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Katharine F. Preedy1,2,*, Pietà G. Schofield1, Mark A. J. Chaplain2

and Stephen F. Hubbard1

1School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
2Division of Mathematics, University of Dundee, Dundee DD1 4HN, UK

All animals and plants are, to some extent, susceptible to disease caused by varying
combinations of parasites, viruses and bacteria. In this paper, we present a mathematical
model of interactions between a host, two parasitoids and a pathogen which shows that the
presence of an infection can preserve and promote diversity in such multi-species systems.
Initially, we use a system of ordinary differential equations to investigate interactions
between two species of parasitoids, a host and a host infection. We show that the presence of
all four species is necessary for the system as a whole to persist, and that in particular, the
presence of the pathogen is necessary for the coexistence of the two parasitoid species. The
inclusion of infection induces a wide range of dynamics, including chaos, and these dynamics
are robust for a wide range of parameter values. We then extend the model to include spatial
effects by introducing random motility (diffusion) of all three species and examine the
subsequent spatio-temporal dynamics, including travelling waves and other more
complicated heterogeneous behaviour. The computational simulation results of the model
suggest that infection in the hosts can blunt the effects of competition between parasitoids,
allowing the weaker competitor to survive. Regardless of the nature of the stability of the
coexistent steady state of the system, there is an initial period of transient dynamics, the
length of which can be extended by an appropriate choice of initial conditions. The existence
of these transient dynamics suggests that systems subject to regular restoration to a starting
state, such as agro-ecosystems, may be kept in a continual state of dynamic transience, and
this has implications for the use of natural enemies to control insect pests, the preservation of
biodiversity in farmland habitats and the more general dynamics of disease processes.
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1. INTRODUCTION

The impact of disease on natural populations is well
recognized (Anderson & May 1991; Delfino & Simmons
2000), and simple ecological models have been frequently
employed in attempts to assess the likely impact of
pathogens on host populations (Anderson & May 1980,
1981). Since then, there havebeenparticularly significant
advances in developing both system-specific models
(Briggs & Godfray 1995, 1996) and in understanding
the natural ecology of host–pathogen interactions
(Grenfell & Dobson 1995; Hudson et al. 2002; Bonsall
2004). It is also clear that both pathogens and parasites
can affect the dynamics of populations, even at low
prevalence (Anderson 1995; Tomkins & Begon 1999).
When combined with other factors, such as competition
or predation, interspecific infection can play a crucial role
in determining the structure of an ecological community
under circumstances where the infection does not
orrespondence (k.f.preedy@dundee.ac.uk).
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affect all species equally (Bowers & Turner 1997;
Tomkins et al. 2003). However, the indirect effects of
infection on competing species have received consider-
ably less attention.

Parasitoidsare insectswhose larvaedevelopby feeding
on a single arthropod host. They may be solitary, laying
only one egg per host, or gregarious laying anything from
a few to several thousand eggs per host. Parasitoids are
also classified as idiobionts when they immobilize or kill
their hosts at the time of oviposition, or as koinobionts
when they permit the host to continue and feed, with the
host dying only when the juvenile parasitoids emerge
from their eggs. They may be specialists, attacking a
single species of host or generalists, able to use a variety of
host species. One reason why parasitoids have been so
extensively studied is that they provide a very accurate
and effective experimental metaphor for many exploiter–
resource associations in ecology, such as predator–prey
and herbivore–plant interactions (Godfray 1994).

