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Nonsense-mediated messenger RNA decay (NMD) generally
degrades mRNAs that prematurely terminate translation as a means
of quality control. NMD in mammalian cells targets newly spliced
mRNA that is bound by the cap-binding protein heterodimer
CBP80/20 and one or more post-splicing exon junction complexes
during a pioneer round of translation. NMD targets mRNA that
initiates translation using the encephalomyocarditis virus (EMCV)
internal ribosome entry site (IRES), therefore NMD might target not
only CBP80/20-bound mRNA but also its remodelled product,
eIF4E-bound mRNA. Here, we provide evidence that NMD
triggered by translation initiation at the EMCV IRES, similar to
NMD triggered by translation initiation at an mRNA cap, targets
CBP80/20-bound mRNA but does not detectably target eIF4E-
bound mRNA. We show that EMCV IRES-initiated translation
undergoes a CBP80/20-associated pioneer round of translation that
results in CBP80/20-dependent and Upf factor-dependent NMD
when translation terminates prematurely.
Keywords: nonsense-mediated mRNA decay; EMCV IRES; pioneer
round of translation; CBP80/20; eIF4E; Upf proteins
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INTRODUCTION
Nonsense-mediated messenger RNA decay (NMD) in mammals is
a translation-dependent surveillance mechanism that controls the
quality of gene expression by degrading the mRNAs of mutated
genes that contain premature termination codons (PTCs; reviewed
by Behm-Ansmant et al, 2007; Chang et al, 2007; Isken & Maquat,
2007). NMD also downregulates the expression of natural genes,
in some cases providing an autoregulatory circuit to inhibit the
production of RNA-binding proteins, including splicing factors
(Mendell et al, 2004; Wittmann et al, 2006; Lareau et al, 2007;

Ni et al, 2007). However, data indicate that many, if not most,
naturally occurring NMD targets result from nonproductive
alternative splicing (Pan et al, 2006).

mRNA that is bound by the cap-binding protein heterodimer
CBP80/20, which is mostly nuclear but also shuttles to the
cytoplasm, is a precursor to mRNA that is bound at the cap by
eIF4E, which is largely cytoplasmic (Lejeune et al, 2002). The
NMD of nonsense-containing mRNAs generally occurs when
translation initiates in an mRNA cap-dependent manner during a
pioneer round of translation, which involves newly synthesized
CBP80/20-bound mRNA (Ishigaki et al, 2001; Sato et al, 2008).
NMD does not detectably target mRNA once CBP80/20 has been
replaced by eIF4E, which supports the bulk of cellular protein
synthesis (Ishigaki et al, 2001; Chiu et al, 2004; Hosoda et al,
2005). This is in contrast to the situation in Saccharomyces
cerevisiae, in which NMD targets not only Cbc1/2-bound mRNA,
which is orthologous to mammalian cell CBP80/20-bound mRNA,
but also eIF4E-bound mRNA (Gao et al, 2005). The apparent
restriction of NMD to CBP80/20-bound mRNA in mammals is due
to the roles of CBP80 and post-splicing exon junction complexes
(EJCs) in NMD, both of which are detectable on CBP80/20-bound
mRNA but not on eIF4E-bound mRNA (Ishigaki et al, 2001;
Lejeune et al, 2002; Hosoda et al, 2005; Kashima et al, 2006).
EJCs are thought to be largely removed from newly synthesized
mRNAs by translating ribosomes during the pioneer round of
translation (Dostie & Dreyfuss, 2002).

The importance of EJCs to NMD is supported by reports that
downregulating the EJC constituents Y14, MNL51/BTZ, eIF4AIII,
Upf2 or Upf3X (also called Upf3b) inhibits NMD (reviewed by
Isken & Maquat, 2007). Furthermore, mRNAs that are derived
from intronless genes and, thus, lack EJCs are immune to NMD
when they harbour PTCs (Maquat & Li, 2001; Neu-Yilik et al,
2001; Brocke et al, 2002; Matsuda et al, 2007). In classical NMD,
EJCs are thought to function by recruiting the NMD factor Upf1
through the EJC constituent Upf2 once translation terminates
sufficiently upstream from the EJC (Lykke-Andersen et al, 2001;
Serin et al, 2001; Kim et al, 2005; Kashima et al, 2006). The
importance of CBP80 to NMD is evident from the finding that
CBP80 promotes the interaction of Upf2 with Upf1, the latter
being stably associated with the CBP80/20 cap-binding complex
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(CBC; Hosoda et al, 2005). Consistent with this interpretation,
tethering Upf1 sufficiently downstream from a nonsense codon
bypasses the need for CBP80 so that mRNA decay is extended to
eIF4E-bound mRNA (Hosoda et al, 2005). As there is evidence that
Upf1 is the last of the Upf proteins to join the EJC (Lykke-Andersen
et al, 2001; Hosoda et al, 2005; Kim et al, 2005; Singh et al, 2007),
it follows that CBP80 is no longer required to promote NMD once
Upf1 joins an EJC (Hosoda et al, 2005; Kim et al, 2005).

