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Biomimetic materials research: what
can we really learn from nature’s

structural materials?
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Nature provides a wide range of materials with different functions and which may serve as a
source of bio-inspiration for the materials scientist. The article takes the point of view that a
successful translation of these ideas into the technical world requires more than the observation
of nature.A thoroughanalysis of structure-function relations in natural tissuesmust precede the
engineering of new bio-inspired materials. There are, indeed, many opportunities for lessons
from the biological world: on growth and functional adaptation, about hierarchical structuring,
on damage repair and self-healing.Biomimeticmaterials research is becoming a rapidly growing
and enormously promising field. Serendipitous discovery from the observation of nature will be
gradually replaced by a systematic approach involving the study of natural tissues in materials
laboratories, the application of engineering principles to the further development of bio-inspired
ideas and the generation of specific databases.
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Biological materials constitute most of the body of
plants and animals around us. They allow cells to
function, eyes to capture and interpret light, plants to
stand up to the light and animals to move or fly. This
multitude of solutions has always inspired mankind to
make materials and devices, which simplify many of our
day-to-day functions. Biological structures are a con-
stant source of inspiration for solving a variety of
technical challenges in architecture (Kemp 2004),
aerodynamics and mechanical engineering (Nachtigall
1998), as well as in materials science (Jeronimidis &
Atkins 1995). Natural materials consist of relatively
few constituent elements, which are used to synthesize
a variety of polymers and minerals. On the contrary,
human history is characterized by the use of many more
elements. This led to the invention of materials with
special properties, which are not used by nature. The
ages of copper, bronze and iron were later followed by
the industrial revolution based on steel and the
information age based on silicon semiconductors. All
these technical materials require high temperatures for
fabrication and biological organisms have no access to
them. Nevertheless, nature has developed—with com-
paratively poor base substances—a range of materials
with remarkable functional properties. The key is a
complex, often hierarchical, structuring of the natural
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materials (Lakes 1993; Tirrell 1994; Jeronimidis &
Atkins 1995; Currey 2005), which results from the fact
that natural materials grow according to a recipe stored
in the genes, rather than being fabricated according to
an exact design (figure 1).
1. HOW CAN WE LEARN FROM NATURE?

The design strategies of biological materials are not
immediately applicable to the design of new engineering
materials, since there are some remarkable differences
between the strategies common in engineering and
those used by nature (figure 1). The first major
difference is in the range of choice of elements, which
is far greater for the engineer. Elements such as iron,
chromium and nickel are very rare in biological tissues
and certainly not used in metallic form, as would be the
case for steel. Iron is found in red blood cells, for
instance, as an ion bound to the protein haemoglobin
and its function is certainly not mechanical but rather
to bind oxygen. Most of the structural materials used
by nature are polymers or composites of polymers and
ceramic particles. Such materials would generally not
be the first choice of an engineer to build strong and
long-lasting mechanical structures. Nevertheless,
nature uses them to build trees and skeletons. The
second major difference is the way in which materials
are made. While the engineer selects a material to
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Figure 1. Biological and engineering materials are governed
by a very different choice of base elements and by a different
mode of fabrication. As a result, different strategies have to
be pursued to achieve the desired functionality (below the
arrow).
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Figure 2. Galileo’s description of bones from (a) small and
(b) large animals (Galilei 2005).
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fabricate a part according to an exact design, nature
goes the opposite way and grows both the material and
the whole organism (a plant or an animal) using the
principles of (biologically controlled) self-assembly.
This provides control over the structure of the
material at all levels of hierarchy and is certainly a
key to the successful use of polymers and composites as
structural materials.

Bio-inspiration is not just a consequence of an
observation of naturally occurring structures. The
reason is that nature has a multitude of boundary
conditions which we do not know a priori and which
might all be important for the development of the
structure observed. Therefore, we need to keep our eyes
open and must be able to solve a particular problem set.
Both the biological structure and the set of problems
the structure is designed to solve can bio-inspire us. For
example, if we consider the structure of our own femoral
head to be a solution for a mechanical optimization
problem (as hypothesized in the so-called Wolff law;
Wolff 1892; Frost 2005), questions still remain like
which mechanical property has been optimized (stiff-
ness, toughness and defect tolerance) and what the
possible influence of other boundary conditions is. It is
well known that bone is also the body’s ion reservoir
and serves the calcium homeostasis. Rik Huiskes (2000)
phrased the question, ‘If bone is the answer, what is the
question?’. It is quite true that the structures we
observe are probably good solutions found by a long
adaptation process during evolution. Unfortunately, we
do not exactly know which problem has been solved. It
may be just to provide a strong material and also to
meet some quite different biological constraints. This
implies that we may not succeed if we follow without
modifications the solutions found by nature as optimal
for a certain unknown requirement. So, we have to
carefully study the biological system and understand
the structure–function relationship of the biological
J. R. Soc. Interface (2007)
material in the context of its physical and biological
constraints. Careful investigation of a biological system
serving as the model is necessary for biomimetic
materials research.
2. GROWTH AND FUNCTIONAL ADAPTATION

