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Abstract

The domain is a fundamental unit of protein structure. Numerous studies have analyzed folding patterns in
protein domains of known structure to gain insight into the underlying protein folding process. Are such
patterns a haphazard assortment or are they similar to sentences in a language, which can be generated by
an underlying grammar? Specifically, can a small number of intuitively sensible rules generate a large class
of folds, including feasible new folds? In this paper, we explore the extent to which four simple rules can
generate the known all-� folds, using tools from graph theory. As a control, an exhaustive set of �-sand-
wiches was tested and found to be largely incompatible with such a grammar. The existence of a protein
grammar has potential implications for both the mechanism of folding and the evolution of domains.
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Studies of the topological properties of known folds have
provided fundamental insights into the folding process
(Doolittle 1995). By analyzing the database of known struc-
tures, one can compute statistical properties of folds and
deduce hypothetical folding rules. Such rules may reflect
global organizational constraints, such as chirality (Woolf-
son et al. 1993), the noncrossing property (Richardson
1977), and the tendency of �-sheet to preserve hydrogen
bond patterns (Baker and Hubbard 1984; Stickle et al.
1992). Alternatively, the rules may take the form of local
structure generators, from which structure evolves via itera-
tive application of elementary steps (Richardson 1977; Efi-
mov 1993a,b, 1996, 1997; Lesk 1995). This latter approach
has the potential to generate novel folds, which can, in turn,
be screened for global constraints from the former approach.

The application of elementary rules to generate structure
from basic building blocks is an intrinsically hierarchical
process (Crippen 1978; Rose 1979). Richardson’s compo-
sition rules for �-sheet are an example of this approach
(Richardson 1977). Quoting from her concise formulation:

Assuming that the � helices and � strands are already
present at least statistically, let us say that each succeeding
step in any possible folding pathway for a � sheet must
consist of either (1) forming a ±1 or ±1× connection be-
tween two � strands adjacent in sequence, or (2) taking
either a � strand or a prefolded unit and laying it down next
to a prefolded part of the sheet with which it is also con-
tiguous in sequence.

Using her rules, consecutive �-strands grow into larger hy-
drogen-bonded structures in successive steps, and blocks of
strands obtained in this way coalesce, providing they are
consecutive in the chain. Of course, it is tempting to hy-
pothesize that such procedures are related to actual protein
folding pathways (Richardson 1977; Stirk et al. 1992;
Hutchinson and Thornton 1993; Zhang and Kim 2000).

How does one uncover the grammar of a language? As-
suming that protein folds can be generated from a set of
simple rules, how might such rules be discovered? Effective
rules should have the potential to generate a diverse range of
physically feasible folds, including previously unobserved
structures. The ubiquitous occurrence of super-secondary
structures (Levitt and Chothia 1976) across unrelated fami-
lies indicates that there is a physical basis for their indepen-
dent formation and motivates our choice of simple rules.
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Formally, the rules are operators. Their operands are
structures, and an operation results in a new operand. This
is a familiar definition, similar to binary addition.

Motivated in large part by Richardson’s early work (Ri-
chardson 1977), we propose four simple folding rules for
all-� proteins, corresponding to the four prevalent super-
secondary structure �-motifs: �-hairpin, �-�-� unit, jelly
roll, and Greek key. As such, the rules embody physically
based topological and hydrogen-bonding relationships be-
tween neighboring strands. Two strands are classified as
neighbors when they either (1) are consecutive in sequence
or (2) become juxtaposed in space from a previously applied
folding rule. This later relationship is identified via closure.
When a folding rule juxtaposes two strands, they are clas-
sified as neighbors under closure, after which they become
a valid object for subsequent applications of the folding
rules. In general, closure results in new neighborhood rela-
tionships that incorporate the topology from previous fold-
ing steps, in a process that is intrinsically hierarchic.