EJCs, and possibly CBP80/20, also function in fail-safe NMD,
which does not seem to depend on a post-splicing EJC situated
downstream from a nonsense codon (Zhang et al, 1998; Bühler
et al, 2006; Matsuda et al, 2007). However, fail-safe NMD requires
at least one EJC upstream from the nonsense codon and, similar to
classical NMD, targets CBP80/20-bound mRNA but does not
detectably target eIF4E-bound mRNA (Matsuda et al, 2007).

On the basis of the finding that translation initiation from the
encephalomyocarditis virus (EMCV) internal ribosome entry site
(IRES) supports NMD, it was recently suggested that translation
initiation from the mRNA cap is not essential for NMD (Holbrook
et al, 2006). It follows that the recruitment of ribosomes to an
mRNA by CBP80/20 and, possibly, the presence of CBP80/20 on
mRNA would be dispensable for NMD. We set out to test this
possibility by considering that, although never examined, CBP80/
20 would probably constitute newly synthesized messenger
ribonucleoprotein when translation initiates for the first time using
the EMCV IRES. Thus, for the reasons mentioned above, NMD
resulting from EMCV IRES-dependent translation initiation might
also be restricted to CBP80/20-bound mRNA.

Here, we show that CBP80/20 is a constituent of EMCV
IRES-containing messenger ribonucleoprotein. Furthermore, we
show that NMD resulting from EMCV IRES-dependent translation
initiation involves Upf1, Upf2, Upf3X and CBP80/20. We also
used two complementary approaches to show that NMD resulting
from EMCV IRES-initiated translation targets CBP80/20-bound
mRNA but does not detectably target eIF4E-bound mRNA.

RESULTS AND DISCUSSION
EMCV IRES: CBP80/20 and Upf1 factors function in NMD
As noted above, classical NMD generally depends on CBP80/20
and the NMD factors Upf1, Upf2 and Upf3X. To determine
whether CBP80/20 and Upf proteins function in NMD that results
from translation initiation at the EMCV IRES, HeLa cells were
transiently transfected with a short interfering RNA (siRNA) that
downregulates CBP80/20, Upf1, Upf2 or Upf3X or, to control for
nonspecific effects, with a control siRNA (Hosoda et al, 2005; Kim
et al, 2005). After 2 days, cells were transfected with a pRLuc-Gl
or php-EMCV IRES-RLuc-Gl test plasmid, either PTC-free
(Norm) or PTC-containing at Gl codon 39 (Ter), and the pMUP
reference plasmid (phCMV-MUP in Belgrader & Maquat, 1994).
Each set of test plasmids (Fig 1A) encodes Renilla (R) luciferase
(Luc) fused to b-globin (Gl). pRLuc-Gl encodes RLuc-Gl mRNA
that initiates cap-dependent translation. php-EMCV IRES-RLuc-Gl
encodes RLuc-Gl mRNA that initiates EMCV IRES-dependent
translation, as it contains a stable hairpin (hp) structure 12
nucleotides downstream from the cap that inhibits cap-initiated
ribosome scanning (De Gregorio et al, 1999). Consistent with
the hairpin structure blocking ribosome scanning, php-EMCV
IRES(CCCC)-RLuc-Gl Norm, in which the GCGA tetraloop was
mutated to CCCC so as to inactivate the IRES (Robertson et al,

1999; Holbrook et al, 2006), did not produce an appreciable level
of RLuc activity (supplementary Fig 1 online). By contrast, php-
EMCV IRES-RLuc-Gl Norm was active, producing approximately
21-fold greater RLuc activity than php-EMCV IRES(CCCC)-RLuc-Gl
(supplementary Fig 1 online).

