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In the current context of global infectious disease risks, a better understanding of the
dynamics of major epidemics is urgently needed. Time-series analysis has appeared as an
interesting approach to explore the dynamics of numerous diseases. Classical time-series
methods can only be used for stationary time-series (in which the statistical properties do not
vary with time). However, epidemiological time-series are typically noisy, complex and
strongly non-stationary. Given this specific nature, wavelet analysis appears particularly
attractive because it is well suited to the analysis of non-stationary signals. Here, we review
the basic properties of the wavelet approach as an appropriate and elegant method for time-
series analysis in epidemiological studies. The wavelet decomposition offers several
advantages that are discussed in this paper based on epidemiological examples. In particular,
the wavelet approach permits analysis of transient relationships between two signals and is
especially suitable for gradual change in force by exogenous variables.
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1. INTRODUCTION

Globalization has altered human infectious disease risks
due to landuse changes, intensificationof agriculture, loss
of biodiversity, climate change, population increase,
urbanization, and increased travel. Emerging and
re-emerging infectious diseases are nowadays an increa-
sing public health challenge. Disease emergences reveal
the complex dynamical relationships between humans,
pathogens and the global environment (Morens et al.
2004; Woolhouse et al. 2005). Recently, new concerns
about global warming have yielded numerous studies
about the role of climate variability and climate change
in interannual disease patterns (McCarthy et al. 2001;
Cazelles et al. 2005; Patz et al. 2005; McMichael
et al. 2006).

Within this context, developing effective public
health policy requires integrating data that are diverse
orrespondence (cazelles@biologie.ens.fr).
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and highly variable in quality. Mathematical models of
disease transmission can provide a framework for
improving our understanding of the complex dynamics
of infectious disease epidemics (Anderson &May 1991).
This is crucial in attempts to design effective interven-
tion and control strategies. Since the early 1900s,
sophisticated mathematical and statistical methods
have been used (Ross 1911; Greenwood 1924). Never-
theless, the lack of appropriate datasets has impeded
the validation of mechanistic mathematical models.
More recently, time-series methods have appeared as
an interesting alternative and have been used to explore
the dynamics of numerous epidemics (e.g. Helfenstein
1986; Catalano & Serxner 1987).

Time-series are often used in short-term analyses of
air pollution and human health (Dominici et al. 2002;
Bell et al. 2004). To take into account the time
dependences, trends and cycles in epidemiological
time-series, spectral analysis has also been used. For
instance, Bishop (1977) has presented a brief review
J. R. Soc. Interface (2007) 4, 625–636
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Figure 1. Time–frequency resolution of the wavelet approach. (a) Examples of wavelets and their time–frequency boxes
representing the corresponding variance (energy) distribution. When the scale a decreases, the time resolution improves but the
frequency resolution gets poorer and is shifted towards high frequencies. Conversely, if a increases the boxes shift towards the
region of low frequencies and the height of the boxes becomes shorter (with a better frequency resolution) but their widths are
longer (with a poor time resolution). (b) In contrast with wavelets, all the boxes of the windowed Fourier transform are obtained
by a time- or frequency shift of a unique function, which yields the same variance spreads over the entire time–frequency plane.
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illustrated by epidemiological examples. Bloomfield
(1976) has investigated the use of Fourier analysis as a
tool for determining whether aggravation of asthma
symptoms is related to daily minimum temperature
and/or to atmospheric pollutants. Spectral techniques
have also been used to remove seasonal components
before using regression models for analysing the
relation between levels of particulate air pollution and
daily mortality (Schwartz 1993; Dominici et al. 2002).
Pascual and co-authors have used spectral techniques
coupled with other approaches (singular spectrum
analysis and non-parametric regression models) to
study the influence of large-scale climatic oscillations on
cholera epidemics (Pascual et al. 2000; Rodó et al. 2002).

These classical techniques can only be used for time-
series in which the statistical properties do not vary
with time, i.e. are stationary. However, epidemiological
time-series are typically noisy, complex and strongly
non-stationary. Long-term changes in climate, human
demographyand/or social features of humanpopulations
have generated non-stationarities in numerous epidemics
datasets as underlined by the analyses of measles and
whooping cough recordings (Duncan et al. 1996; Rohani
et al. 1999). Recently, a robust relationship between
ElNiño oscillations and cholera prevalence inBangladesh
hasbeenclearlydemonstrated thoughthe associationwas
transient over time (Rodó et al. 2002).

Toovercome the problemsof analysingnon-stationary
time-series, it has recently been proposed to apply
wavelet analysis to characterize themandalso toestimate
dependencies among non-stationary signals. Wavelet
analysis performs a time-scale decomposition of the
signal, which means the estimation of its spectral
characteristics as a function of time (Lau & Weng 1995;
J. R. Soc. Interface (2007)
Torrence&Compo 1998). This approach reveals how the
different scales (i.e. the periodic components) of the time-
series change over time. Cross-wavelets and wavelet
coherency generalize these methods, allowing the
analyses of scale dependencies between the two signals.