Growth is a process that can be influenced by the
external conditions including temperature, mechanical
loading, and supply of light, water or nutrition. A living
organism must necessarily possess the ability of
adaptation to external needs, while possible external
influences on a technical system must be typically
anticipated in its design, often leading to considerable
‘over-design’ (figure 1). This aspect of functional
adaptation is particularly fascinating for the materials
scientist, since several undiscovered solutions of nature
can serve as sources of inspiration. The subject was
pioneered by D’Arcy Wentworth Thompson whose
classical book in 1919 (with a second volume in 1942)
‘On Growth and Form’ was republished several times
later (Thompson D’Arcy W 1992). This early text
mostly relates the ‘form’ (or shape) of biological objects
to their function. Even earlier, the relationships
between anatomy (i.e. structure) and function of living
systems had been explored by Leonardo da Vinci (1952)
and Galileo Galilei (2005).

The latter is often considered the father of biome-
chanics. Among his many other discoveries, he recog-
nized that the shape of an animal’s bones are to some
extent adapted to its weight. Long bones of larger
animals typically have a smaller aspect ratio (figure 2).
Galileo’s explanation is a simple scaling argument,
based on the fact that the weight of an animal scales
with the third power of its linear dimension, while the
structural strength of its bones scales with its cross-
section, i.e. the square of the linear dimension. Hence,
the aspect ratio of long bones has to decrease with the
body weight of the animal (figure 2). This is also a good
example of functional adaptation.

Different strategies in designing a material result
from the two paradigms of ‘growth’ and ‘fabrication’
(figure 1). In the case of engineering materials, a
machine part is designed and then the material is
selected according to knowledge and experience regard-
ing the functional requirements, taking into account
possible changes in those requirements during service
(e.g. typical or maximum loads) and fatigue (and other
lifetime issues) of the material. In any case, the strategy
is static, as the design is made in the beginning and
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Figure 3. Several levels of hierarchy in the structure of the skeleton of the glass sponge Euplectella (Aizenberg et al. 2005;Weaver
et al. in press). (a) whole basket, (b) woven glass fibres, (c) fibre bundle joined by glass matrix, (d ) laminated structure of single
glass fibre, (e) protein layer gluing successive glass layers, ( f ) colloidal structure of glass.
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must satisfy all needs during the lifetime. The fact that
natural materials are growing rather than being
fabricated leads to the possibility of a dynamic
strategy: it is not the exact design of the organ that is
stored in the genes, but rather a recipe to build it. This
means that the final result is rather obtained by an
algorithm than by the replication of a design. The
advantage of this approach is that it allows flexibility at
all levels. First, it permits adaptation to the function,
while the body is growing. For example, a branch
growing in the direction of the wind may grow
differently than that in the opposite direction, without
any change in the genetic code. Second, it allows the
growth of hierarchical materials, where the micro-
structure at each position of the part is adapted to the
local needs (Jeronimidis 2000). This is linked to the
idea of robustness: nature has evolved structures that
are capable of surviving/withstanding/adapting to a
range of different environments, while man-made
materials are generally less flexible in their use.