A recursive domain is defined as a compact fold, or part
of a fold, that can be generated by repeated application of
the four folding rules, with closure. Whenever a protein fold
can be generated entirely from the folding rules, it is com-
posed of one recursive domain. Otherwise, it can be parti-
tioned into multiple recursive domains, each of which is
generated entirely by the rules. If the rules successfully
capture the underlying folding process, then we might ex-
pect single-domain proteins to be comprised of a single
recursive domain, with larger proteins comprised of only a
small number of recursive domains. To test this expectation,
the number of recursive domains was computed for each
protein in two large all-� test sets. One set consists of rep-
resentatives of SCOP (structural classification of proteins)
families, and the other consists of representatives of SCOP
folds (Murzin et al. 1995). The second set is a subset of the
first one, of course, but it was included as a control to ensure
that folds which span many SCOP families do not bias the results.

The test is performed in a fully automatic way, using
graph-theoretic tools. A recursive domain translates conve-
niently into the language of graph theory, as described in the
Appendix.

We find that the majority of families (∼80%) of small
�-proteins correspond to a single recursive domain, whereas
larger proteins are typically comprised of a small number of
recursive domains. Specifically, >90% of all proteins, both
families and folds, can be decomposed into at most three
recursive components.

Is the ability to represent a protein by a small number of
recursive domains a characteristic behavior for protein
folds, or will the composition rules decompose any compact
assembly of �-strands into just a few recursive domains? To
address this question, we tested all possible up-down 2 × 4
beta-sheet topologies. Only 14% of these topologies can be
generated as a single recursive domain.

The folding rules

We propose four folding rules for all-� proteins (Fig. 1).
These rules were used to parse representatives from a set of
224 all-� protein families and a set of 80 all-� folds, both
sets taken from the SCOP database (Murzin et al. 1995) and
selected by ASTRAL (Brenner et al. 2000). A small number
of proteins (10 families and three folds) that are either es-
sentially all loops or noncompact were removed from the
ASTRAL compendium. The folding rules were then applied
to every protein in both sets. A contact area threshold be-
tween interacting strands was introduced to ensure compact-
ness. In particular, two strands are said to interact only when
the surface buried between them exceeds 20% of the total
area of the smaller fragment.

The structural motifs seen in proteins have become fa-
miliar through repetition, thanks to the work of numerous
structural biologists (Berman et al. 2000). The four rules
presented in this paper are intended as a formal statement of
such motifs, and their definition was accomplished through

Fig. 1. The four folding rules. Each rule is illustrated by two diagrams:
(Top) �-Strands are represented by arrows (pointed along the N-to-C di-
rection), and chain connectivity is given by thin lines; (bottom) strands are
represented by triangles (pointed in the N-to-C direction), chain connec-
tivity is indicated by thin lines, and hydrogen bonding established by
previous folding rules is indicated by a dashed line. (a) Hairpin rule. (b)
�-Wind rule, shown for two typical configurations. (c) Indirect �-wind
rule, shown for two typical configurations. (d) Antiparallel bridge, shown
for two typical configurations. (e) Parallel bridge rule.
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a process of trial and error. We started with the simplest
rule, the stipulation that two successive strands can interact
to form a hairpin. Additional rules were then devised and
tested against the SCOP family database, and those that
proved effective in the recursive parsing of domains were
retained. In all cases, the choice and acceptance of these
rules was guided by intuition, with emphasis on local and
super-secondary structure motifs. Although this approach
does not guarantee that our rules are either optimal or com-
plete, it does show that a few simple rules are sufficient to
generate essentially the entire set of all-� folds.

Specifically, the four folding rules were motivated by
prevalent super-secondary structure motifs found in pro-
teins. Each rule represents an observed topological relation-
ship between/among neighboring strands.

1. Hairpin rule (Fig. 1a): Based on the �-hairpin, this rule
simply groups two neighboring strands into a hairpin.

2. �-wind rule (Fig. 1b): Based on the �-�-� motif (Efimov
1993b), this rule groups three consecutive �-strands, but
the middle strand can be replaced by a helix or loop. The
rule results in parallel hydrogen bonding between strands
one and three. To ensure compactness, the middle strand
is required to have substantial contact area with the first
(see Technical Details). There are two variants of the
rule, depending on whether the first and middle strands
are hydrogen bonded.