Wavelet analysis appears particularly attractive
given the specific nature of epidemiological and
environmental time-series and the relationships
between them. In 2001, Grenfell and collaborators
published a paper that analysed synchrony patterns of
measles in the UK (Grenfell et al. 2001). They used
wavelets to show for the first time a progressive increase
in epidemic phase with time, accompanying the
increasing trend in vaccination rates. Since this work,
several applications of wavelet analysis have been
published. Broutin et al. (2005) performed a wavelet-
based analysis of pertussis time-series in 12 countries to
detect and quantify periodicity and synchrony between
them. They showed a clear 3–4-year cycle in all
countries, but the main finding was that this
periodicity was transient and no global pattern in the
effect of vaccination on pertussis dynamics emerged.
Some of these papers were based on the characterization
of time-series and the analysis of their possible
association with environmental signals. Cazelles et al.
(2005) used this approach to demonstrate a highly
significant but discontinuous association between
El Niño, precipitation and dengue epidemics in
Thailand. This transient association has important
consequences for the dynamics of this epidemic: when
association with El Niño is strong, high synchrony of
dengue epidemics over Thailand is observed. When this
association is absent, the seasonal dynamics become
dominant and the synchrony initiated in Bangkok
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Figure 2. Wavelet power spectrum of an epidemiological time-series. (a) A time-series of the infectious generated by the classical
SEIR model (Aron & Schwartz 1984). On this time-series Morlet wavelets with a scale (period) aZ2-year and aZ4-year are
superimposed at time position t1Z4.2 and t2Z10, respectively. (b) Wavelet power spectrum (Sx (a, t)) are plotted as function of
time andperiod in a two-dimensional graph.As an example, the graph shows the value ofSx (a, ti) for aZ2-year at t1Z4.2 year and
for aZ4-year at t2Z10 year. At t1 for aZ2-years, the matching between the time-series and the wavelet is high, this gives a high
positive value of the wavelet transform and a high value for the wavelet power spectrum (Sx(a, t)) at this time position for this
periodic component. This high value of Sx(a, t1) is shown in dark red in the two-dimensional time-period plot (b). Similarly, when
the matching is weak as at t2 for aZ4-years, the low value for the wavelet power spectrum is shown in dark blue (b). (c) The
complete two-dimensional plot is obtained simply by computingwavelet transforms andwavelet power spectrum for a given range
of a and t values. The colours code for power values from dark blue, low values, to dark red, high values. The SEIR model used is
given by: dS/dtZmKb(t)SIKmS; dE/dtZb(t)SIK(mCa)E; dI/dtZaEK(mCg)I; dR/dtZ(gIKm)R; with SCECICRZ1, m
the birth and death rates, 1/a the duration of the latency period, 1/g the effective infectious period and b the contact rate with
b(t)Zb0(1Cb1cos 2pt) (Aron & Schwartz 1984). The parameter values used are: aZ35.84, mZ0.02, gZ100, b0Z1800, b1Z0.10.
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collapses. Chaves & Pascual (2006) recently described
the oscillating dynamics of cutaneous leishmaniasis
incidence in Costa Rica using several methods
(including wavelets) and provide evidence for their
association to climate variability. Constantin deMagny
et al. (2006) documented an association between cholera
incidence in Ghana and some climatic proxies (local
precipitations and surface temperature) in the 1980s. In
a subsequent work, they also demonstrated a significant
synchrony of cholera epidemics across countries of the
Gulf of Guinea, synchrony that would be driven by the
association between global and local climatic forcing
J. R. Soc. Interface (2007)
(Constantin de Magny et al. submitted). Researchers
have used the wavelet approach to compare the
frequency features of simulated and observed data
(e.g. Koelle & Pascual 2004). Wavelet analysis of
epidemiological time-series has also been compared
with other classical spectral techniques (e.g. José &
Bishop 2003). Other analyses investigated the
phenomenon of population synchrony where wavelets
are employed to extract the phase of the time-series
(e.g. Rohani et al. 2003 or Xia et al. 2004).

In the following, we present the basic ideas of the
wavelet analysis and its key features illustrated with
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both synthetic and observed epidemiological examples.
Our main goal is to emphasize the advantages of
these techniques in the context of time-series analyses
in epidemiology.
2. WAVELET ANALYSIS

Although Fourier analysis is well suited to quantifying
constant periodic components in a time-series, it is not
able to characterize signals whose frequency content
changes with time. On the other hand, a Fourier
decomposition may determine all the spectral com-
ponents embedded in a signal and does not provide any
information about when they are present. To overcome
this problem, several solutions have been developed to
simultaneously decompose a signal as a function of both
time t and frequency f (period or scale a).

