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ABSTRACT

The search for feature enrichment is a widely used
method to characterize a set of genes. While several
tools have been designed for nominal features such
as Gene Ontology annotations or KEGG Pathways,
very little has been proposed to tackle numerical
features such as the chromosomal positions of
genes. For instance, microarray studies typically
generate gene lists that are differentially expressed
in the sample subgroups under investigation,
and when studying diseases caused by genome
alterations, it is of great interest to delineate
the chromosomal regions that are significantly
enriched in these lists. In this article, we present
a positional gene enrichment analysis method
(PGE) for the identification of chromosomal regions
that are significantly enriched in a given set of
genes. The strength of our method relies on an
original query optimization approach that allows to
virtually consider all the possible chromosomal
regions for enrichment, and on the multiple testing
correction which discriminates truly enriched
regions versus those that can occur by chance.
We have developed a Web tool implementing this
method applied to the human genome (http://
www.esat.kuleuven.be/»bioiuser/pge). We validated
PGE on published lists of differentially expressed
genes. These analyses showed significant over-
representation of known aberrant chromosomal
regions.

INTRODUCTION

Microarrays are powerful tools to study gene expression
patterns on a genome wide scale. From the raw micro-
array data, various gene lists are sifted out based on their
differential expression in the subgroups under investiga-
tion. These gene lists provide the foundation from which
to begin the exploration of the underlying cellular biology
resulting in the observed phenotype. A data-mining
approach that is increasingly used for study of such gene
lists is the search for enriched terms associated with the
individual genes. Instead of focusing on the actual genes,
such analyses try to summarize the information using
annotated and structured information, such as hierarchi-
cally organized Gene Ontology (GO) annotation terms
and KEGG cellular pathways. For enrichment analysis of
the latter two gene classifications, many software tools are
available (1–3).
Another—less frequently explored—gene characteristic

for the study of microarray gene lists is the chromosomal
position of the genes, especially when studying diseases
caused by genome alterations, such as cancer. Exploration
of the relationship between gene copy number altera-
tions and gene expression in breast tumors for instance
revealed that a high percentage of amplified genes were
over expressed (4–6). Other studies showed systematic
up-regulation of many genes on chromosome 21 in Down
syndrome patients, harboring an extra copy of this chro-
mosome in all their cells (7). In acute myeloid leukemia
DNA gains and losses caused by multiple chromosome
rearrangements were shown to result in altered gene
expression in a gene-dosage-dependent manner (8). Com-
parable to the GO and KEGG pathway analysis tools,
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it would be of great interest to explore the overrepresenta-
tion of chromosomal regions in the generated microarray
gene lists. Currently, various tools exist that identify entire
chromosomes that are overrepresented in the gene lists
(1,9,10). However, the resolution is not sufficient enough
to pinpoint critical dosage sensitive regions. Other tools
allow the identification of overrepresented regions along
the chromosomes in higher detail, such as expression
imbalance maps (11), ChARM (12), MACAT (13) and
DIGMAP (14). The downside is that these methods need
the microarray data as input, which is not always possible
(e.g. raw data not made available) or more importantly
because it restricts the search of enriched chromosomal
region to gene expression and prevents its application to
a given set of genes of interest. More recently, ChroCoLoc
was developed and accepts a given list of genes as input
(15). However, the resolution is limited to chromosomal
bands i.e. only a fixed set of chromosomal regions are
tested for enrichment.
Here, we present an innovative algorithm and accom-

panying software—accessible through an online Web
interface—for positional gene enrichment (PGE) analysis.

METHODS

Statistics

To test if a chromosomal region is enriched in a query set
of genes of interest (for example differentially expressed
genes), we apply the hypergeometric distribution as
follows: Let g be the total number of genes considered
(genome), t the number of genes in the region (target set),
q the number of genes of interest (query set) and
c the number of genes of interest in the region (genes
common to the query and target set), then
p�valueðc, t, q, gÞ ¼

Pminðq, tÞ
k¼c ðtkÞð

g�t
q�kÞ=ð

g
qÞ. This corresponds

to the probability of having at least the observed number
of genes of interest in that region. To correct for multiple
testing (a large number of regions are tested), adjusted
P-values are calculated using the minimum P-values
cumulative distribution function. This function provides
the probability of obtaining a P-value at least as good
(lower or equal) by chance i.e. by submitting a random set
of the same size. Unfortunately, it is practically impossible
to model this distribution, so we approximate it by
sampling to obtain an empirical function as described
in (3) and (16).