3. Indirect �-wind rule (Fig. 1c): This rule is similar to the
�-wind rule, but lacks hydrogen bonding between the
first and third strands. Instead, both strands are hydrogen
bonded to a third, interposed strand. The interposed
strand is constrained to be hydrogen bonded with one of
its neighbors as a consequence of a previously applied
rule. This restriction precludes incorporation of an unre-
lated strand from another part of the chain.

4. a. Antiparallel bridge rule (Fig. 1d): Based on the 2-2
Greek key motif (Hutchinson and Thornton 1993),
this rule groups four consecutive strands that are re-
lated by antiparallel hydrogen bonding between the
two middle strands and the two external strands. The
bridge rule collapses this ribbon into a double arch.
To ensure compactness, significant contact area is re-
quired between the two pairs of hydrogen-bonded
strands. The figure shows two typical conformations
allowed by this rule.

b. Parallel bridge rule (Fig. 1e): This rule is similar to
the antiparallel bridge rule, but in this case, the two
pairs of hydrogen-bonded strands are parallel. When
one pair resides in a recursive domain, then the sec-
ond pair is also included in that domain. Additionally,
if there is significant contact area between the two
pairs, all four strands collapse to a common recursive

domain. The parallel bridge rule was motivated by
parallel runs of a �-helix.

With the exception of the interposed strand in the indirect
�-wind rule, these rules apply only to neighboring strands.
By definition, neighboring stands are either sequentially
consecutive or become so on recursion. This condition, to-
gether with restrictions on the interposed strand in the in-
direct �-wind rule, ensures that sequentially nonadjacent
strands are not subject to a folding operation unless they
have been brought together via rule-based iteration.

Along with the four folding rules, there is an explicit
closure operation (Fig. 2). Without closure, decomposition
would be arrested at the level of super-secondary structure
and isolated �-strands. This follows from the fact that super-
secondary structure is local, in that it is comprised of con-
secutive elements of secondary structure. However, once
identified, the presence of a unit of super-secondary im-
poses spatial restrictions on remaining components of the
fold. In particular, strands that are distant in sequence can be
restricted to be close in space. In effect, the closure opera-
tion introduces a new virtual connection, like a shortcut
through the sequence. As such, two secondary structures are
classified as neighbors if they are consecutive in sequence
or if they are linked by a virtual connection that is realized
on application of closure. Correspondingly, the folding rules
are applicable to both consecutive strands and nonconsecu-
tive strands that become neighbors via these virtual connec-
tions.

No specific precedence is imposed on the folding rules;
they can be applied in any order. As such, there can be many
folding pathways corresponding to a given fold.

Multistep hierarchic decomposition is illustrated for the
jelly roll motif (Stirk et al. 1992) in Figure 3. A jelly roll is
a ribbon of antiparallel strands, and it can be parsed by
reiterating the hairpin rule. Initially, the hairpin rule is ap-
plied to strands s3–s4 (Fig. 3a), the only two strands that are

Fig. 2. The closure operation extends the concept of locality to residues
that are close in space though not necessarily in sequence. For example, on
hairpin formation the first and the last residues in the hairpin become
three-dimensional neighbors, as illustrated here. A conceptual shortcut
through the sequence is introduced when this occurs, illustrated by the red
line. In general, two secondary structures are considered to be neighbors
when they are consecutive in the sequence or when they become neighbors
via a shortcut established by the closure operation.

Recursive domains in proteins
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sequential neighbors. On closure, s2–s5 become neighbors,
and the hairpin rule is applied again (Fig. 3b), after which
s1–s6 become neighbors, followed by a final application of
the hairpin rule (Fig. 3c). At this point, the motif has been
reduced to three consecutive hairpins (Fig. 3d).

Ultimately, the jelly roll in Figure 3 can be reduced to a
single recursive domain. Initially, each secondary structure
is classified as a recursive domain, containing itself as a
singleton. Strands that can be grouped by any folding rule
become members of the same recursive domain. Accord-
ingly, each application of a folding rule has the potential to
merge two or more recursive domains into one, as illustrated
for the jelly roll example in Figure 3. The hairpin folding
rules identify three recursive domains, each annotated by a
different color in Figure 3d. Clearly, the hairpin rule alone
has a limited capacity to generate interesting recursive do-
mains. However, the indirect �-wind rule can be applied to

strands s1–s2–s3–s4, merging all three hairpins into one
recursive domain. Alternatively, the antiparallel bridge rule
could be applied twice: first to strands s2–s3–s4–s5 and then
to strands s1–s2–s5–s6, again merging all three hairpins into
one recursive domain. In general, the folding pathway ob-
tained by successive applications of the folding rules is not
unique.