Gabor (1946) introduced a windowed Fourier
decomposition to quantify the time–frequency content
of signals (figure 1). The time–frequency localization of
this approach is, however, inefficient because the
frequency resolution is the same for all the frequencies.
A transient (with higher frequencies) needs a high time
resolution to be well localized in time (figure 1). In
contrast, a low-frequency structure might need a small
time resolution (figure 1).

The wavelet transform decomposes a signal using
functions (wavelets) that narrow when high-frequency
features are present and widen on low-frequency
structures (Daubechies 1992; Lau & Weng 1995).
This decomposition yields a good localization in both
time and frequency (figure 1), which is well suited for
investigating the temporal evolution of aperiodic
and transient signals. Indeed, wavelet analysis is the
time–frequency decomposition with the optimal trade-
off between time and frequency resolution (Lau &
Weng 1995; Mallat 1998).
2.1. Wavelet transform

The wavelet transform of a signal x(t) (a time-series) is
defined as

Wxða;tÞZ
1ffiffiffi
a

p
ðN
KN

xðtÞj� tKt

a

� �
dtZ

ðN
KN

xðtÞj�
a;tðtÞdt;

ð2:1Þ
where ‘�’ denotes the complex conjugate form. In the
definition, parameters a and t denote the dilation (scale
factor) and translation (time shift), respectively. The
wavelet transform can be thought as a cross-correlation
of a signal x(t) with a set of wavelets j((tKt)/a) of
various ‘widths’ or scales a, at different time position t

(figure 2a). The wavelet coefficients, Wx(a, t), rep-
resent thus the contribution of the scales a at different
time positions t. In equation (2.1), the factor 1=

ffiffiffi
a

p

normalizes the wavelets so that they have unit variance
and hence are comparable for all scales a.

Note that the choice of the wavelet function j(t) is
not arbitrary. This function is normalized to have
unitary variance ð

Ð
kjðtÞk2dtZ1Þ and it verifiesÐ

jðtÞdtZ0. The wavelet decomposition is therefore a
linear representation of the signal where the variance is
preserved (Daubechies 1992). This implies that the
J. R. Soc. Interface (2007)
original signal can be recovered by means of the inverse
wavelet transform,

xðtÞZ 1

Cg

ðN
KN

ðN
0

1

a2
Wxða; tÞja;tðtÞdt da; ð2:2Þ

where CgZ
ÐN
0 kĵðf Þk2=f df and ĵðf Þ denotes the

Fourier transform of j(t).
The wavelet transform appears basically as a linear

filter whose response function is given by the wavelet
function. Bymeans of the inverse transform, the original
signal can be recovered by integrating over all scales a
and locations t, respectively. Nevertheless, one can also
limit the integration over a chosen range of scales, a1 to
a2, to perform a band-pass filtering of the original time-
series in this chosen range of scales.
2.2. Different wavelets

There are several considerations in making the choice of
a wavelet, for example, real versus complex wavelets,
continuous or discrete wavelets, orthogonal versus
redundant decompositions. Briefly, the continuous
wavelets often yield a redundant decomposition (the
information extracted from a given scale band slightly
overlaps that extracted from neighbour scales) but they
are more robust to noise as compared with other
decomposition schemes. Discrete wavelets have the
advantage of fast implementation but generally the
number of scales and the time invariant property
(a filter is time invariant if shifting the input in time
correspondingly shifts the output) strongly depend on
the data length. If quantitative information about
phase interactions between two time-series is required,
continuous and complex wavelets provide the best
choice (further details can be found in Mallat 1998).
However, all the wavelets share a general feature: low
oscillations have good frequency and poor time
resolution, whereas fast oscillations have good time
resolution but a lower frequency resolution.

One particular complex continuous wavelet, the
Morlet wavelet, is defined as

jðtÞZpK1=4 expðKi2u0tÞ expðKt 2=2Þ: ð2:3Þ
This wavelet is the product of a complex sinusoidal
exp(Ki2u0t) by a Gaussian envelope (exp(Kt2/2))
where u0 is the central angular frequency of the
wavelet. The term pK1/4 is a normalization factor to
ensure unit variance. For our applications we have
chosen this wavelet.

For the Morlet wavelet, the relation between
frequencies and wavelet scales is given by ð1=f ÞZ
ðð4paÞ=ðu0C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cu2

0

p
ÞÞ. When u0z2p, the wavelet

scale a is inversely related to the frequency, i.e. fz1/a.
This greatly simplifies the interpretation of the wavelet
analysis and one can replace, on all equations, the scale
a by the period 1/f (or wavelength).
2.3. Wavelet power spectrum

In some sense, thewavelet transform can be regarded as a
generalization of the Fourier transform and by analogy
with spectral approaches, one can compute the local
wavelet power spectrum by Sxðf ; tÞZkWxðf ; tÞk2.
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The Fourier spectrum of a signal can be compared with
the global wavelet power spectrum which is defined as
the averaged energy (the averaged variance) contained in
all wavelet coefficients of the same scale (period) a.

