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The role of stochasticity and its interplay with
nonlinearity are central current issues in studies of
the complex population patterns observed in nature,
including the pronounced oscillations of wildlife and
infectious diseases. The dynamics of childhood diseases
have provided influential case studies to develop and
test mathematical models with practical application to
epidemiology, but are also of general relevance to the
central question of whether simple nonlinear systems
can explain and predict the complex temporal and
spatial patterns observed in nature outside laboratory
conditions. Here, we present a stochastic theory for the
major dynamical transitions in epidemics from regular
to irregular cycles, which relies on the discrete nature of
disease transmission and low spatial coupling. The full
spectrum of stochastic fluctuations is derived analyti-
cally to show how the amplification of noise varies
across these transitions. The changes in noise amplifi-
cation and coherence appear robust to seasonal forcing,
questioning the role of seasonality and its interplay
with deterministic components of epidemiological
models. Childhood diseases are shown to fall into
regions of parameter space of high noise amplification.
This type of ‘endogenous’ stochastic resonance may be
relevant to population oscillations in nonlinear ecological
systems in general.
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1. INTRODUCTION

A wide range of temporal behaviours, including annual,
biennial, multi-annual and irregular oscillations, have
been described for the extensive time-series data on
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childhood diseases, such as measles and whooping
cough (Hethcote & Levin 1989; Earn et al. 2000; May
2000; Grenfell et al. 2002). One key test of these models
has been their ability to explain the observed transition
from regular periodic cycles to irregular aperiodic
fluctuations with the advent of mass vaccination and
changes in birth rates. The standard paradigm, emer-
ging from a largely deterministic framework, is that
seasonal forcing and the endogenous frequency of
disease oscillations can dynamically interact to produce
large fluctuations and different types of dynamics (Earn
et al. 2000). In simpler terms, the dynamics of disease
would be similar to those of a seasonally forced
pendulum. In this view, away from questions of
extinction and associated critical population sizes
(e.g. Bolker & Grenfell 1995), noise plays a role, but
one that is typically understood through its interaction
with the deterministic trajectories of the system.
Specifically, the known effects of noise include sustain-
ing damped cycles that would otherwise approach a
stable equilibrium (Barlett 1957), allowing the system
to remain in a transient regime near an attractor or
a repellor (Rand & Wilson, 1991; Sidorowich 1992;
Bauch & Earn, 2003a,b), or causing it to shift between
different attractors, such as cycles of different periods,
leading to irregular behaviour (Earn et al. 2000; Keeling
et al. 2001). In these dynamics, the population-level
deterministic framework, including transients near
asymptotic behaviours, provides the blueprint upon
which the effect of stochastic fluctuations can be
understood. Here, we propose a more fundamental
role for noise in the patterns of disease cycles, with a
theory that suggests a simple explanation for the major
dynamical transitions in epidemics from regular to
irregular fluctuations. This explanation relies on the
amplification of demographic stochasticity (McKane &
Newman 2005) arising from the discrete nature of
individuals (Durrett & Levin, 1994).