In many associations, both hosts and parasitoids are
subject to disease, but while there has been extensive
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Figure 1. Plots of the numerical solutions to equations (2.3a–d) for two different sets of initial conditions and parameter values
s1Z0.85, s2Z0.6, s3Z0.7, s4Z0.88, riZ2.5, nZ0.17, gZ0.16, miZ0.2, c1Z0.9, c2Z0.2, c3Z0.4 and c4Z0.35. The plots show how
the length of time that the initial transient dynamics are present for varies with initial conditions. In figure (a), the initial
conditions are (0.1; 0.1; 0.5; 0.5). In figure (b), the initial conditions are (0.0001; 0.339; 0.0001; 0.338) and the system is run for
5000 time-steps in each case. The fixed point of coexistence is (0.074; 0.248; 0.428; 0.010) and is a stable spiral. The blue line
represents uninfected hosts; the red line infected hosts, green line P1 and the cyan line P2.
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Figure 2. Plots of the numerical solutions to equations (2.3a–d) for parameter set s1Z0.85, s2Z0.6, s3Z0.7, s4Z0.88, riZ2.5,
nZ0.15, gZ0.16, m1Z0.16, m2Z0.085, c1Z0.9, c2Z0.2, c3Z0.4 and c4Z0.35. Initial conditions are huZ0.1, h iZ0.1, P1Z0.5 and
P2Z0.5. The fixed point of coexistence is (0.075; 0.024; 0.466; 0.015) and is an unstable spiral. A limit cycle now exists. The system is
run for 5000 time-steps in (a) and for 50 000 time-steps in (b) and (c). The blue line represents uninfected hosts; the red line infected
hosts, green line P1 and the cyan line P2. Figure (a) and (b) shows the oscillatory temporal dynamics of the populations over time
associated with the limit cycle, while figure (c) is a phase plot of hu, h i and P1 showing the presence of the limit cycle.
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ecological research into the effects of disease on
host–parasitoid systems, and some work on host–
parasitoid–pathogen systems where only one species
of parasitoid is present (Hochberg et al. 1990), there has
been less work on the modelling of such systems
(Dobson & Grenfell 1995; Gulland 1995; Sait et al.
2000). Hochberg et al. (1990) considered the effects of
inteference between parasitoid and pathogen in an
infected host and examined the dynamics of the
host–parasitoid–pathogen interactions. Disease may
J. R. Soc. Interface (2007)
be transmitted between hosts in a number of ways—
horizontally through ingestion of droppings (frass),
contact with detritus from infected hosts, through the
‘dirty needle’ effect (Dye et al. 1995) where a parasitoid
attacks an infected host and then carries the infection
to an uninfected host on its ovipositor or vertically
through infection of eggs from an infected mother, as
in the case of insect baculoviruses (Sait et al. 1994;
Briggs et al. 1995; Burden et al. 2003). Many diseases
make a host more susceptible to mortality if it is
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Figure 3. Plots of the numerical solutions to equations (2.3a–d) for parameter set s1Z0.85, s2Z0.6, s3Z0.7, s4Z0.88, riZ2.5,
nZ0.2, gZ0.16, miZ0.2, c1Z0.9, c2Z0.2, c3Z0.4 and c4Z0.35. Initial conditions are huZ0.1, h iZ0.1, P1Z0.5 and P2Z0.5. The
system is run for 5000 time-steps in (a) and for 50 000 time-steps in (b) and (c). The fixed point of coexistence is (0.074; 0.248;
0.414; 0.023) and is unstable. The blue line represents uninfected hosts; the red line infected hosts, green line P1 and the cyan line
P2. Figure (a) and (b) shows the complex temporal dynamics of the populations over time associated with the chaotic attractor,
while (c) is a phase plot of hu, h i and P1 showing the chaotic attractor.
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simultaneously subject to other sources of physiological
stress, such as food deprivation, while other infections
depress the host’s immune system or alter its ability to
defend itself (Wertheim et al. 2005; Fytrou et al. 2006).

We consider here a situation in which hosts are
infected both vertically through ovarian transmission
and horizontally through contact with infection-
bearing host products, such as frass. Such a situation
might arise among phytophagous moths in the tropics
where larvae ingest frass as they consume leaf material
but where frequent rain rapidly cleans vegetation or
where the infection is otherwise short lived outside the
host. The infection is sublethal, but has an indirect
detrimental effect on the parasitoids. The mathematical
model which will be presented in §2 simulates the
effects of such infections in natural communities,
therefore, by introducing disease dynamics into a
simple model system of two parasitoids attacking a
single host species. We undertake an analysis of the
steady states of the model and examine their stability
as well as investigating transient dynamics using
computational simulations. In order to examine the
situation where the various species can move freely and
interact with each other within a given spatial domain,
the model is then extended to include spatial effects in
both hosts and parasitoids through the inclusion of
random motility (cf. diffusion) in all species. We then
present a numerical analysis of the spatio-temporal
dynamics of this system. The results of the analysis of
the models have implications not only for under-
standing the role of infection in determining the
structure of ecological communities, but also for the
J. R. Soc. Interface (2007)
effective application of biological control in agro-
ecosystems, the impact such methods might have on
the ability of farmland habitats to sustain biodiversity
and the general dynamics of disease processes.
2. THE MATHEMATICAL MODEL