�SxðaÞZ
s2x

T

ðT
0
kWxða; tÞk2dt; ð2:4Þ

with s2x the variance of the time-series x and T the
duration of the time-series. Another interesting compu-
tation is the mean variance at each time location,
obtained by averaging the scale components,

�sxðtÞZ
s2xp

1=4t1=2

Cg

ðN
0
a1=2kWxða; tÞk2da: ð2:5Þ

Figure2 attempts tovisualize theunderlyingprocesses
associatedwith the computation of thewavelet transform
and the wavelet power spectrum. In figure 2a, Morlet
wavelets of scales (periods) aZ2 and 4-year centred at
two different time locations ti are shown superimposed on
anepidemiological time-series.The time-series used is the
number of infectious cases generated by a susceptible–
exposed–infectious–recoveredmodel (SEIR) described in
caption of figure 2. In the case of good matching between
the time-series of the infectious x(t) and the wavelets
j((tKt)/a), as shown for aZ2-year at location t1Z4.2
year, the integral of the product of the time-series with
this wavelet (2.1) produces a large value for the wavelet
transform, and then a large value for the wavelet power
spectrum Sx(a, t1) at this position t1 (figure 2b).
When the matching is low, as for the Morlet wavelet
with aZ4-year at location t2 (figure 1a), Sx(a, t2) takes
low values (figure 2b). By moving the wavelet along the
time-series (by increasing the t parameter), structures
relating to a specific scale (period) a can be identified by
high value of Sx(a, t). This process is repeated over
continuous rangeofaandt for identifying all the coherent
structures within the time-series producing a two-
dimensional surface of Sx(a, t) (figure 2c). In this
example, with the wavelet power spectrum, we are able
to recover the two dominant periodic components of the
SEIRmodelwithperiods1- and2-year in accordancewith
the classical approaches (Aron & Schwartz 1984).
2.4. Wavelet coherency and phase difference

In many applications, it is desirable to quantify
statistical relationships between two non-stationary
signals. In Fourier analysis, the coherency is used to
determine the association between two signals, x(t) and
y(t). The coherence function is a direct measure of the
correlation between the spectra of two time-series
(Chatfield 1989). To quantify the relationships between
two non-stationary signals, the following quantities can
be computed: the wavelet cross-spectrum and the
wavelet coherence.

The wavelet cross-spectrum is given by Wx; yða; tÞZ
Wxða; tÞW �

y ða; tÞ with ‘�’ denoting the complex con-
jugate.As in the Fourier spectral approaches, thewavelet
coherency is defined as the cross-spectrum normalized by
J. R. Soc. Interface (2007)
the spectrum of each signal,

Rx; yða; tÞZ
khWx; yða; tÞik

khWx;xða; tÞik1=2khWy; yða; tÞik1=2
; ð2:6Þ

where ‘h i’ denotes a smoothing operator in both time and
scale. The smoothing can be obtained by a convolution
with a constant-length window function both in the
time and scale axis: hWu;zða; tÞiZ

Ð aCD=2
aKD=2

Ð tCd=2
tKd=2 Wuða; tÞ

W �
z ða; tÞUd;Dða; tÞdt da denotes a smoothing opera-

tion with the weight function Ud,D(a,t) that satisfiesÐÐ
Ud;D ða; tÞdt daZ1 (Chatfield 1989). The values of

Rx,y(a, t) are thus bounded by 0%Rx,y(a, t)%1. The
wavelet coherency is equal to 1 when there is a perfect
linear relation at particular time and scale between the
two signals, and equal to 0 if x(t) and y(t) are independent.
The advantage of these ‘wavelet-based’ quantities is that
they may vary in time and can detect transient
associations between studied time-series (Liu 1994).

As with the Morlet wavelet theWx(a, t) is a complex
number, one can write Wx (a, t) in terms of its phase
fx(a, t) and modulus kWx (a, t)k (Le Van Quyen et al.
2001). The local phase of the Morlet wavelet transform
is proportional to the ratio between the imaginary part
(I) and the real part (R) of the wavelet transform,

fxða; tÞZ tanK1 =ðWxða; tÞÞ
RðWxða; tÞÞ

: ð2:7Þ

The phase of a given time-series x(t) can be viewed as
the position in the pseudo-cycle of the series and it is
parameterized in radian ranging from Kp to p. The
phases can then be useful to characterize possible phase
relationships between x(t) and y(t) by computing the
phase difference fx,y(a, t)Zfx(a, t)Kfy(a, t) or

fx; yða; tÞZ tanK1 =ðhWx; yða; tÞiÞ
RðhWx; yða; tÞiÞ

: ð2:8Þ

A unimodal distribution of the phase difference (for the
chosen range of scales or periods) indicates that there is
a preferred value of fx,y(a, t) and thus a statistical
tendency for the two time-series to be phase locked.
Conversely, the lack of association between the phase of
x(t) and y(t) is characterized by a broad and uniform
distribution. To quantify the spread of the phase
difference distribution, one can use circular statistics
or quantities derived from the Shannon entropy
(Pikovsky et al. 2001; Cazelles & Stone 2003).
2.5. Assessment of statistical significance