Seasonal forcing and nonlinear dynamics do interact
in complex ways (Keeling et al. 2001), producing, in
some cases (Dushoff et al. 2004), resonant oscillations of
significant amplitude. However, the importance of this
resonant effect will depend on both the magnitude of
seasonal forcing and the endogenous sensitivity of the
system to amplify fluctuations. While the former has
been intensively investigated (Olsen & Schaffer, 1990;
Keeling et al. 2001; Bjørnstad et al. 2002; Grenfell et al.
2002; Bauch & Earn, 2003a,b), the latter has received
comparatively less attention. We describe analytically
the fluctuations produced by demographic stochasticity
in epidemic models, and consider specifically the
susceptible–infectious–recovered (SIR) model for infec-
tious diseases with immigration. From the stochastic
model, we derive an analytical expression for the power
spectral densities (PSD) of the number of infected and
susceptible individuals, describing how the temporal
variability of these quantities is distributed over
different frequencies. Armed with this expression, we
show that (i) qualitative changes in disease cycles are
consistent with changes in the way disease dynamics
amplify stochasticity, (ii) childhood diseases fall in a
region of parameter space of strong noise amplification,
leading to highly coherent fluctuations and (iii) that the
dominant period of the oscillations need not be that of
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the oscillatory approach to equilibrium in the determi-
nistic system, as typically assumed. The proposed
explanation is robust to low levels of spatial coupling, a
realistic process in disease systems. It is also robust to a
significant degree of seasonal forcing, suggesting a need
to re-evaluate the role of this factor in our under-
standing of childhood diseases. The theory is general
and can be applied to study the sensitivity to
demographic stochasticity of other ecological systems.
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Figure 1. (a) The open SIR model with immigration. We
assume that susceptible individuals may acquire the infection
not only as a result of internal transmission within their city,
but also as a result of infection from an external source due to
transient individual movements between cities. This formu-
lation is the simplest way to take into account that real
communities are not isolated, but spatially extended systems
interconnected by migration (Rohani et al. 1999; Keeling et al.
2001; Lloyd & Jansen, 2002; Xia et al. 2004). (b) The graph
shows a typical stochastic realization of the SIR model. The
parameters used in the simulations areNZ1.0!105, hZ1.0!
10K5 dK1, dZ5.5!10K5 dK1 and the mean transmission rate
b0Z1.175 dK1. Disease parameters correspond to typical
measles values from Keeling et al. (2001) and Bauch & Earn
(2003b). The recovery rate g was estimated here by
aggregating the exposed and the infectious phases from
2. METHODS

2.1. The open susceptible–infectious–recovered
model

Inspired by the previous work (Nisbet & Gurney 1982;
McKane&Newman 2005), our results are derived from a
detailed analysis of a simple individual-based stochastic
SIR model, in which individuals are discrete (Durrett &
Levin, 1994) andbelong tooneof the threepossible classes
(S, I andR). The number of individuals belonging to each
of these classes changes in time according to three
different processes—infection, recovery and demography
(birth and death). The transitions associated with these
events are illustrated graphically in figure 1 (see the
electronic supplementary material for details). Suscep-
tible individuals can acquire infection from two routes:
internal frequency-dependent transmission (Bjørnstad
et al. 2002) at a rate bI/N (where N is the maximum
number of individuals that the system can support, or
more practically, the city size) and external infection at a
small constant rate h. This is the simplest possible way to
handle spatial coupling (Xia et al. 2004). Infected
individuals recover at a constant rate g and, therefore,
1/g is the average time spent in the infectious class.
Regardless of their class, individuals die at a constant
rate. To consider a constant community size, births and
deaths are tightly coupled, so that an ‘empty site’ created
by a death is instantly replenished by the birth of a
susceptible individual. The death (or birth) rate d

therefore specifies an average turnover time 1/d or
individual lifetime of susceptibles.
SEIR models with an additional exposed class. No seasonal
forcing is included (b1Z0). The model is simulated with the
event algorithm of Gillespie (1976). Three different events
are considered. Birth and death. Individuals in either class
(S, I, R) die at a rate d. Empty sites (E) are instantaneously
replenished by births of new susceptibles at a rate b, where

bZd: E $$%
d

S. Infection. Susceptible individuals acquire the

infection at a rate hCbI/N, the total force of infection:

S $$%
hCbI=N

I . Recovery. Infectious individuals recover at a rate

g: I $$%
g

R.
2.2. The large N expansion

The stochastic dynamics are fully described by a
multivariate master equation (van Kampen 1992). At
the leading order, a formal large N expansion of this
equation gives rise to the so-called macroscopic law,
which corresponds to a deterministic description of the
temporal evolution of themacroscopic variables, i.e. the
fraction of susceptible and infected individuals in a
population of constant size (f(t) and j(t), respectively),

df

dt
ZKbðtÞfjKhfCdð1KfÞ;

dj

dt
Z bðtÞfjChfKdjKgj: ð2:1Þ

A description of the stochastic fluctuations of the
system requires consideration of higher-order terms in
this expansion. In particular, a very good approximation
is obtained only if the next-to-leading order is considered.
In this way, we obtain a set of Langevin equations for the
J. R. Soc. Interface (2007)
temporal evolution of the normalized fluctuations of
susceptible and infectious individuals around equilibrium
values (x and y, respectively),

dx

dt
Z a11xCa12yCh1ðtÞ;