Adaptive growth has also been analysed in the book
by Mattheck and Kubler, more specifically focusing on
trees (Thompson D’Arcy W 1992; Mattheck & Kubler
1995), with the specific aim to extract useful engineering
principles from the observation of natural structures.
Adapting the form (of a whole part or organ, such as a
branch or a vertebra) is the first aspect of functional
adaptation. A second possibility, which relates more
directly to materials science, is the functional adap-
tation of the microstructure of the material itself (such
as the wood in the branch or the bone in the vertebra).
This dual need for optimization of the part’s form and
the material’s microstructure is well known for any
engineering problem. However, in natural materials,
shape andmicrostructure become intimately related due
J. R. Soc. Interface (2007)
to their common origin, which is the growth of the organ.
This aspect has been discussed in detail by Jeronimidis
in his introductory chapters to a book on ‘Structural
Biological Materials’ (Jeronimidis 2000). Growth
implies that ‘form’ and ‘microstructure’ are created in
the same process, but in a stepwisemanner. The shape of
a branch is created by the assembly of molecules to cells,
and of cells towoodwith a specific shape.Hence, at every
size level, the branch is both form and material: the
structure becomes hierarchical.
3. HIERARCHICAL STRUCTURING

Hierarchical structuring is one of the consequences of
the growth process of organs. Examples for hierarchical
biological materials are bone (Rho et al. 1998; Weiner
and Wagner 1998; Fratzl et al. 2004b; Peterlik et al.
2006), trees (Barnett & Jeronimidis 2003; Hoffmann
et al. 2003; Keckes et al. 2003; Milwich et al. 2006),
seashells (Kamat et al. 2000), spider silk (Vollrath &
Knight 2001), the attachment systems of geckos (Arzt
et al. 2003), superhydrophobic surfaces (Lotus effect;
Barthlott & Neinhuis 1997; Neinhuis & Barthlott
1997; Furstner et al. 2005), optical microstructures
(Aizenberg et al. 2001; Vukusic & Sambles 2003), the
exoskeleton of arthropods (Raabe et al. 2005, 2006) or
the skeleton of glass sponges (Aizenberg et al. 2005).
Figure 3 shows an example of the hierarchical structure
of the skeleton of the Euplectella glass sponge.
Hierarchical structuring allows the construction of
large and complex organs based on much smaller,
often very similar, building blocks. Examples of such
building blocks are collagen fibrils in bone which have
units with a few hundred nanometre thickness and can
be assembled to a variety of bones with very different
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functions (Weiner & Wagner 1998; Currey 2002;
Fratzl et al. 2004b). Moreover, hierarchical structuring
allows the adaptation and optimization of the material
at each level of hierarchy to yield outstanding
performance. For example, the extraordinary tough-
ness of bone is due to the combined action of structural
elements at the nanometre (Gao et al. 2003; Gupta et al.
2006b) and the micrometre levels (Peterlik et al. 2006).

Clearly, hierarchical structuring provides a major
opportunity for bio-inspired materials synthesis and
adaptation of properties for specific functions (Tirrell
1994). Functionally graded materials are examples of
materials with hierarchical structure. New functions
may be obtained just by structuring a given material,
instead of choosing a new material providing the
desired function. One example for this strategy is
composite materials that are omnipresent in nature.
They feature lamellar structures, such as in seashells
(Kamat et al. 2000; Tang et al. 2003; Fantner et al.
2006) or glass spicules (Aizenberg et al. 2005; Woesz
et al. 2006), or fibrous structures, such as in bone
(Weiner & Wagner 1998; Currey 2002; Peterlik et al.
2006) or wood (Barnett & Jeronimidis 2003;
Hoffmann et al. 2003; Keckes et al. 2003). These
structures carry many similarities with man-made
fibre glass and ceramic laminates and it is highly
remarkable that totally different strategies have
converged at similar solutions in them. Moreover,
interfaces play a crucial role in hierarchical composite
materials. Joining elements by gluing (Smith et al.
1999; Tang et al. 2003; Fratzl et al. 2004a; Gupta
et al. 2006a) is one aspect, while control of the
synthesis of components, such as crystals, is another.
For a while, this topic has been addressed in the
research field of biomineralization (Mann 2001).
Hierarchical hybrid materials can also provide move-
ment and motility. Muscles and connective tissues are
integrated to form a complex materials system which
is motor and supporting structure at the same time.
This may inspire materials scientists to invent new
concepts for active biomimetic materials (Sidorenko
et al. 2007).
4. DAMAGE REPAIR AND HEALING