As with other time-series methods, it is crucial to asses
the statistical significance of the patterns exhibited by
the wavelet approach. To this end, bootstrap methods
have been used to quantify the statistical significance of
the computed patterns. The idea is to construct, from
observed time-series, control datasets, which share with
the original series some properties but are constructed
under the following null hypothesis: the variability of
the observed time-series or the association between
two time-series is no different to that expected from a
purely random process. The construction of our
control datasets was performed by classical bootstrap
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Figure 3. Wavelet analysis for the characterization of evolving epidemics. (a–c) Time-series of the infectious population
generated by a chaotic SEIRmodel. The SEIRmodel is described in the figure 2 caption and details concerning the transients can
be found in Tidd et al. (1993). The parameter values are identical than those used in figure 2 but b1Z0.28. (d– f ) Monthly
reported measles cases in York (Grenfell et al. 2001). (a) and (e) The time-series have been square root transformed. (b) and ( f )
Classical Fourier spectrum of the time-series. (c) and (g) Wavelet power spectrum (Sx(a, t)) of the time-series. The colours code
for power values from dark blue, low values, to dark red, high values. On these graphs, the dotted white lines show the maxima of
the undulations of the wavelet power spectrum and the dotted-dashed lines show the aZ5% significant levels computed based on
1000 bootstrapped series. On the two-dimensional graphs, the cone of influence which indicates the region not influenced by edge
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(Efron&Tibshirani 1993), but other resampling schemes
are possible (Cazelles& Stone 2003). To test whether the
raw time-series is inconsistent with the null hypothesis,
we have computed the wavelet transform and related
quantities for each time-series of the control set. Then
we can compare the original values computed from raw
series with the distribution of the same quantities under
J. R. Soc. Interface (2007)
the null hypothesis, extracting, for instance, the 99th or
the 95th quantiles of these distributions.

Epidemiological and environmental time-series are
very often short and noisy. The values of the wavelet
transform are generally corrupted as the wavelet
approaches the edges of the time-series, creating a
boundary effect. Further, the affected region increases



Figure 4. Wavelet analysis of the transient relationship between cholera incidence in Ghana and SOI. (a) (i) the analysed time-
series: the cholera incidence (solid lines) and the SOI (dashed lines). The incidence series are square root transformed, and all
series are filtered and normalized before analyses. (a) (ii) the Fourier spectrum for the cholera incidence series (solid line) and for
the SOI (dashed line). The y-axis describes period (in year) as for other y-axis of (b –d ) graphs. (b) (i) wavelet power spectrum
(Sx(a, t)) of the cholera incidence. The colours code for power values from dark blue, low values, to dark red, high values. On this
graph, the white line shows the maxima of the undulations of the wavelet power spectrum. (b) (ii) the average wavelet spectrum
(�SxðaÞ) of cholera incidence. (c) as in (b) but for the SOI. (d ) (i) Wavelet coherence between cholera incidence in Ghana and the
SOI. The colours are coded a dark blue, low coherence and dark red, high coherence. (d ) (ii) Classical Fourier coherence between
cholera incidence and the SOI. On (b –d ), the dotted-dashed lines showed the aZ5% significant levels computed based on 1000
bootstrapped series and on the two-dimensional graphs the cone of influence, which indicates the region not influenced by edge
effects, is also shown.
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in extent as the scale (period) parameter a increases. This
region is known as the cone of influence (Torrence &
Compo 1998) and the spectral information within this
cone is likely to be less accurate.
2.6. Available wavelet toolboxes

Several wavelet toolboxes are catalogued on the
Amara’s wavelet page (www.amara.com/current/
J. R. Soc. Interface (2007)
wavelet.html). A general time–frequency toolbox
developed for GNU OCTAVE and MATLAB is available
at tftb.nongnu.org/. Another toolbox widely used in
epidemiology and geosciences is that of Torrence &
Compo (1998) (atoc.colorado.edu/research/wavelets/).
Nevertheless, these toolboxes only consider univariate
time-series analysis. Other collections of functions
have been recently developed to explore bivariate time-
series (including wavelet coherence) in geosciences:

http://www.amara.com/current/wavelet.html
http://www.amara.com/current/wavelet.html
http://tftb.nongnu.org/
http://atoc.colorado.edu/research/wavelets/
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Maraun & Kurths (2004) propose a set of R functions
(www.agnld.uni-potsdam.de/wmaraun/wavelets/)
whereas Grinsted et al. (2004) have extended the
MATLAB functions of Torrence & Compo (www.pol.ac.
uk/home/research/waveletcoherence/). The MATLAB

functions used in our research, as well as some examples
of analysis of epidemiological time-series can be down-
loaded at ecologie.snv.jussieu.fr/cazelles/wavelets/.
3. ANALYSIS OF EPIDEMIOLOGICAL
TIME-SERIES

3.1. Characterization of time-evolving
epidemics

The wavelet approach enables the evolution of the
oscillating characteristics of a given time-series to be
described. To illustrate this, we use a synthetic time-
series generated by a classical SEIR model with chaotic
and transient dynamics (as described in the caption of
figure 2; Tidd et al. 1993; Engbert & Drepper 1994).