dy

dt
Z a21xCa22yCh2ðtÞ; ð2:2Þ

where t is a scaled time and where hi are the white noises
with zero mean and their cross-correlation structure is
determined by the expansion as well. The elements aij are
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Figure 2. Changes in the PSD as a function of a decreasing
transmission rate. The analytical PSD (a) without seasonal
forcing and the corresponding numerical PSD (b) without and
(c) with school-term seasonal forcing are shown. In (b), the
corresponding effective transmission rates hBi have been
calculated (Keeling et al. 2001) for a more accurate
comparison with (c) the seasonally forced case. (a) The
analytical formula is given by equation (10) of the electronic
supplementary material (see §2) to calculate the PSD for
increasing values of the proportion of vaccination, p. As p
increases, the effective transmission rate b decreases accor-
dingly (see figure S2 of the electronic supplementary material
and §2). A lower transmission rate changes the PSD by
decreasing the overall amplitude of the oscillations, shifting
the peak to lower frequencies and flattening the curve, so that
cycles become less coherent as a broader range of frequencies
contribute more equally to the fluctuations. This effect is seen
in the numerical averaged PSD, regardless of the presence or
absence of school-term seasonal forcing. When seasonality is
considered, an annual strong peak arises.
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the entries of the Jacobianmatrix evaluated at the stable
fixed point. By Fourier transforming these equations, we
are able to analytically calculate the PSD corresponding
to the normalized fluctuations, which, therefore, no
longer depend on the community size N. The general
form of these PSD is given by

PðuÞZ aCBu2

½ðu2KU2
0Þ2 CG2u2�

; ð2:3Þ

for susceptibles or infectives. The parameter a in the
numerator of the PSD is a function of both aij, the entries
of the Jacobian matrix, and Bij, those of the noise
covariance matrix. Thus, both the disease rates and the
noise correlation structure influence this parameter. The
parameters in the denominator are the two frequenciesU
J. R. Soc. Interface (2007)
and G, which depend exclusively on the aij entries, and
can therefore be determined from the linearization close
to equilibrium. We note that the expression of the PSD
differs for susceptible and infectious individuals in the
value of a and B. For a comprehensive and detailed
descriptionof thisdifferenceand theparameters arising in
the PSD, see the electronic supplementary material.

As in Nisbet &Gurney (1982), this approach is based
on three points: a formal treatment of demographic
stochasticity; the presence of stationary stable fixed
points; and the power spectral analysis. Here, we apply
this three-step approach to infectious diseases for the
first time using a powerful technique based on a large N
expansion due to van Kampen (1992). It is important to
note that this expansion is not limited to small
perturbations around equilibrium values, as determi-
nistic perturbations are classically studied. In fact, it is
not performed for such small perturbations, but with
the inverse of the system size N as our expansion
parameter. In this way, by maintaining the essential
nonlinear dynamics of disease transmission, we can
evaluate the effect of finite community sizes along with
the discrete nature of individual interactions on
oscillatory patterns. The linearity of resulting
equations emerges from the expansion itself for this
particular case, and not from linearizing the system
close to equilibrium. The stochastic model and the steps
of the analysis are described in more detail in the
electronic supplementary material.
2.3. Overall amplification and coherence:
analytical formulae

In general, the total spectral power of a time-series can be
calculated by integrating its PSD over all frequencies.
Fortunately, it turns out that the PSD P(u) given
in equation (2.3) can be integrated analytically using
standard methods,

ðCN

KN

aCBu2

½ðu2KU2
0Þ2 CG2u2�

duZp
aCBU2

0

GU2
0

: ð2:4Þ

This quantity has been called overall amplification,
mapped into the parameter space in figure 4a, and
labelledA0 in figure 3 (legend). The properties of the PSD
and the way fluctuations have been normalized ensure
that this quantity is equal to the mean squared deviation
of the original time-series from the equilibrium values

A0 Z lim
T/N

1

T

ðCT

KT
ðNðtÞKN �Þ2dt; ð2:5Þ

where N(t) and N � are the time-dependent time-series
variable and its equilibrium value, respectively. This
measure depends only on the model parameters and
quantifies the model’s intrinsic sensitivity to fluctuations
or, more precisely, the ability of themodel to amplify and
sustain fluctuations produced by demographic
stochasticity.