Identification of pertinent chromosomal regions to test

To obtain the highest possible resolution i.e. base pairs,
our method virtually tests all the sets of genes that are
located in all possible windows of all possible widths.
Obviously, testing all window positions and widths is
inefficient and yields a lot of redundancy in the computa-
tions. For example, when shifting the window by one
nucleotide, the resulting window will often be on the same
genes. A simple observation overcomes this problem: one
will obtain the same results if, instead of considering
nucleotides, we consider genes ordered on the chromo-
some. Still, the number of computations to perform can be

very large as there are ðnðn� 1Þ=2Þ windows (sets of
adjacent genes) on a chromosome with n genes (Figure 1).

The other and most important problem with this setup
is that a lot of redundancy in terms of overlapping
enriched regions is obtained. For example, a region R1

of 100 genes containing 90 genes of interest. This is very
unlikely (i.e. significant) and will be reported as an
enriched region. If we now consider a slightly larger
region R2 of 101 genes that includes R1 and that also
contains 90 genes of interest, then R2 will also be reported
as enriched. This is statistically true, but reporting R2 is
redundant with R1 because it is merely the same region to
which we add one gene not of interest. Hence, R2 should
not be part of the results.

To avoid redundancy and identify the pertinent regions
to consider, a formal definition is provided in (17) for the
pertinence of a target set (here a chromosomal region)
comparing it to a given query set (genes of interest). From
this definition, three rules are derived which are better
suited for the design of an efficient algorithm. These rules
are illustrated in Figure 1 with the genes of interest (genes
of rank 2, 3, 5 and 7 on the chromosome) and the perti-
nent regions ([2,3], [2,5], [2,7] and [5,7]) represented by
black-filled nodes in the implicit lattice. Informally, the
pertinence definition allows to consider only regions
bounded by genes of interest, and more specifically, the
largest ones (in the example in Figure 1, the region [3,5] is
not pertinent because it is included in the larger pertinent
region [2,5]). Unfortunately in practice, those three rules
do not reduce as much redundancy as it might be
desirable. Figure 2 illustrates a concrete example of this
problem (biological meaning addressed in the discussion
section). In this figure, the whole q arm of chromosome 21
is enriched and the largest region has the best P-value.
As the whole q arm is enriched, one should be tempted to
report only this region. However, there might be smaller
regions that are worth considering. In the following,
we extend the pertinence rules to overcome this issue in the
particular context of enriched genomic regions. These
extended rules are based on two main observations: first,
the use of the P-value allows the selection of statistically
significant regions but this measure is biased towards large
regions. Second, similar to the a priori algorithm (18) that

Figure 1. Sets of genes that are adjacent on the chromosome. Genes are
ordered on the chromosome by their start position (in base pairs). Each
pair of genes defines an interval i.e. a set of adjacent genes.
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makes use of the anti-monotonic property of the support
of an item-set to prune the search space, if a region shows
less than expected genes of interest (based on the ratio of
the number of genes of interest over the total number of
genes) then all the regions including this region should not
be considered for enrichment.

Our first observation is that the P-value allows to assess
the statistical significance of the enrichment but it does not
reflect the coverage of the region by genes of interest.
For example in Figure 2, we see that the q arm has an
enrichment of �20% in genes of interest, and there is also
a smaller region that has almost 50% enrichment, thus it
might be interesting to consider this smaller more specific
region for investigation even if it is statistically less
significant. More generally, these two measures are biased
towards opposite directions: small regions tend to have
higher percentages of genes of interest while large regions
tend to have better P-values. To improve the relevance
of the enriched regions reported by our method while
reducing the redundancy, we propose two additional rules
(Rule 4 and Rule 5) that result in a balance between
coverage and statistical significance.

Our second observation is related to improving the
efficiency of the resulting algorithm. The P-value signifi-
cance threshold is not anti-monotonic i.e. if a given region
is not statistically significant, there might be a larger
encompassing region that is significant. Thus, regions
including non-significant regions have to be tested.

However, although the percentage of genes of interest is
also not anti-monotonic, it can be used to prune the search
space: if a region contains less genes of interest than
expected (for example the genes of interest represent 2%
of the genome and a region contains only 1% of genes of
interest) then any region encompassing this region should
not be considered in the search. Then, given q the number
of genes of interest, a region spanning over t genes is
expected to contain on average q/g�t genes of interest
(with g the total number of genes). Hence, a region is
pertinent if it does not contain any sub-region made of g/q
adjacent genes that are not of interest.
Finally, a region is pertinent if the following rules hold:

Rule 1: it contains at least two genes of interest,
Rule 2: there is no smaller region containing the same
genes of interest,
Rule 3: there is no bigger region with more genes of
interest and the same genes not of interest,
Rule 4: there is no larger encompassing region with
a higher percentage of genes of interest,
Rule 5: there is no smaller encompassed region with
a better P-value,
Rule 6: it does not contain any region having less than
expected genes of interest.