Figure 4 follows the step-wise decomposition of desul-
foferrodoxin (1dfx, residues 37–125) into a single recursive
domain. Alternate panels document successive partitions
into recursive components; these are interleaved with panels
illustrating the pertinent folding rules.

Fig. 3. Generation of a jelly roll fold using folding rules. (a) The hairpin
rule is applied to strands s3–s4, the only two strands that are consecutive
in sequence. On closure, strands s2 and s5 now become neighbors. (b) The
hairpin rule is applied to strands s2–s5. On closure, strand s1 and s6 now
become neighbors. (c) The hairpin rule is applied to s1–s6. (d) At this
point, the motif has been reduced to three consecutive hairpins. (e) Appli-
cation of the indirect �-wind rule incorporates all strands into a single
recursive domain.

Fig. 4. Evolution of the recursive domain of desulfoferrodoxin (1dfx, resi-
dues 37–125). In each panel, strands that are operands for a folding rule
are shown in arbitrarily chosen colors, and remaining parts of the structure
are in white. The colors are reassigned in each successive panel. Initially,
three hairpins are identified and colored red, green, and chartreuse in a. On
application of the antiparallel bridge rule, the blue, chartreuse, red, and
green strands in b resolve into a single recursive domain, shown in char-
treuse in c. Then, on application of the indirect �-wind rule to the char-
treuse, blue, red, and green strands in d, the entire fold reduces to a single
recursive domain, shown in chartreuse (e).
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In each particular case, the application of a particular
folding rule involves threshold decisions about technical
details, such as strand continuity or contact area. These
issues are described in Technical Details.

Technical details

Application of the rules requires identification of secondary
and super-secondary structure from atomic coordinates. Of-
ten, there is some degree of structural ambiguity, and ob-
jective definition requires that thresholds be adopted. In the
present study, which is limited to recursive domains in all-�
proteins, no distinction need be made between helices and
loops.

The DSSP (database of secondary structure in proteins)
algorithm (Kabsch and Sander 1983), with minor modifica-
tions, was used to identify �-strands in proteins of known
structure. The three modifications are as follows: (1) A
�-strand must be at least two residues in length, but option-
ally, a strand of three or fewer residues can be treated as a
loop; (2) if two consecutive �-strands are hydrogen bonded
to a �-third strand, and directionality is preserved (i.e., both
strands are parallel to the third strand or both are antiparallel

to the third strand), they are classified as one distorted
�-strand; and (3) two �-strands interrupted by a single resi-
due are treated as one distorted �-strand, providing they are
approximately colinear.

The �-wind, indirect �-wind, and bridge rules are applied
only if the relevant fragments interact. Fragments are de-
fined to interact when the contact area buried between them
is at least 20% of the total area of the smaller fragment.

Finally, two strands are considered to be hydrogen
bonded if their direction is similar (either parallel or anti-
parallel) and the contact area between their backbones is at
least 25% of the total area of the shorter strand. In rare
instances, this definition can classify two proximate strands
as hydrogen bonded even if they lack explicit donor/accep-
tor interactions.

Results

Our folding rules are sufficient to partition most small pro-
teins into a single recursive domain, with larger proteins
giving rise to only a small number of such domains. These
results, shown in Figure 5, were derived from two test sets,
one corresponding to the SCOP family level and the other to
the SCOP fold level.

Fig. 5. Number of recursive domains for proteins in both test sets, one corresponding to SCOP families. (a, b) The distribution of
recursive domains for proteins in the two test sets. (c, d) This same distribution is shown when the test sets are restricted to the subset
of proteins with at most 10 strands.
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In greater detail, these results are broken into SCOP family–
SCOP fold pairs. The first pair of diagrams is a histogram show-
ing the distribution of recursive domains for proteins in each test
set, and the second pair is a similar histogram in which the test
sets are restricted to proteins with at most 10 strands.