A measure of how well-structured stochastic oscil-
lations are around the dominant spectral frequency can
be given by integrating equation (2.3) between definite
limits around the spectral peak frequency. This
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quantity has been labelled Ap in figure 3,

Ap Z

ð
u2

u1

2
aCBu2

½ðu2KU2
0Þ2 CG2u2�

du; ð2:6Þ

where a factor 2 has been included to take into account
that the power spectra are normalized differently in the
numerical work (the range of u is assumed to be (0,N),
rather than (KN,N)). It turns out that the integral in
equation (2.6) can also be evaluated analytically. In
fact, the definition we have adopted for coherence,
cZAp/A0, which has been mapped into the parameter
space in figure 4c in percentage values, takes the form of
the following expression:

cZFðu2ÞKFðu1Þ; ð2:7Þ
where F(u) is given by

FðuÞZ 1

8p

G

a

ðaKBU2
0Þ

ðaCBU2
0Þ

log
1Cx2CðuÞ
1Cx2KðuÞ

C
1

2p

!ðarctanðxCðuÞÞCarctanðxKðuÞÞÞ; ð2:8Þ

and a, xCðuÞ and xKðuÞ are given by

a Z
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4U2

0KG2

q
;

xCðuÞZ
2ðuCaÞ

G
;

xKðuÞZ
2ðuKaÞ

G
: ð2:9Þ

As a check, we can see that if we let u1/KN and
u2/N in equation (2.7), then c/1, as expected.
RESULTS

It is well known that the deterministic counterpart of
this model shows damped oscillations approaching a
stable fixed point (figure 1b), and it is generally
assumed that the natural period of the associated
stochastic oscillations coincides with the period of the
deterministic damped oscillations. To determine
analytically the periodicity of the stochastic system,
we derived the PSD of the fluctuations around
equilibrium using a large N expansion method due to
van Kampen (1992) (see the electronic supplementary
material). The PSD gives a complete representation of
how the variance of the fluctuation is distributed among
different frequencies. From the expression for the PSD,
we observe that demographic noise can shift the
deterministic period of the damped oscillations. Speci-
fically, the stochastic endogenous dominant period—
the peak of the PSD—does not necessarily correspond
to that of the decaying deterministic oscillations, and,
therefore, it cannot generically be obtained from the
deterministic system itself as is typically assumed.
Conditions are derived for this correspondence to hold
(see the electronic supplementary material).

The derived PSD further allows us to examine how
noise amplification varies with changes in the trans-
mission rate (b). The series of bifurcations induced by
changes in this important parameter have been
considered before in deterministic models, in order to
address the pronounced change in the character of
J. R. Soc. Interface (2007)
disease cycles with the advent of mass vaccination and
also changing birth rates (Earn et al. 2000). The
dynamics of measles have been described by a
transition from regular annual or biennial cycles to
more irregular, less coherent, fluctuations of smaller
amplitude (see fig. 2 in Earn et al. (2000) and fig. 1 in
Rohani et al. (1999)). As shown by Earn et al. (2000),
changes in vaccination and birth rates can be studied by
considering instead changes in an effective transmission
rate, hbi. In our model, it can be easily shown that a
proportion, p, of vaccination changes both contact
rates, and therefore b, and the external infection
parameter, h, but for simplicity we first consider
changes only in the former and fix the latter to a
small constant value (see the electronic supplementary
material). Figure 2a shows that for parameters typical
of measles, a lower transmission rate leads to a longer
period and reduces the overall amplitude of the
oscillations. Furthermore, the PSD curve becomes
flatter as b decreases, indicating that more frequencies
are involved in the stochastic fluctuations, and that the
overall variance is more evenly distributed among these
frequencies. As a result, the dominant period increases
while the cycles become less coherent, more irregular
and less pronounced in their amplitude. Numerical
calculation of the PSD from an ensemble of simulations
confirms this analytical result (figure 2a compared
with b). However, this general picture is parameter
dependent. For example, for whooping cough, the
change in period and the decrease in amplitude are clear
but not the broadening of the PSD curve (see fig. 1 in
Bauch & Earn (2003b)).