Initially, we consider a system of two species of
gregarious parasitoids, denoted P1 and P2, attacking a
single species of host denoted H. The model constitutes
a system of three ordinary differential equations—one
for the host population and one for each species of
parasitoid—describing the interactions between the
species. We assume that the host population has
logistic growth, with an intrinsic rate of growth r and
a carrying capacity K. The parameter r can be defined
in several ways as is appropriate to the system under
study. However, it is typically related to the growth in
population over a single generation or the time taken
for eggs to hatch into larvae which would be something
between a couple of days and a few weeks. Parasitoids
P1 and P2 parasitize uninfected hosts at intrinsic rates
a1 and a2, respectively. Handling and refractory times
are modelled using a function of the form, (1KeKaH),
where H is the host population and a is a parameter
which determines the efficiency of parasitoids and is
related to the handling time associated with parasitiz-
ing hosts. This is known as an Ivlev functional response
and is an alternative to the Holling type II functional
response often used to model predation or host–par-
asitoid interactions (Sherratt et al. 1995; Pearce et al.
2006). Each parasitized host gives rise, on average, to e1
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of the first parasitoid species e3 of the second in the next
generation. Parasitoids P1 and P2 die at rates d1 and d2,
respectively. The mathematical model is, therefore,

dH

dt
Z rH 1K

H

K

� �
Ka1P1 1KeKa1H

� �
Ka2P2 1KeKa2H

� �
;

ð2:1aÞ
dP1

dt
Z e1a1P1 1KeKa1H

� �
Kd1P1; ð2:1bÞ

dP2

dt
Z e3a2P2 1KeKa2H

� �
Kd2P2: ð2:1cÞ

There are four fixed points (steady states) in this
system given by

ð0; 0; 0Þ; ðK ; 0; 0Þ; H �; 0;P�
2ð Þ; H �;P�

1 ; 0ð Þ:
The trivial fixed point (0, 0, 0) is always unstable. Any
one of the other fixed points may be stable depending on
the parameters. However, we note that an equilibrium
point of coexistence ðH �;P�

1 ;P
�
2Þ does not exist.

In order to develop the model further, we now
introduce host infection into the system. We denote
uninfected and infected hosts hu and h i, respectively.
We assume that contact between members of the host
population is random and so we consider simple ‘mass
action’ transmission with an infection term of the form
bh ihu (DeJong et al. 1995; McCallum et al. 2001; Begon
et al. 2002). As in the model without infection, hosts are
subject to parasitism by two species of parasitoid P1

and P2, the former laying a greater number of eggs in
each clutch than the latter. Parasitism is once again
modelled by the Ivlev functional response, (1–e–aH),
where HZhuCh i is the whole host population. Para-
sitoids P1 and P2 parasitize uninfected hosts at rates a1
and a3 and infected hosts at rates a2 and a4, respectively.
Eachparasitized uninfected host gives rise, on average, to
e1 of the first parasitoid species and to e3 of the second in
the next generation. Parasitoids P1 and P2 die at rates d1
and d2, respectively. We assume that the infection
induces host mortality at a rate g1. If the host dies before
the parasitoids emerge, then the juvenile parasitoids will
also die. We assume that there is no recovery from the
infection and that there is perfect vertical transmission.
The model now including infection is, therefore,

dhu

dt
Z rhu 1K

H

K

� �
Ka1P1

hu

H
1KeKa1H
� �

Ka3P2

hu

H
1KeKa2H
� �

Kbh ihu; ð2:2aÞ

dh i

dt
Z rh i 1K

H

K

� �
Ka2P1

h i

H
1KeKa1H
� �

Ka4P2

h i

H
1KeKa2H
� �

Cbh ih uKg1h i; ð2:2bÞ
dP1

dt
Z e1a1P1 1KeKa1H

� � hu

H

Ce2a2P1

h i

H
1KeKa1H
� �

Kd1P1; ð2:2cÞ
dP2

dt
Z e3a3P2 1KeKa2H

� � hu

H

Ce4a4P2

h i

H
1KeKa2H
� �

Kd2P2; ð2:2dÞ
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where hu is the number of uninfected hosts, h i is the
number of infected hosts andP1 andP2 are the number of
parasitoids of type 1 and 2, respectively, and HZhuCh i.