Summarizing these results for SCOP families, 62% of the
folds can be fully generated by our folding rules as a single
recursive domain, 83% by two such domains, and 89% by
three such domains. For the subset of proteins restricted to
at most 10 strands, 80% reduce to one recursive domain and
95% to two such domains. Similar results are seen for SCOP
folds: the corresponding percentages are 56%, 81%, and
89%, respectively, for the full set, and 68% and 90%, re-
spectively, for the restricted set.

As a control, we tested whether random assembly of
strands can also be reduced to a small number of recursive
domains, or whether instead this is a characteristic property
of proteins. To this end, all combinatorially possible eight-
strand sandwiches with up-down topology were generated,
and the folding rules were applied to this control set. The
distribution of recursive domains is shown in Figure 6 (up-
per bars). Only 18% of these topologies can be generated by
a single recursive domain. Clearly, the distribution for a
random assembly of �-strands differs from that of authentic
proteins, even when restricted to a �-sandwich.

Protein folds having more than three recursive domains
were examined individually. Do proteins in this set of ex-
ceptions represent counter-examples to our basic premise
that beta-folds can be generated from simple rules? This is
a crucial question.

The set of exceptions is dominated by �-propellers, in
which the number of recursive domains equals the number
of blades. None of our rules collapse the blades in a single
domain, although it would be simple to devise such a rule;
for example, two neighboring recursive domains can col-
lapse along a common hydrophobic core. However, such a
rule would be different in kind than the ones proposed here,
and we did not consider such an extension at this stage. Of
the remaining eight proteins, four are explained by an in-
correct secondary structure assignment caused by a minor
threshold violation.

The remaining two proteins from the fold test set are
shown in Figure 7. One is an ISP domain, described in
SCOP as a two-domain protein, in which one of the domains
is a six-stranded sandwich or barrel. The representative of
this fold chosen by ASTRAL is the ISP subunit of the
mitochondrial cytochrome bc1-complex (1rie). Our rules
partition this subunit into four recursive domains. Interest-
ingly, another structurally similar member of this family
(the ISP subunit from chloroplast cytochrome bf complex,

Fig. 6. Histogram showing the number of recursive domains for the set of all combinatorially possible up-down eight-strand sand-
wiches (upper bars), and the corresponding histogram when limited to noncrossing topologies (lower bars).
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1rfs) can be generated as a single recursive domain using
the rules.

The second exception is the Hedgehog C-terminal (Hall
et al. 1995) autoprocessing domain. This protein is a mem-
ber of the Hedgehog/inteindomain SCOP family, a complex
fold of five beta-hairpin units and a �-ribbon arc. The
rules identify the hairpins but failed to find any other re-
ducible fragments. This protein has an inteindomain, and
the resultant fold may depend on the excised segment.

Examining proteins in the family test set revealed one
additional exception, a �-trefoil (1wba). However, this fold
is not an exception in the fold test set. Closer examination
shows that the antiparallel bridge rule obtains for most of
the other representatives of this fold, but this particular case
is an exception.

Are there conceivable �-folds that nature avoids? Our
approach formalizes the intuition that observed folds are
dominated by conformations in which chain connectivity
avoids random hops between disparate points in space. Oth-
ers have addressed such questions as well.

Richardson (1977) documented two such fold properties,
one based on structural chirality and the other on the topol-
ogy of the backbone. The first property is completely inde-
pendent of ours. When applied after the fact to structures
generated using our rules, about half can be rejected because
they lack the correct orientation. Her second property is a
noncrossing criterion, and it is related to ours. In the context
of a two-layer �-sandwich, the noncrossing property can be
stated as follows: let the two �-sheets be embedded on
opposite sides of a cube, with interstrand connections that
traverse the surface of the cube. Retain only those sheets for

which no two loops cross. Eliminating structures that fail to
satisfy the noncrossing property would further decrease the
list of acceptable folds.

We tested the degree to which the set of folds generated
by our rules can be captured by Richardson’s noncrossing
criterion (Fig. 6, lower bars), and we find that this criterion
eliminates <37% of all combinatorially possible up-down
eight-strand sandwiches. Furthermore, although the number
of recursive components that satisfy the noncrossing restric-
tion is reduced in comparison to a random assembly of
�-strands, their distribution is similar.