Our analysis so far ignores the seasonality of
transmission rates. In childhood diseases, seasonality
in transmission is assumed to follow from alternating
school–holiday terms. High contact rates characterize
school terms, while low contact rates would occur
during the holidays. Figure 2c shows numerically that
the qualitative changes described with the analytical
PSD for the non-seasonal case are comparable with
those obtained for the seasonally forced system, even
for moderate values of this forcing (b1Z0.25). The only
difference is the addition of the expected annual peak
with seasonal transmission. The pattern is also robust
to lower values of the external infection rate and to
decreases of both external and internal transmission, as
would result from vaccination.

To examine the strength of noise amplification, we
introduce two quantitative measures, derived from the
predicted PSD, that characterize respectively the total
amplification and the coherence of the stochastic
fluctuations (figure 3; see also §2). The parameter
space of the model depends on three independent
dimensionless parameters. For clarity, we have mapped
these two measures on a plane to show how sensitivity
to stochastic amplification and coherence change
depending on the values of R0zb=g and a measure of
the degree of acuteness of the infection—the relative
duration of the infectious phase in relation to the
average lifetime of individuals (figure 4). We observe
that typical model parameters for different childhood
diseases lie within a region of strong stochastic
amplification and, particularly, strong coherence close
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to an instability boundary. This boundary separates
the region where the disease is self-maintained—the
endemic or ‘source’ phase—from the region where the
disease is maintained at very low average incidence
values by external infections—the epidemic or ‘sink’
phase. The role of the third parameter, h/g, is also
qualitatively important, increasingly as the average
infectious period of the disease lengthens. Moreover,
external infections are responsible for the hyperbolic
shape of this instability boundary in the parameter
space. We may approach this boundary not only by
decreasing the average infectious period, which reduces
R0, but also, as a consequence of this hyperbolic shape,
by keeping R0 constant and increasing the average
lifespan. In fact, the inclusion of external infection
defines a boundary in the parameter space conceptually
different from the well-established concept of a critical
community size. This threshold is defined as the
community size above which endemic dynamics is
self-maintained. By holding the intrinsic parameters of
the disease constant, below the critical community size,
epidemic outbreaks and fade-outs are observed due to
repeated stochastic disease extinction and re-introduc-
tion. Here, regardless of the community size, a
boundary in the parameter space separates a sink
phase from a source phase. If the system is in the sink
phase, the disease has to be necessarily maintained by
constant external infections, and, thus, it will be prone
to present epidemic outbreaks and fade-outs, while if
the system is in the source phase, the dynamics is
characterized by endemic strong fluctuations without
fade-outs. On our phase diagram, community size
would introduce a third dimension, and parameter-
J. R. Soc. Interface (2007)
dependent critical community sizes could and should be
defined for each point of the parameter space.
3. Discussion

We have described analytically how noise amplification
by the nonlinear dynamics of an infectious disease with
permanent immunity changes when a key epidemiolo-
gical parameter is varied. This pattern is consistent
with the qualitative transitions observed for childhood
diseases with the advent of vaccination. Noise amplifi-
cation provides a possible explanation for qualitative
changes from regular to irregular oscillations of lower
amplitude (see fig. 2 in Earn et al. (2000) or fig. 1 in
Keeling et al. (2001)). Another explanation was
proposed earlier based on the bifurcation analysis of
the deterministic susceptible–exposed–infections–
recovered (SEIR) model with seasonal forcing (Earn
et al. 2000; Bauch & Earn, 2003b). Specifically, at low
transmission rates (or high vaccination), irregular
cycles in measles would result from coexisting stable
limit cycles with intertwined basins of attraction. We
find, however, that this bifurcation diagram is not
robust to external infection (and, therefore, spatial
coupling between populations); even for very low rates
of external transmission, the multiple coexisting cycles
are no longer present (see the electronic supplementary
material). This observation supports the conclusion
that for low transmission rates (b), stochasticity
and spatial coupling would play a leading role, while
for high transmission rates, stochasticity becomes
less important and internal transmission becomes
dominant, making a deterministic description and the
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assumption of a closed system sufficient. In this latter
case, our approach reproduces previous results.