The results of wavelet analysis are summarized in
figure 3a–d. Figure 3a displays the transient dynamics
of the infectious population simulated by the SEIR
model. Figure 3b displays the classical Fourier spec-
trum (Chatfield 1989) of this time-series. There are
large peaks at a period of 1, 2 and around 3–4 years.
Although these periodic modes are present in the time-
series (figure 3a), the Fourier spectrum is not able to
specify when these modes are present. Conversely, the
wavelet power spectrum can quantify the time
evolution of these oscillatory modes and show when
they are dominant (figure 3c).

This synthetic time-series is dominated by a 2-year
mode (and its 1-year subharmonic) before time index
1340 (figure 3c). After this, the dynamics become more
complex (chaotic, see Tidd et al. 1993) with numerous
significant modes of oscillation, but the 3–4 year mode
dominates (figure 3c and also figure 3b). Note that the
wavelet power spectrum is coherent with the time-
series, with a major shift in the periodicity around time
index 1340. We can quantify the shift in the dominant
mode by estimating the variance of the time-series
explained by different modes using the scale-averaged
wavelet power (2.5). Figure 3d shows the time evolution
of the percentage of the variance explained by the 2-
and the 3–4 year modes. In the first part of the time-
series before the time index 1340, the 2-year mode
explains more than 40% of the variance. After this, the
3–4 year mode becomes dominant, explaining more
than 30% on an average of the variance.

The above example shows that wavelet analysis
allows the detection of shifts in the periodic components
of a given time-series. To illustrate the method using an
observed time-series, we have analysed weekly measles
notifications in the city of York (UK) for the pre-
vaccination era, 1944–1966 (figure 3e–g; data from
Grenfell et al. 2001). This series is dominated by the
2-year periodic mode (figure 3 f ). As with classical
approaches, the wavelet power spectrum reveals not
only the importance of this oscillatory mode, but also
its time localization. Before 1960, the 2-year mode
dominates (figure 3g) as for other cities (Grenfell et al.
J. R. Soc. Interface (2007)
2001) but after 1960, this periodic mode disappears and
is replaced by more aperiodic dynamics (figure 3g). This
observation is supported by examining the time
evolution of the percentage of the variance explained
by the 2-year mode. Figure 3h shows that the 2-year
mode explains on average more than 50% of the
variance before 1960 and a significant decrease of the
dominance of this mode around 1960. This graph
(figure 3h) also shows the rapid alternation of the
2-year and the 1-year modes after 1960.
3.2. Analysis of transient relationship between
epidemics and environmental forcing

Cholera is a highly contagious disease caused by specific
strains of the bacteriumVibrio choleræ that is naturally
present in the environment and is autochthonous to
coastal and estuarine ecosystems (Colwell 1996).
Cholera is known to be influenced by climate and
ocean conditions (Bouma & Pascual 2001; Pascual et al.
2002). Previous studies of cholera population dynamics
have proposed links between oceanographic environ-
mental conditions and human cases of cholera morbid-
ity and mortality (Epstein 1993; Colwell & Huq 2001).
Climate may also affect the dynamics of cholera by
shifting pathogen abundance, host species abundance,
population dynamics or community interaction. For
example, cholera outbreaks in Peru and Bangladesh
have been linked to periodic climatic cycles such as the
El Niño Southern oscillation (ENSO; Colwell 1996;
Salazar-Lindo et al. 1997; Pascual et al. 2000; Rodó
et al. 2002). For example, Rodó et al. (2002) used
singular spectral analysis and Fourier analysis in order
to isolate the main interannual variability in long-term
Bangladesh cholera time-series. In this study, the
authors showed that the strong association between
cholera dynamic and ENSO is discontinuous in time
owing to the shifts in the ENSO frequency spectrum.
They needed to analyse data in three successive time
periods, with classical Fourier spectrum, in order to
capture these changes. Our initial aim was to determine
whether the associations between ENSO and cholera
outbreaks in Ghana (Western Africa) are similar to
those observed in Peru and/or Bangladesh, but with a
method that potentially is able to capture the non-
stationary features of the observed dynamics if present.
Then we analysed with wavelets reported cholera cases
for Ghana for the years 1975–2002, compiled from the
weekly epidemiological record (available at the WHO
website: www.who.int/wer/en/). As a proxy for ENSO,
we used the southern oscillation index (SOI) for the
same years (www.cpc.ncep.noaa.gov/data/indices/soi).