By using the level of p62 or calnexin to control for variations in
protein loading, it was shown by western blotting that the level
of Upf1, Upf2, Upf3X or the combination of CBP80 and
CBP20 (CBC) was downregulated to 5%, 10%, 12% or 5% and
12% the level in the presence of control siRNA, respectively
(Fig 1B–E, upper panels). siRNA-mediated effects on processes
other than NMD were controlled for by comparing PTC-
containing mRNA with PTC-free mRNA. CBC siRNA seems to
retard the nucleocytoplasmic export of spliced mRNA (C.F.W. and
L.E.M., unpublished data), and the degree to which it inhibits
NMD because of the direct effect of CBC on NMD or on mRNA
export is uncertain. Semiquantitative reverse transcription–PCR
(RT–PCR) showed that NMD reduced the level of RLuc-Gl Ter and
hp-EMCV IRES-RLuc-Gl Ter mRNAs in the presence of control
siRNA to 6–7% and 13–14% the level of the corresponding Norm
mRNA, respectively (Fig 1B–E, lower panels). Furthermore,
downregulating each protein inhibited the NMD of RLuc-Gl Ter
and hp-EMCV IRES-RLuc-Gl Ter mRNAs about two- to sixfold,
depending on the particular siRNA (Fig 1B–E, lower panels). This
variation probably reflects (i) differences in siRNA efficiencies
and differences in the cellular fraction of each targeted
protein that functions in NMD, and (ii) less efficient translation
initiation from the IRES compared with that from the 50 cap,
which results in less efficient PTC recognition and, as a
consequence, NMD. Notably, the reliability of using semiquanti-
tative RT–PCR was validated by using real-time PCR for samples
involving Upf1 siRNA (supplementary Fig 2 online). We conclude
that Upf1, Upf2, Upf3X and CBP80/20 function in NMD
that results from translation initiation at either an mRNA cap or
the EMCV IRES.

EMCV IRES: 4E-BP1 does not detectably inhibit NMD
To determine whether NMD that results from EMCV IRES-initiated
translation targets CBP80/20-bound mRNA or eIF4E-bound mRNA
or both, cells were transfected with the pACTAG2-HA3-4E-BP1
effector plasmid, which produces 4E-BP1 (Gingras et al, 1998) or,
as a control, pACTAG2-HA3. 4E-BP1 inhibits the translation of
eIF4E-bound mRNA but not CBP80/20-bound mRNA (Chiu et al,
2004). After 1 day, cells were transfected with (i) pRLuc-Gl or
php-EMCV-IRES-RLuc-Gl, either Norm or Ter, and (ii) pMUP.

HA3-4E-BP1 expression significantly reduced the abundance of
the secreted major urinary protein (MUP; Fig 2A) and the activity
of RLuc that derived from cap-dependent pRLuc-Gl expression
but not cap-independent php-EMCV-IRES-RLuc-Gl expression
(Fig 2B). This demonstrates that HA3-4E-BP1 inhibited the cap-
dependent translation of eIF4E-bound mRNA, which supports the
bulk of cellular protein synthesis. As expected, RT–PCR showed
that HA3-4E-BP1 was of no importance to the NMD of RLuc-Gl
Ter mRNA that involves the cap-dependent translation of
CBP80/20-bound mRNA (Fig 2C), consistent with previous results
(Chiu et al, 2004; Matsuda et al, 2007). HA3-4E-BP1 was also of
no consequence to the NMD of hp-EMCV IRES-RLuc-Gl Ter
mRNA, which initiates translation at the EMCV IRES (Fig 2C).
These data indicate that translation initiation from the EMCV IRES,
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Fig 1 | Downregulating Upf1, Upf2, Upf3X or CBP80/20 inhibits nonsense-mediated messenger RNA decay that results from encephalomyocarditis

virus internal ribosome entry site-initiated translation. (A) Diagrams of plasmid DNAs. Boxes represent exons, intervening lines signify introns and

hp refers to the hairpin structure that blocks translation initiation upstream from the EMCV IRES. ATG and TAA denote translation initiation and

termination codons, respectively, and 39 indicates the position of the premature termination codon when present. (B) (upper panel) Western blot

analysis (WB) using the specified antibody (anti-) after treatment with Upf1 or control siRNA. The level of p62 was used to control for variations

in protein loading. The three leftmost lanes show twofold dilutions of protein, indicating that the analysis was semiquantitative. (lower panel) Reverse

transcription–PCR after treatment with Upf1 siRNA or control siRNA. The level of each RLuc-Gl test mRNA was normalized to the level of MUP

mRNA. Normalized values were then calculated as a percentage of the normalized value of either RLuc-Gl Norm mRNA or hp-EMCV IRES-RLuc

