6.90 cis
PARP4 13q11 6.72 cis
AP3S2 15q26.1 6.54 cis
TGIF 18p11.3 6.52 trans
CPNE1 20q11.22 6.51 cis

Shown are the 22 linkages detected by our corrected method (FDR = 
10%). The first 19 of these were also detected using the permutation-
based procedure (FDR = 10%).

Table 1: Significant results in the uncorrected, corrected, and cis-
only analyses

Number of genes with a significant linkage signal

Analysis cis trans cis and trans Multiple trans Total

Uncorrecteda 27 110 2 3 142
Correctedb 19c 3 0 0 22
Corrected (cis 
only)d

46 -- -- -- 46

aUncorrected analysis of Morley et al. [1]
bCorrected method described in this paper
cThe 19 cis signals in the corrected analysis are a subset of the 27 in 
the uncorrected analysis, which are a subset of the 46 in the cis-only 
analysis.
dCorrected method when only the 10-Mb region around each gene is 
considered (and thus the correction for multiple tests is less severe).
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dence of linkage, among which 2 were mapped to trans
loci and 17 to cis loci.

Table 1 shows, for comparison, the results of the uncor-
rected analysis reported by Morley et al. [1]. Using a Zn
threshold of 4.94 (LOD = 5.3 using regression statistics
and an assumption of a Gaussian distribution), they
reported 142 significant linkages, most of them trans, and
calculated FDR = 2.5%. However, using the method
described above, we expect 50 false-positive results at a
threshold of 4.94 after correcting only for skewness, and
110 such results after further correcting for the empirical
null. Therefore, we estimate FDR = 77.5% for the results
reported by Morley et al. [1].

Finally, Figure 3 and Table 1 summarize the results of the
corrected analysis limited to cis regions (within 5 Mb of

each gene). Because this procedure maximizes Zn over a
smaller number of tests, it detected 46 significant linkages
at FDR = 10%.

Discussion
We have addressed two issues relevant to linkage analysis
of multiple traits. First, in data from family constellations
larger than one sibling pair, the dependence of IBD shar-
ing for different pairs of individuals within each family
will create right-skewed score and regression tests, which
we corrected using the method of Tang and Siegmund [2].
Second, when many tests are carried out, and there are
correlations among tests, the distribution of test statistics
under the null hypothesis can deviate in either direction
from Gaussian expectation, which we corrected by the
method of Efron [4]. We show that very similar results are
obtained by applying these corrections to the data or by

Results of cis-only analysisFigure 3
Results of cis-only analysis. Histogram of genetic lengths (A) and marker numbers (B) of 3554 cis regions. C, number of pos-
itive findings and expected false positives using our corrected method. D, Estimated FDR curve. We identified 46 significant cis 
linkages at threshold of region-wide p = 0.00036 or log(p) = -7.93 (FDR = 10%).
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computing FDR empirically by permutation. This suggests
that our corrections are valid and can be used in place of
the very time-consuming permutation procedure.

Our analyses detected far fewer significant tests than the
analysis of Morley et al. [1]. There are several differences
between these analyses: they selected 142 linkage signals
based on a genome-wide p-value threshold of 0.001, but
without correcting for skewness; and they computed the
expected number of false positives by multiplying this p-
value by the number of tests, without correcting for the
correlations among tests. Our results may be more plausi-
ble biologically, in that most of the significant linkages of
expression levels are cis, i.e., close to the gene, where reg-
ulatory elements are known to exist. This is consistent
with the result of a larger recent gene expression linkage
study [8] of 20,413 transcripts in 1200 individuals from
40 Mexican-American families, where 95% of LOD scores
>5.0 were located in the cis region of the expressed gene.

We would therefore suggest that in linkage studies of cor-
related traits in larger families, more accurate genome-
wide inferences can be made if p-values are corrected for
skewness caused by correlations of IBD sharing propor-
tions for pairs of relatives, and if the expected proportion
of false-positive results is corrected based on the empirical
null distribution of test statistics. This proposal requires
further testing where the "true" positives are known, using
simulation of both expression levels and marker geno-
types or using data for linkages that have been validated
biologically.
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Appendix
Given skewness γ, inter-marker distance Δ, genetic length
of the genome L, and the average recombination rate β,
the genome-wide p-value can be approximated by

where ϕ(ξ) = Eexp(ξZ(t)) ≈ ξ2/2 + γξ3/6 and ξ is chosen as

the solution of ϕ'(ξ) = ξ + γξ2/2 = b. The function

[9] for x > 0. It can be

approximated by ν(x) ≈ exp(-0.583x) very accurately for 0
<x < 2; the series converge fast for large x. For GAW15 link-

age data, β = 0.033, γ = 0.427 (detail omitted), and Δ =

3300 cM/2819 ≈ 1.2 cM.
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