The importance of noise to disease dynamics has
been recognized since the pioneering work of Bartlett
(1957) in phenomena such as the critical population size
for disease extinction (e.g. Bolker & Grenfell 1995), the
spatio-temporal modelling of coupled cities of different
size (Bjørnstad et al. 2002; Xia et al. 2004) and the role
of transients in nonlinear systems (Hastings 2001, 2004;
Keeling et al. 2001; Rohani et al. 2002; Bauch & Earn,
2003b). Our results extend the fundamental role of
noise to endemic cycles away from patterns of extinc-
tion, small population sizes and proximity to stable or
unstable trajectories of the seasonally forced determi-
nistic system. They raise questions concerning the role
of seasonality itself (Hethcote 1998), an area of
relevance beyond childhood diseases, as seen in the
recent result that a small level of seasonality can
resonate with the nonlinear dynamics of influenza
(Dushoff et al. 2004).

Our analytical results pertain to disease dynamics in
the absence of seasonality. The robustness of the PSD,
and hence of the pattern of noise amplification when
seasonality is added, extends these results to the seasonal
case. The generality of this correspondence in the PSD
was not demonstrated analytically; therefore, it raises
interesting open questions on the relationship between
the dynamics of the forced and unforced system,
particularly in the presence of noise (Bauch & Earn,
2003b). The dynamic transitions between the two
equilibria of the unforced system for ‘high’ and ‘low’
transmission, respectively (Keeling et al. 2001), have
provided a powerful approach to the understanding of
school-term forcing, its interplay with noise and exten-
sions to more general forms of seasonality. With this
approach, Keeling et al. (2001) have argued that when
seasonality is weak and transmission levels are low,
stochastic processes should dominate the dynamics.
A similar approach may prove fruitful to examine the
implications of our results for the seasonal case, perhaps
beyond weak seasonality. It may also provide the means
to understand how the fully stochastic perspective we
have developed here fits with the existing explanations
based on the study of transient fluctuations close to
oscillatory attractors of seasonally forced systems.This is
important for a full understanding of the role of
seasonality and noise, and has implications for the
development and fitting of nonlinear time-series models
to disease data (e.g. Bjørnstad et al. 2002; de Valpine &
Hastings 2002; Grenfell et al. 2002).

The patterns of noise amplification we have
described here are clearly not restricted to small
community sizes; they are also critical for low
transmission rates or, equivalently, high vaccination
rates in large cities ( Jansen et al. 2003). While
demographic noise is indeed negligible when consider-
ing population fractions for large communities, the
variations for actual population numbers can be
sizable; fluctuations in the number of cases can exhibit
large amplitudes in large cities, and the extremely low
values during the troughs of the cycles make externally
driven infections potentially critical. Many of the steps
of our analysis can also be applied to understand the
J. R. Soc. Interface (2007)
role of environmental noise (e.g. Nisbet & Gurney
1982), but in this case, the starting point is already a set
of deterministic equations with specific assumptions on
the noise distribution and associated power spectrum.

By contrast, here, we have started with stochastic
processes at the individual level. In this case, the form
of demographic noise, whose correlation structure
reflects the nonlinear nature of the interaction, is not
assumed on an ad hoc basis (see equations (2.2)), but
naturally emerges from the expansion we have
performed. We have used van Kampen’s (1992) method
to approximate the master equation of a stochastic
system only to next-to-leading order. High-order
contributions yield a nonlinear Fokker–Planck
equation. Our Langevin equations (see equations
(2.2)) are just equivalent to the linear equation we
obtain when these higher-order corrections are
neglected (see the electronic supplementary material
for further details). In this linear regime, the stochastic
variables are well described by their averages and
respective variances. We have reported and quantified
an increase in the variance of the noise when we
approach a critical threshold. However, it is known that
this description strictly breaks down close enough to
critical points. In order to study the dynamics very
close to (or crossing) the source–sink critical boundary
described here, more and more terms in classical van
Kampen’s expansion are needed or other methods
become more appropriate (Dekker 1980a,b).

By accounting for stochasticity and external infec-
tions, we have uncovered the result that some infectious
diseases lie in a region of the parameter space close to an
instability boundary characterized by well-structured
strong oscillations, which raises interesting open ques-
tions concerning the coevolutionary forces acting on
host–parasite systems. This type of ‘endogenous’
stochastic resonance (McKane & Newman 2005) is
quantitatively described here for infectious diseases for
the first time. These phenomena may also be relevant to
population oscillations in nonlinear ecological systems
in general.
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