To non-dimensionalize the system, we set ~tZrt,
~huZðhu=KÞ, ~h iZðh i=KÞ, ~P1ZðP1=KÞ and ~P2ZðP2=KÞ.
Dropping the tildes gives the following non-dimensional
system:

dhu

dt
Zhuð1KHÞKs1P1

hu

H
1KeKr1H
� �

Ks2P2

h u

H
1KeKr2H
� �

Knh ihu; ð2:3aÞ

dh i

dt
Zh ið1KHÞKs3P1

h i

H
1KeKr1H
� �

Ks4P2

h i

H
1KeKr2H
� �

Cnh ihuKgh i; ð2:3bÞ

dP1

dt
Zc1P1

hu

H
1KeKr1H
� �

Cc2P1

h i

H
1KeKr1H
� �

Km1P1;

ð2:3cÞ
dP2

dt
Zc3P2

hu

H
1KeKr2H
� �

Cc4P2

h i

H
ð1KeKr2H ÞKm2P2;

ð2:3dÞ

where siZai/r riZaiK nZKb/r ciZ((eiai)/r) and
miZd i/r.

We envisage a situation in which the parasitoids are
gregarious, so the conversion rates ei may be greater
than 1 and if ei is sufficiently high, it is quite possible for
ci to be greater than si in the non-dimensionalized
system. If a host dies prior to parasitoid emergence,
the parasitoids it is supporting will also die, so the
conversion rate must be reduced to take into account
host mortality. Given that infected hosts suffer
increased mortality under stress, we require e1Oe2
and e3Oe4 and also that c1Oc2 and c3Oc4. The
parameters discussed below represent a situation
where P2 has a lower conversion rate than P1 on
uninfected hosts, but this conversion rate is less affected
by the infection. Such a situation might arise through
P2 laying smaller clutches of eggs and so that the host is
subjected to lower stress levels. Disease can induce
detectable physiological changes in hosts. It is not,
therefore, unreasonable to suppose that a parasitoid
might have different rates of parasitism of infected and
uninfected hosts, because it may be easier to parasitize
a weaker host, but the chance of the host dying before
the juvenile parasitoids are ready to emerge is higher.
Within this general framework, we consider three
particular cases that illustrate the range of dynamics
possible with the inclusion of infection in the system.

Case(i): using reference parameters s1Z0.85, s2Z0.6,
s3Z0.7, s4Z0.88, riZ2.5, nZ0.17, gZ0.16, miZ0.2,
c1Z0.9, c2Z0.2, c3Z0.4 and c4Z0.35, we obtain nine
biologically realistic fixed points:

ð0; 0; 0; 0Þ; ð1; 0; 0; 0Þ; 0; h�
i ; 0; 0ð Þ; h�

i ; h
�
u; 0; 0ð Þ;

0; h�
i ; 0;P

�
2ð Þ; h �

u; 0; 0;P
�
2ð Þ; ðh �

u; 0;P
�
1 ; 0Þ;

0; h�
i ;P

�
1 ; 0ð Þ; h �

u; h
�
i ;P

�
1 ;P

�
2ð Þ:

It should be noted that in the absence of one species of
parasitoid, there is no fixed point of coexistence—either
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infected or uninfected hosts become extinct and this is the
case regardless of parameter choice. Similarly, if the
infection is omitted from the system, the weaker
parasitoid competitor invariably goes extinct and,
again, there is no coexistence fixed point. Both species
of parasitoid and the infection are, therefore, necessary
for coexistence despite the fact that the infection is
detrimental to all individuals.

Linear stability analysis shows that with the excep-
tion of ðh�u; h�i ;P�

1 ;P
�
2Þ, which is a stable spiral

(as illustrated in figure 1), the fixed points are all
unstable. Numerical simulations show that initially the
system exhibits high-amplitude, high-frequency oscil-
lations which decrease in size as the host infection levels
rise. After a peak in the level of infection, we see damped
oscillations and the system rapidly reaches a steady
state as the populations are attracted to the coexistent
fixed point. By altering the initial conditions, it is
possible to extend the length of time the transient
dynamics persist for as can be seen from figure 1b.