Clearly, one of the most remarkable properties of
biological materials is their capacity of self-repair.
There are very different strategies associated with self-
repair. At the smallest scale, there is the concept of
sacrificial bonds between molecules that break and
reform dynamically (Fantner et al. 2006). Bond break-
ing and reforming was found, for example, to occur
upon deformation of wood (Keckes et al. 2003) and
bone (Thompson et al. 2001; Fantner et al. 2005; Gupta
et al. 2006a,b). This provides, in fact, the possibility for
plastic deformation (without creating permanent
damage) as in many metals and alloys. At higher
levels, many organisms have the capability to remodel
the material. In bone, for example, specialized cells
(osteoclasts) are permanently removing material, while
other cells (osteoblasts) are depositing new tissue. This
cyclic replacement of the bone material has at least two
consequences: first, it allows a continuous structural
J. R. Soc. Interface (2007)
adaptation to changing external conditions and,
second, damaged material may be removed and
replaced by new tissue (Currey 2002; Fratzl et al.
2004b). In technical terms, this would mean that a
sensor/actuator system is put in place to replace
damaged material wherever needed. For example, a
change in environmental conditions can be (partly)
compensated by adapting the form and microstructure
to the new conditions: the growth direction of a tree
after a slight landslide (Mattheck & Kubler 1995, 1998)
is an apt example. Finally, nature also can heal a
fractured or critically damaged tissue. In most cases,
wound healing is not a one-to-one replacement of a
given tissue, but it rather starts with the formation of
an intermediate tissue (based on a response to
inflammation), followed by a scar tissue. An exception
to this is bone tissue, which is able to regenerate
completely and where the intermediate tissue (the
callus) is eventually replaced by a material of the
original type (Carter & Beaupre 2001). The science of
self-healing materials is still in its complete infancy
(White et al. 2001), but represents a major opportunity
for biomimetic materials research.
5. SYSTEMATIC BIOMIMETIC APPROACH

As mentioned already, biomimetic materials research
starts with the study of structure–function relation-
ships in biological materials. Based on the strategies
found in nature, bio-inspired materials may be
developed. However, this approach has to some extent
rely on serendipity, depending on what is actually
found in the analysis of biological materials. Is it
possible to make the biomimetic approach more
systematic?

An example of this kind has been studied by Julian
Vincent (2005). He analysed how the cuticle of
arthropods were designed to cope with IR and UV
irradiation, as well as with demands for sensory
transmission, movement, etc., and proved that the
similarity of the cuticle design with known technology
is only approximately 20%, suggesting that engineering
can actually learn from this structure. Most interest-
ingly, the multifunctionality of the cuticle is achieved
by controlling the local properties of the material rather
than by changing its overall parameters (which would
be the technical solution).

Another systematic approach is to store biomi-
metic solutions, once they are uncovered in the
analysis of biological materials, into large databases,
where they can then be retrieved by engineers in
search of technical solutions. Such databases have
previously been developed for materials selection
(Ashby 2003) in technical design and have more
recently been extended to the selection of both
materials and processes (Ashby et al. 2004). Initial
attempts have been made to establish a system
into which all known biomimetic solutions can be
placed, classified in terms of function (Vincent &
Mann 2002; Vincent et al. 2006). Such tools will
become extremely valuable for the development of
bio-inspired materials and processes.
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Finally, the verification of biological mechanisms
by manufacture can lead to an iterative process
between biology and engineering, in which the
understanding gained from engineering may be fed
back into biology. This mostly unexplored pathway
offers the possibility that engineers can also contrib-
ute to biological sciences (Csete & Doyle 2002;
Vincent 2003).
6. CONCLUSIONS

Biomimetic materials research (sometimes also
coined as material bionics or bio-inspired materials
research), an old field, has now begun to develop very
dynamically. One of the reasons is the growing
interaction between biological and materials sciences.
Indeed, bio-inspiration does not result from the
observation of natural structures alone, but requires
a thorough investigation of structure–function
relationships in biological materials. Nature has
evolved a number of strategies to create outstanding
functional properties with comparatively cheap base
materials. This is achieved by hierarchical structur-
ing, adaptive growth instead of fabrication, and
constant remodelling and healing. Biomimetic
materials research creates numerous opportunities
for devising new strategies to create multifunctional
materials by hierarchical assembly, for the clever use
of interfaces and the development of active or self-
healing materials. Interdisciplinary teams will
develop a portfolio of bio-inspired processes for
obtaining new function by structuring and assembling
of known elements. This will also require new
approaches to the dissemination of knowledge, such
as databases sorting materials and processes by
function rather than by composition.
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particular, he would like to thank Yves Bréchet (Grenoble,
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