Figure 4a (i) displays the observed time-series.
Results from the classical Fourier spectral analysis
tell us that both time-series have similar oscillating
components mainly around the 2–3 year and the 4–5
year modes (figure 4a, ii). This could suggest a possible
association between cholera dynamics and ENSO.
These associations estimated by the classical coherence
(Chatfield 1989) are shown to be high for the 1.2-year,
the 2.5-year and the 4-year modes (figure 4d, ii).
Nevertheless, the results of the wavelet analysis lead to
more restrained conclusions.

http://www.agnld.uni-potsdam.de/~maraun/wavelets/
http://www.pol.ac.uk/home/research/waveletcoherence/
http://www.pol.ac.uk/home/research/waveletcoherence/
http://ecologie.snv.jussieu.fr/cazelles/wavelets/
http://www.who.int/wer/en/
http://www.cpc.ncep.noaa.gov/data/indices/soi


Review. Wavelet analysis for epidemiological time series B. Cazelles et al. 633
For cholera incidence in Ghana, the wavelet power
spectrum shows a continuous oscillating mode at both
3–5 year and 6–8 year during the whole time period
(figure 4b). Nevertheless, these modes of oscillation
vary in strength. The dominant modes are the 3-year
mode for 1989–1995, the 4-year mode for 1989–1996,
around the 6-year mode for 1975–1985 and the 8-year
mode for 1990–1998 (figure 4b, i). Wavelet analysis of
SOI detected a significant 4-year periodic mode for the
whole time-series but the SOI wavelet power spectrum
is characterized by a strong 4-year periodic component
during both the 1980–1989 and 1995–2002 time periods
(figure 4c, i). During 1989–1995, one observed a shift of
the dominant mode to the 5-year periodic band. The
right of figure 4c,d display the average wavelet power
spectrum (2.4) that are very similar than those
obtained with the Fourier method (figure 4a, ii).
Although wavelet analysis reveals that these two
time-series have similar oscillating components, these
components are not always present at the same time. In
fact, the wavelet coherence (that quantifies the
association between the time-series) is significant only
for 1980–1985 around the 4-year mode (figure 4d, i).
These results are in contrast to those obtained with the
classical approach (figure 4d, ii).

Wavelet analysis suggests that the incidence of cholera
cases in Ghana is weakly coherent with ENSO except for
1980–1985 in the 4-year periodic band. This pattern of
association appears more complicated than those
observed in other regions (Salazar-Lindo et al. 1997;
Pascual et al. 2000). This particular analysis reveals that
the timing of association between disease dynamics and
environmental forcing must not be disregarded. Wavelet
analysis is one of the statistical tools with the power
account for such time-evolving relationships.
3.3. Analysis of spatial synchrony of epidemics

Using monthly data for Thailand, Cummings et al.
(2004) identified travelling waves of dengue hemor-
rhagic fewer (DHF), initiated in the capital city,
Bangkok. In subsequent research, it has been demon-
strated that this synchrony is transient and linked to
El Niño (Cazelles et al. 2005).

The data are monthly reports of DHF in each of 72
provinces of Thailand (Cummings et al. 2004). We
analysed two incidence time-series from this dataset:
the incidence in Bangkok and the averaged incidence
for the rest of Thailand (figure 5a). The oscillations of
the dengue incidence time-series are dominated by the
annual mode, but they also have a statistically
significant common mode of oscillation around a period
of 2–3 year (Cazelles et al. 2005).

We computed the different temporal associations
between the DHF incidence in Bangkok and the rest of
Thailand, showing three main regions of high and
significant coherence (figure 5b). The first one is for the
2–3 year periodic band for the time period 1983–1991,
the second is for the 1-year mode for 1983–1985 and for
1991–1997, and the last for the 5-year mode after 1988.
We also analysed the phases of the time-series that
permit to obtain information about the possible delay
in the relationship (i.e. in phase or out of phase
J. R. Soc. Interface (2007)
relations; figure 5c). This phase analysis is completed
by the computation of the evolution of periodic compo-
nents in the 2–3 year and the 1-year modes for DHF in
Bangkok and in the rest of Thailand (figure 5d,e). The
two incidence series are phase locked with a mean delay
of three months for the 2–3 year band (figure 5c,d ), but
mainly within the period 1983–1992 where there is high
coherence with El Niño oscillations (Cazelles et al.
2005). For 1983–1986 and 1991–1997, the seasonal
mode is dominant. During these years, phase locking is
seen only for the seasonal mode and the dengue
incidence in Bangkok follows the incidence in the
remainder of Thailand with an average delay of one
month (figure 5e).