RESULTS

Implementation of the PGE algorithm as a web interface

The PGE method was implemented as a Perl script that is
publicly accessible as a web interface (http://homes.esat.
kuleuven.be/�bioiuser/pge/). Currently, users can choose
to submit lists of Affymetrix probeset ids or Ensembl ids.
Probeset ids are mapped either to gene symbols or
Ensembl ids by using the Affymetrix human genome
array plate set annotations file provided on the Affymetrix
Web site. As users might be specifically interested to check
the enrichment in a specific chromosome, they have the
possibility to only calculate enrichment in the chromo-
some of interest. To build the empirical minimum
P-values cumulative distribution function for P-values
significance assessment, we perform 500 simulations with
random query sets of the same size as proposed in (3).
Because of the computational cost of these simulations,
this correction method is available only for gene lists of up
to 500 genes; otherwise the False Discovery Rate (19) is
applied. The threshold for adjusted P-value significance is
set to 0.05. The tool visualizes the enriched chromosomal
regions along the chromosomes, based on P-value or
percentage of enrichment. A mouse-over pop-up window
gives further information on the Ensembl ids or gene
symbols that are present in the enriched chromosomal
region. Clicking on a region, redirects to the Ensembl
genome browser including a PGE track. In addition,
enriched regions are provided in BED format to enable the
upload of results to other genome browsers.

Validation and application of PGE on published gene lists

We applied the PGE analysis on published gene lists from
microarray gene expression studies in order to validate the

Figure 2. Filtering redundant chromosome regions significantly
enriched in genes differentially expressed in tissues of Down syndrome
patients on chromosome 21: (A) regions are displayed from left to right
by increasing P-value significance (decreasing P-values) and are plotted
as –10 log P-value; (B) the same regions plotted by the percentage of
genes of interest; (C) enriched regions are filtered for redundancy and
plotted by P-value: see rules 4 and 5 in text; (D) the same regions
plotted by the percentage of enrichment.
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algorithm. A first test was performed on a list of 407 genes
obtained by comparing genetic subtypes of B-cell chronic
lymphocytic leukemia (CLL) (20). In B-CLL, the most
frequent losses of genomic material are deletions of
chromosome bands 13q14, 11q22–23, 17p13 and 6q21,
and the most frequent gains affect 12q13, 8q24 and 3q26.
In this study, the authors identified genes that are
differentially expressed based on microarray gene expres-
sion data in different B-CLL subgroups (considering
following genetic parameters: 17p13, 11q22–q23, 13q14
and 6q21 deletion, as well as trisomy 12q13) and they
visually noticed that a large number of the differentially
expressed genes mapped in the chromosomal regions
affected by the respective genomic losses or gains. To
confirm this correlation, we submitted the set of differen-
tially expressed genes to our PGE tool which reported
significantly enriched regions in agreement with the most
frequent genomic alterations (Table 1 and Figure 3).
Using the PGE algorithm we also noticed a high degree

of correlation between the chromosomal localization
of differentially expressed genes and the respective
genomic aberrations. We found enrichment of genes on
17p13, entire chromosome 12, 11q23, 6q14.3–q23.2 and
6p21.32–p22.2.
For chromosome 6, we find gene enrichment for the

region 6q14.3–q23.2 which includes the frequently deleted
chromosomal band 6q21, and enrichment in the region
6p21.32–p22.2. From the figure, it appears that some
genes cluster on band q21, but this enrichment is not
statistically significant which means that such a cluster
could arise by chance. The authors suggest that genes
located outside of the gained or lost regions might be
downstream effectors of the genes directly affected by the
loss or gain and may contribute to the disease phenotype.

The region 6p21–p22 contains genes that are members of
the HIST1 major histone gene locus. This HIST cluster
enrichment might be due to the fact that Affymetrix
probeset-ids for the different HIST genes are not specific
enough, or might only indicate that when HIST genes are
expressed, the whole cluster is transcribed.