Case(ii): we now vary the parameters n, m1 and m2 and
set the parameters to s1Z0.85, s2Z0.6, s3Z0.7, s4Z0.88,
riZ2.5, nZ0.15, gZ0.16, m1Z0.16, m2Z0.085, c1Z0.9,
c2Z0.2, c3Z0.4 and c4Z0.35 as in figure 2. The fixed
point of coexistence is now an unstable spiral and a limit
cycle exists. Again the system initially exhibits the
transient high-amplitude, high-frequency oscillations
but in this case, when the infection levels rise, although
the oscillations decrease in size, they do not slow down
and soon the system converges to a limit cycle about the
coexistent fixed point (see figure 2c).

Case(iii): if we now consider simply increasing the
infection rate n so that the parameters are s1Z0.85,
s2Z0.6, s3Z0.7, s4Z0.88, riZ2.5, nZ0.2, gZ0.16,
miZ0.2, c1Z0.9, c2Z0.2, c3Z0.4 and c4Z0.35, then
numerical simulations of the system produce the
dynamics shown in figure 3a. The only difference
between this set of parameter values and the one
which gave the stable spiral in figure 1 is an increased
rate of infection n between hosts. However, the dynamics
are very different. We see pulses of high-frequency, large
amplitude oscillations which vary in length and
regularity. Even after 50 000 time-steps, the system
has not settled down (see figure 3b). Linear stability
analysis reveals that the fixed point has associated
eigenvalues K0.065G0.274i and 0.002G0.031i. Locally,
therefore, this fixed point is unstable (a saddle point in
R
4). However, all the other fixed points are also unstable,

but the solutions remain bounded. A phase plot of hu, h i

and P1 shown in figure 3c does not suggest that the
solution trajectories are approaching any kind of a limit
cycle, indeed the orbit looks chaotic. The normal test for
chaos is to calculate the largest Lyapunov exponent l of
a system (Gottwald & Melbourne 2004). If lO0, then
nearby trajectories diverge exponentially, whereas if
l!0, then nearby trajectories stay close together. Thus,
positive l implies that a system is chaotic and negative l
that it is not. The Lyapunov exponent of the system as
calculated by MATDS using the algorithm in (Wolf
et al. 1985) is 0.05544O0. There is much discussion
about what constitutes chaos and no computer
simulation can show that a system is not periodic at a
range just outside the length of the simulation. What we
J. R. Soc. Interface (2007)
can say is that the system is not periodic within 50 000
time-steps—a time-scale more associated with evolution
than population dynamics—and within that time we see
chaos-like behaviour.
3. SPATIO-TEMPORAL DYNAMICS

Parasitoid–host systems in nature exist in a complex
mosaic of spatial and temporal heterogeneity, and there
has been an enormous volume of experimental work,
both field and laboratory, which attempts to understand
and describe the way in which parasitoids respond to this
patchiness in their resource. In general, it is recognized
that spatio-temporal heterogeneity can impart consider-
able stability to systems which might otherwise be
unstable. The model introduced in §2 does not consider
how spatial effects may influence the system. In reality,
hosts and parasitoids are likely to move within a given
spatial domain, with individuals encountering one
another spatially. In order to model this more realistic
setting, we therefore now allow each species to move
randomly throughout a given domain by including
random motility (diffusion) in the model. In some
systems, parasitoids are known to use chemical cues
(kairomones) in searching for hosts which enable them to
aggregate at locations of high kairomone concentration
(Vinson 1976; Schofield et al. 2002, 2005a). However, we
do not consider such a situation here. For simplicity, we
consider a one-dimensional domain UZ(0, L) and
impose zero-flux boundary conditions on vU to close
the system. We assume that the uninfected and infected
hosts have random motility coefficients Dhu and Dhi,
respectively, while the species of parasitoid P1 and P2

have random motility coefficients Dp1 and Dp2, respect-
ively.We set ~xZðx=LÞ and use the same substitutions as
in obtaining system 3 to obtain the non-dimensional
partial differential equation model below.

vhu

vt
ZD1

v2hu

vx2
Chuð1KHÞKs1P1

hu

H
1KeKr1H
� �

Ks2P2

hu

H
1KeKr2H
� �

Knh ihu;