The wavelet allows us to explore the transient nature
of the spatial synchrony of dengue incidence in Thai-
land and the potential influence of El Niño on these
complex phenomena. With wavelets, we are able to
state that the observed travelling waves in the 2–3 year
mode described by Cummings et al. (2004) coincides
with a period of high coherence between dengue and
El Niño, convincingly suggesting that climate may be
involved in these travelling waves (Cazelles et al. 2005).
4. CONCLUDING REMARKS

Wavelet analysis is an important addition to time-series
methods with practical applications in epidemiology.
We have reviewed the basic concepts of the wavelet
analysis and illustrated the approach using examples,
which appear particularly interesting from an epide-
miological point of view.Wavelet analysis can help us to
interpret multi-scale, non-stationary time-series data
and reveals features we could not see otherwise. This is
clearly the case for both the complex relationship
between cholera incidence in Ghana and SOI and for
the transient spatial synchrony of DHF in Thailand.

The major aims of much current epidemiological
research are to characterize and understand disease
processes and the potential influence of exogenous
changes on these processes. In this context, as
experiment is usually not possible, the retrospective
(historical) approaches are frequently employed. Retro-
spective approaches use a mode of analysis, which is
dependent on the comparative and observational
richness of the data. A key requirement is to take into
account the major characteristics of the observations
that mirror the underlying properties of the system. As
stressed in §1, epidemiological and environmental time-
series observed are typically non-stationary: epidemio-
logical time-series can change dramatically with time.
These characteristics may make use of traditional
techniques inappropriate and results from classical
approaches must be interpreted with caution.

Using the wavelet approach, we have shown that it is
possible to study irregular, non-stationary and noisy
time-series, and also to analyse weak and transient
interactions between such series.Wavelet power spectra
quantify the main periodic component of a given time-
series and its time evolution. Wavelet coherence is used
to quantify the degree of linear relation between two
non-stationary time-series in the time–frequency
domain. The main advantage of the wavelet approach
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Figure 5. Wavelet analysis of the synchrony between dengue incidence in Bangkok and in the rest of Thailand. The incidence
series are square root transformed and all series are normalized. (a) Bangkok dengue incidence (solid line) and Thailand dengue
incidence (dashed line). (b) Wavelet coherence between dengue incidence in Bangkok and in the rest of Thailand. The colours are
coded a dark blue, low coherence and dark red, high coherence. The dotted-dashed lines show the aZ5% significance levels
computed based on 1000 bootstrapped series. The cone of influence indicates the region not influenced by edge effects. (c) Phase
evolutions of the two series computed with the wavelet transform in the 2–3 year periodic band. Line symbols are as in (a) and the
dotted-dashed line is for the phase difference between the two series. (d ) Oscillating components computed with the wavelet
transform in the 2–3 year periodic band (line symbols as in (a)). (e) Oscillating components computed with the wavelet transform
in the 0.8–1.2 year periodic band (line symbols as in (a)).
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is the ability to analyse transient dynamics, for one-
dimensional signals and for the association between two
time-series. A further interesting aspect is the analysis
of the phases of the studied time-series (Grenfell et al.
2001; Cazelles & Stone 2003). Phase analysis is a
nonlinear technique that makes possible to study rather
weak interactions (Cazelles & Stone 2003). Indeed,
the notion of phase synchronization implies only some
J. R. Soc. Interface (2007)
inter-dependence between phases, whereas the irregular
amplitudes may remain uncorrelated (see Rohani et al.
2003 or Xia et al. 2004).

As a statistical analysis, wavelet approaches provide
no information about the underlying epidemiological
mechanisms. There is no single relation neither between
cyclical features and biological or epidemiological
mechanisms nor between relationships and mechanisms
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since a given pattern of association between series may
be generated by a wide variety of different mechanisms.
However, like the other correlative approaches, wavelet
analysis can provide useful clues about the nature of the
underlying epidemiological processes (e.g. Grenfell
et al. 2001 or Cazelles et al. 2005). Such clues pave
the way for future modelling approaches in which
explicit mechanisms can be incorporated. A great
strength of wavelet analysis is its freedom from
stationarity assumptions, providing a condensed,
quantitative, temporally explicit summary of time-
series. Wavelet analysis can be used as a first step for
exploring the complexity of both the observed environ-
mental and the epidemiological signals before the
modelling stage. But this modelling approach must
also take into account these non-stationary features. In
this context, Bayesian approaches such as Kalman
filtering (e.g. Cazelles & Chau 1997) or particle filters
(e.g. Andrieu et al. 2001) seem very promising.

We hope that wavelet analysis will be more widely
employed to analyse epidemiological time-series. The
wavelet approach should be employed alongside other
time-series tools to examine directly the relationship
(association, dependence, synchrony) between studied
time-series. We believe that wavelet analysis should
yield significant future advances in our understanding
of epidemiological process in our changing world.
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