Norm mRNA, each of which was defined as 100%. Values are derived from three independently performed experiments. The five leftmost lanes show

twofold dilutions of RNA. (C) As in (B), except that Upf2 siRNA was used instead of Upf1 siRNA. (D) As in (B), except that Upf3X siRNA was used

and the level of p62 was used to control for variations in protein loading as p62 migrates with Upf3X. (E) As in (B), except that CBP80 and CBP20

(CBC) siRNAs were used. CBP20 runs as a smeared band. EMCV, encephalomyocarditis virus; Gl, b-globin; IRES, internal ribosome entry site;

Luc, luciferase; MUP, major urinary protein; Norm, PTC-free; R, Renilla; siRNA, short interfering RNA; Ter, PTC-containing.
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similar to translation initiation from the mRNA cap, supports the
NMD of newly synthesized CBP80/20-bound mRNA but not
detectably its remodelled product, eIF4E-bound mRNA.

EMCV IRES: no detectable NMD of eIF4E-bound mRNA
In a second approach to determine whether NMD that is
supported by EMCV IRES-initiated translation targets CBP80/
20-bound mRNA or eIF4E-bound mRNA or both, the extent to
which a PTC reduces the level of CBP80/20-bound hp-EMCV
IRES-Gl-RLuc mRNA compared with eIF4E-bound hp-EMCV

IRES-Gl-RLuc mRNA was assessed. CBP80/20-bound mRNA and
eIF4E-bound mRNA are distinguishable by immunoprecipitation
using anti-CBP80 and anti-eIF4E, respectively (Ishigaki et al, 2001;
Lejeune et al, 2002; Chiu et al, 2004; Hosoda et al, 2005; Matsuda
et al, 2007). If the NMD of hp-EMCV IRES-Gl-RLuc Ter mRNA is
restricted to CBP80/20-bound mRNA, then a PTC should reduce
the levels of CBP80/20-bound hp-EMCV IRES-RLuc-Gl Ter mRNA
and eIF4E-bound hp-EMCV IRES-RLuc-Gl Ter mRNA to a
comparable percentage of the corresponding Norm mRNA. If
NMD targets both CBP80-bound and eIF4E-bound hp-EMCV
IRES-RLuc-Gl Ter mRNA, then the level of eIF4E-bound mRNA
should be reduced below the level of CBP80/20-bound mRNA
when each is presented as a percentage of the corresponding
Norm mRNA. Cells were transfected with pRLuc-Gl or php-EMCV
IRES-RLuc-Gl test plasmid, either Norm or Ter, and pMUP. After 2
days, cells were collected, and protein and RNA were prepared
before and after immunoprecipitation using anti-CBP80, anti-eIF4E
or, to control for nonspecific immunoprecipitation, normal rabbit
serum or mouse IgG, respectively.

Western blotting showed that CBP80 but not eIF4E was
immunoprecipitated using anti-CBP80 but not normal rabbit
serum (Fig 3A, upper panel), and eIF4E but not CBP80 was
immunoprecipitated using anti-eIF4E but not mouse IgG (Fig 3B,
upper panel). RT–PCR of samples after immunoprecipitation
showed that the level of CBP80/20-bound RLuc-Gl Ter mRNA
was 12±4% the level of CBP80/20-bound RLuc-Gl Norm mRNA,
and the level of eIF4E-bound RLuc-Gl Ter mRNA was 13±4% the
level of eIF4E-bound RLuc-Gl Norm mRNA, which were
comparable with levels before immunoprecipitation (Fig 3A,B,
lower panels). This is consistent with our previous finding that
NMD resulting from cap-dependent translation initiation targets
CBP80/20-bound mRNA. RT–PCR also showed that the level of
CBP80/20-bound hp-EMCV IRES-RLuc-Gl Ter mRNA was 20±4%
the level of CBP80/20-bound hp-EMCV IRES-RLuc-Gl Norm
mRNA, and the level of eIF4E-bound hp-EMCV IRES-RLuc-Gl
Ter mRNA was 23±5% the level of eIF4E-bound hp-EMCV IRES-
RLuc-Gl Norm mRNA (Fig 3A,B, lower panels). These data,
similar to the results obtained by blocking eIF4E-bound mRNA
translation using 4E-BP1, indicate that NMD triggered by EMCV
IRES-initiated translation is restricted to CBP80/20-bound mRNA
and does not detectably target eIF4E-bound mRNA.