ð3:1aÞ
vh i

vt
ZD2

v2h i

vx2
Ch ið1KHÞKs3P1

h i

H
1KeKr3H
� �

Ks4P2

h i

H
1KeKr4H
� �

Cnh ih uKg1h i; ð3:1bÞ

vP1

vt
ZD3

v2P1

vx2
Cc1P1

hu

H
1KeKr1H
� �

Cc2P1

h i

H
1KeKr3H
� �

Km1P1; ð3:1cÞ

vP2

vt
ZD4

v2P2

vx2
Cc3P2

h i

H
1KeKr2H
� �

Cc4P2

h i

H
1KeKr4H
� �

Km2P2; ð3:1dÞ

where D1ZðDhu=ðrL2ÞÞ, D2ZðDhi=ðrL2ÞÞ, D3ZðDp1=
ðrL2ÞÞ andD4ZðDp2=ðrL2ÞÞ and all other parameters are
as before.
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Figure 4. Plots showing the evolution of the (numerical) solutions of the PDE system 4a–d with parameters corresponding to the
ODE system in case (i) (shown in figure 1). The blue line represents uninfected hosts; the red line infected hosts, green line P1 and
the cyan line P2. (a) shows the initial conditions, (b) at tZ100, (c) at tZ200, (d) at tZ500, (e) at tZ1000 and ( f ) at tZ2500.
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Throughout this section, we take D1ZD2Z8!10K7

and D3ZD4Z7.5!10K6. We have set host diffusion
lower than parasitoid diffusion because transmission of
infection generally occurs between the larval stages and
wasps move faster than host larvae. However, we still
observe the same dynamics when all diffusion coefficients
are equal. The initial conditions are h uð0; xÞZh ið0; xÞZ
eK200x2 and P1ð0; xÞZP2ð0; xÞZ1KeK200x2 (figure 4a).

Figure 4 shows snapshots of the (numerical)
solutions of the PDE system with underlying ODE
dynamics given in figure 1 where the fixed point is a
stable spiral. Initially, a wave of uninfected hosts
closely followed waves of P1, and at lower levels P2 leads
a wave train through the domain (figure 4b). However,
in the absence of infection P2 cannot compete and drops
to low levels. We then see rich spatio-temporal
dynamics associated with the transient phase from
figure 1 with high-frequency, large amplitude oscil-
lations (figure 4c). As the host infection invades, P2

follows it and the oscillations slow down and rapidly
decrease in amplitude (figure 4d,e) and by tZ2500, the
system has reached its steady state (figure 4f ). The
transient oscillations in the healthy host population
mean that the infection is not invading a homogeneous
population and the wave of invasion is disrupted. The
order of invasion can be explained by the fact that
parasitoids require hosts to reproduce and hence cannot
exist without them, so the hosts must invade first. The
infection invades at a slower speed than both the
healthy hosts hu and the parasitoids P1. Similarly, P2

has a very low rate of population growth in the absence
of infection and it does not invade until the infection has
established itself.

Figure 5 shows snapshots of the (numerical) solutions
of our PDE system corresponding to the underlyingODE
dynamics offigure 2. Here again, we see a travelling wave
ofhealthyhosts followed closely bya travellingwaveofP1

andP2 (figure 5a).Again,P2 cannot compete andwe see a
J. R. Soc. Interface (2007)
much longer period of transient dynamics (figure 5b).The
disruption of thewave of infection is extreme here. It does
not followawave-front, but reaches low levels throughout
the domain before rising to a peak (figure 5c) and
spreading out fromit.P2 cannot compete in theabsenceof
infection, so its population density increases behind the
peak of infection and it takes much longer to become
established (not until tZ1800 in figure 5d ). The
oscillations decrease in amplitude (figure 5e), but this is
temporary and the amplitude increases slightly again.
The long-term dynamics of the underlying ODE system
are a stable limit cycle, and correspondingly in the PDE
solutions, we see persistent rich spatio-temporal hetero-
geneity as shown infigure 5f. This type of dynamic spatio-
temporal behaviour has been observed in previous work
examining predator–prey systems and host–parasitoid
systems (cf. Sherratt et al. 1995; Pearce et al. 2006).