With our tool, we see that the loss of 13q14 do not lead
to clusters of genes differentially expressed in that region.
By correcting the P-values with the False Discovery Rate
(19), this appeared to be significantly enriched (data not
shown). This highlights the importance of the multiple
testing adjustment method applied. In this case, the
minimum P-values distribution function shows that the
number of differentially expressed genes observed on

Figure 3. PGE Chromosome view of regions significantly enriched in genes differentially expressed in subtypes of B-CLL (Table 1).

Table 1. Chromosome regions significantly enriched in genes

differentially expressed in subtypes of B-CLL

Chr. Band(s) Coordinates Genes of
interest/genes
in the region

6 p21.32–22.2 26,163,912; 33,851,518 13/58
6 p22.1 27,208,799; 27,941,634 7/15
6 p22.1 27,883,200; 27,941,634 5/7
6 q14.3–23.2 86,216,527; 132,690,949 12/77

11 q14.1–24.3 77,603,590; 127,897,218 18/124
11 q23.1–23.3 111,117,019; 117,775,136 8/28

12 p13.31–24.33 7,233,850; 131,915,071 64/408
12 p11.21–q13.11 31,117,786; 44,641,909 5/10
12 q23.3 104,025,639; 106,630,469 4/5
12 q24.31 120,230,432; 121,194,727 4/6

17 p13.1–13.3 594,403; 8,006,662 19/90
17 p13.1 7,084,456; 8,006,662 11/25
17 p13.2 3,746,634; 4,742,127 5/11
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13q14 could have occurred by chance by selecting 407
genes at random in the human genome.

For a second test, we mapped the genes that are higher
expressed in neuroblastoma tumors with amplification of
the proto-oncogene MYCN, located on cytoband 2p24,
compared to normal neuroblasts (21). A region with high
significance for overrepresentation is found on 2p. Within
this region a smaller significant region with a higher
enrichment percentage is found at band 2p24 (from
5.8Mb to 24.1Mb), containing the MYCN, DDX1,
NAG and VSNL1 genes (Figure 4). DDX1 and NAG are
known to be frequently co-amplified and over expressed in
MYCN amplified neuroblastomas. PGE on the same data
set also shows an overrepresentation of genes on 17q
which is in concordance with the finding that neuroblas-
toma tumors with MYCN amplification almost always
present with gain of the long arm of chromosome 17.

As a third example, we mapped the genes that are
higher expressed in tissues from Down syndrome patients
compared to normal samples (22) and found a significant
overrepresentation of genes on chromosome 21 (Figure 2).
A smaller region with very high significance emerged that
contains the DSCR2 gene that is located in the minimal
region for Down syndrome and is a candidate to be
involved in the dosage effect of trisomy 21.

DISCUSSION

In this article, we present a new efficient method for the
high-resolution identification of chromosomal regions
that are overrepresented in custom gene lists together
with its application to the human genome. In contrast to
many other methods, PGE does not require any user
analysis parameter, is user-friendly and performs rapid
calculations (few seconds for gene lists of 100–500 genes).
The unique approach of this algorithm allows to
exhaustively evaluate the overrepresentation rate at all

resolution levels simultaneously i.e. from pairs of genes to
entire chromosomes. The simulations performed for
assessing the significance of enriched regions are essential
because they allow discriminating which regions are truly
enriched from those that could occur by chance. Appli-
cation of the PGE analysis on published differentially
expressed gene lists showed an overrepresentation of
aberrant chromosomal regions, demonstrating the validity
of the tool. Moreover, within these regions, smaller
regions with significant overrepresentation (lower signifi-
cance but higher enrichment) might highlight specific
genes that are of interest in the aberrant regions, and
which deserve further study.
In the near future, we will extend the tool with

additional identifier types (RefSeq,HGNC, . . .) and
species (mouse, fly,worm, yeast, . . .). The software is
generic in the sense that only a reference data set file
mapping identifiers to chromosome locations is needed to
propose other identifiers or species.
We will also adapt and implement our method in the

context of circular genomes. Actually, very little modifica-
tions will be needed: either Rule 6 allows removing at least
one region that cannot be enriched and we are left with
a linear chromosome, or we have to consider that a pair of
(query) genes defines two regions. In the latter case, the
worst case time complexity of our method is still in O(q2)
with q the number of genes of interest.
In this article, we focused on gene expression correlated

with genomic alteration. This method and tool will also be
valuable to test other hypotheses such as tissue-specific
chromosomal region accessibility and expression with sets
of genes corresponding to EST expressed in different
tissues, and genes participating in the same pathways or
biological processes.
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