NMD also results when translation of a PTC-containing mRNA
initiates using the type I poliovirus IRES (Wang et al, 2002). We
suggest that NMD resulting from IRES-mediated translation initiation
would generally fail to detectably target eIF4E-bound mRNA. An
exception is the cricket paralysis virus IRES, for reasons unrelated to
the nature of the cap-binding protein (Isken et al, 2008). Thus,
although translation initiation from the mRNA cap is not essential
for NMD, NMD seems to involve the presence of CBP80 and
CBP20, the latter of which binds directly to both the 50 cap and
CBP80 (Calero et al, 2002; Mazza et al, 2002). As noted above,
although eIF4E-bound mRNA can be engineered to be a target of
NMD by, for example, tethering Upf1 downstream from a nonsense
codon (Hosoda et al, 2005), the usual limitation of NMD to CBP80/
20-bound mRNA might reflect (i) the ability of CBP80 to interact
directly with Upf1 and promote the interaction of Upf1 with Upf2
(Hosoda et al, 2005) and (ii) the detectable presence of EJCs and,
thus, Upf2 and Upf3 or Upf3X on CBP80-bound mRNA but not on
eIF4E-bound mRNA (Lejeune et al, 2002; Kashima et al, 2006).
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Fig 2 | 4E-BP1 expression fails to inhibit nonsense-mediated messenger

RNA decay that results from encephalomyocarditis virus internal

ribosome entry site-initiated translation. (A) Western blot analysis (WB)

shows that 4E-BP1 expression inhibited the bulk of cellular translation,

as measured by the reduced level of the secreted MUP. The level of p62

was used to control for variations in protein loading. The four leftmost

lanes show twofold dilutions of protein. (B) RLuc activity assays also

indicated that 4E-BP1 expression inhibited the bulk of cellular

translation. RLuc activity was normalized to the level of the

corresponding RLuc mRNA. (C) Reverse transcription–PCR as in Fig 1B

(lower panel). Values are derived from three independently performed

experiments. EMCV, encephalomyocarditis virus; Gl, b-globin; IRES,

internal ribosome entry site; Luc, luciferase; MUP, major urinary protein;
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METHODS
Plasmid constructions. See the supplementary information online.
Cell transfections. HeLa CCL2 and Cos-7 cells were cultured in
Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA,
USA) supplemented with 10% fetal bovine serum (Invitrogen). Cos
cells (3–4� 106 per 60-mm dish) were transiently transfected with
4.0 mg of pACTAG2-HA3 or pACTAG2-HA3-4E-BP1 together with
0.4 mg of a pRLuc-Gl test plasmid or 0.4 mg of a php-EMCV
IRES-RLuc-Gl test plasmid and 0.1 mg of the pMUP reference
plasmid. When immunoprecipitations were performed, HeLa cells
(1� 107 per 150-mm dish) were transfected with 10mg of a pRLuc-Gl
test plasmid or 10 mg of a php-EMCV IRES-RLuc-Gl-RLuc test
plasmid and 2 mg of pMUP by using Lipofectamine 2000.

In experiments that used siRNA, HeLa cells (3–4� 106 per
60-mm dish) were cultured as described above and transiently
transfected with 100 nM of the specified in vitro-synthesized siRNA,
1.0mg of a pRLuc-Gl test plasmid or 1.0mg of a php-EMCV IRES-
RLuc-Gl test plasmid and 0.3mg of pMUP. Upf1, Upf2 and Upf3X
siRNAs were as described previously (Kim et al, 2005). CBP80 and
CBP20 siRNAs were, respectively, 50-r(GCUGAUCUUCCUAACU
ACA)d(TT)-30 and 50-r(GGGAACCUCUCUAAAUAAUUU)d(TT)-30.
Immunoprecipitations. Immunoprecipitations were performed as
described previously (Ishigaki et al, 2001).
RNA and protein isolation. Total-cell RNA and protein were
isolated using Trizol reagent (Invitrogen) and passive lysis buffer
(Promega, Madison, WI, USA), respectively (Ishigaki et al, 2001).
Western blot analyses, luciferase activity assays and RT–PCR. See
the supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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