Figure 6 shows snapshots of the (numerical)
solutions of our PDE system corresponding to the
underlying (chaotic) ODE dynamics of figure 3. The
speed of the wave of infection is faster here because the
rate of infection is higher. As a result, the population of
parasitoid species 2, P2, becomes established through-
out the domain much more quickly. The peaks in host
infection seen in figure 3a,b do not occur when diffusion
is introduced to the system, but we do see pulses of fast
oscillations and as can be seen from figure 6f, the
infection level continues to vary widely both spatially
and temporally. The complex spatio-temporal
dynamics seen in figure 5 are very much in evidence
here with larger oscillations and a greater degree of
spatio-temporal heterogeneity.
4. DISCUSSION

The mathematical model presented in this paper
develops a theoretical framework with which to address
the issue of infection in host–multi-parasitoid systems.
It combines two well understood mechanisms—simple
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contact transmission of infection and host-mediated
parasitoid competition. The results of our model have
shown that if one species of parasitoid is removed from
the system, there are no coexistent fixed points and that
the inclusion of multiple parasitoids allows for persist-
ence of the disease. On the other hand, without the
infection, competitive exclusion means that either one
or both species of parasitoid will inevitably become
extinct. The addition of disease dynamics to the model,
therefore, allows for coexistence of all species, so
although the disease is detrimental to all agents in the
system, it indirectly benefits the less efficient compe-
titor. The prediction that the two parasitoid species can
only exist in the presence of the pathogen is an
interesting and novel result, because it represents a
departure from the predictions of some models of
apparent competition in host–parasitoid systems,
J. R. Soc. Interface (2007)
where a shared host can be detrimental to the survival
of one of the parasitoid species (Bonsall et al. 2002). The
operation of this process can be seen in figure 2, where
pulses of infection reduce the population of the first
parasitoid species, which are then followed by smaller
peaks in the population of the second parasitoid. It also
differs from classic two-consumer–two-resource models
such as those discussed in Vandermeer & Pascual
(2006), because the interactions between the healthy
and infected host populations are not simply based
upon resource competition. If the parasitoids were
removed from the system, we would see a classic
susceptible–infected disease model.

Our model generates chaos-like dynamics for a wide
range of parameter values, but even when this does not
occur, the system initially exhibits complex transient
dynamics which can be extended by simple alteration of
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the initial conditions. These transient dynamics remain
important when one-dimensional diffusion is included in
the model. The existence of these transient chaos-like
dynamics suggests that in any system which is subject to
regular substantial disturbance, especially where the
initial starting conditions are repeatedly re-established,
dynamics which are essentially chaotic could persist
almost indefinitely. Sait et al. (2000) observed that
transient dynamics persisted in an experimental host–
parasitoid–pathogen system for ecologically significant
periods, but their experiments used only one parasitoid
species, and invariably the system became extinct. The
parameters for the three case studies in this paper have
been chosen to illustrate the rich variety of dynamics
possible froma simplemodel. In all cases in this paper, we
note that c1Oc3 and c4Oc2. However, if the ri are allowed
to differ from each other, then coexistence can still occur
with c1Oc3 and c2Oc4. Finally, we note that in this paper
we have assumed that vertical transmission of the
infection is perfect and that parasitoid movement is a
random process. Further development of this work will
include the effect of varying vertical transmission rates
and directed parasitoidmovement.Many parasitoids use
both chemical and visual cues when searching for hosts
(Vinson 1976; Schofield et al. 2005a,b) and amodel which
incorporates aggregation behaviour via chemotaxis is
currently under investigation.

Agro-ecosystems are examples of semi-natural
habitats where there is regular, often seasonally
based, disturbance which returns them to their initial
state or something very close to it. If a system were
subject to such continual small perturbations, it could
exhibit ongoing transient dynamics and never arrive at
a steady state or periodic limit cycle, even though it had
the innate capacity to do so. This suggests that
prescriptions designed to promote biodiversity in
repeatedly disturbed systems, which are common in
UK agriculture and the natural areas surrounding
them, for example, may be less successful than hoped
simply owing to the regular disturbance. This might be
especially detrimental in the case of agricultural
systems, because the perturbation is always negative,
in the sense that all populations within the association
are likely to be reduced considerably at each interven-
tion. In addition, any benefits which such prescriptions
might have in enhancing the effects of natural enemies
on pest populations within the crop by acting as
reservoirs is likely to be similarly reduced. Although
we have discussed host–parasitoid interactions, the
model could equally be applied to predator–prey–
pathogen interactions (Hassell 1978) and, more
generally, our model suggests that in any situation
where multiple infections occur, removal of one detri-
mental (to the host) agent may lead to the loss of other
detrimental agents in the association. This may have
implications for the study of disease dynamics and the
treatment of pathogenic infections.
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