Naturally-occurring �-sheet topologies were also ana-
lyzed by Zhang and Kim (2000), who observed that among
the 96 possible topologies for four-stranded sheet, only 42
are observed. The investigators identified two characteristic
properties of the underrepresented topologies. One group,
G1, includes sheets in which two parallel strands are situ-
ated in opposition to two antiparallel strands. The second
group, G2, includes sheets in which two sequentially con-
secutive strands occupy nonadjacent positions in the sheet,
for example, the first and fourth positions. There is only one
pair of strands in G2 that is consecutive in both sequence
and structure.

The first of these two criteria is independent from ours
and has the potential to be an additional screen for valid fold
candidates. The second criterion involves the degree to
which main-chain connectivity is free to hop at random in a
four-stranded �-sheet topology, and it is a special case of
the property that we address in this paper.

Accordingly, we tested whether our recursive domain
formalism can rationalize the absence of G2 topologies
among observed folds. Given that four-stranded sheets do
not occur in isolation, we adopted a broader test set con-
sisting of all theoretically possible 2 × 4 up-down sand-
wiches. A count was made of the number of times each
four-strand sheet topology in G2 is represented (1) in this
test set and (2) in a reduced test subset that was restricted to
include only sandwiches having one recursive domain. One
expects that G2 topologies will occur rarely in the reduced
test subset. Indeed, there are 5040 occurrences of folds from
G2 in the unrestricted test set, but only 4.9% remain in the
reduced subset. Moreover, when the test subset is further
reduced by removing topologies that fail to satisfy the non-
crossing property, only 1.9% remain. It follows that G2
topologies are selectively depleted in recursive domains.

In essence, our folding rules quantify the impression
gleaned from visual inspection: �-folds show a simple, un-
derlying organization, with orderly patterns of chain con-
nectivity.

Discussion

A grammar is a compact description of a language. The set
of rules that comprise the grammar is finite, but the lan-

Fig. 7. Representative folds with more than three recursive domains. Each
recursive domain is shown in a different color. (a) ISP domain (1rie). (b)
Hedgehog/inteindomain (1at0). (c) �-Trefoil (1wba).
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guage may contain an infinite number of sentences, as is the
case for natural languages.

In the preceding, we introduced a grammar for all-� pro-
tein domains, based on four simple composition rules. With
this definition, a domain corresponds to a collection of
�-strands that can be lumped into a single structural unit on
application of the rules, with closure. The rules were moti-
vated by four types of commonly observed super-secondary
structure. Using them, we showed that almost every all-�
fold can be iteratively decomposed into a small number of
recursive domains, usually just one. Here, our goal has been
to explore the rules, not to tinker with them, and we expect
that an improved rule set could be devised with modifica-
tion and/or extension. Also, the existence of similar rules
that span �- and �/�-proteins is anticipated.

The four simple rules provide a compact description of
folding for all-� proteins, and they give rise to the observed
hierarchic organization of proteins (Crippen 1978; Rose
1979) quite naturally. Often, there are multiple ways to
generate a given fold using the rules, and the absence of a
unique parse tree is consistent with the existence of multiple
folding paths. Richardson (1977) made a similar observa-
tion years ago.

Do these abstract rules have physical correlates in the
actual mechanism of protein folding? We suspect so. The
fact that unrelated proteins can be generated from the same
set of simple rules is strongly suggestive, with the following
as a plausible connection. At the cartoon level of resolution
(∼5 Å), a protein structure can be described as a series of
isodirectional segments (i.e., �-helices and �-strands) inter-
connected by tight turns and larger loops (Rose and Seltzer

1977). This partitioning is already anticipated in the un-
folded molecule by sterically imposed, conformational bias
(Srinivasan and Rose 1999; Pappu et al. 2000). Segmental
bias is then fortified on folding as water—a poor solvent for
polypeptide chains—squeezes the protein from its midst,
pushing it toward compactness. It seems likely that our
rules, which were abstracted from observed structural mo-
tifs, are a reflection of this underlying process.

Evolution is the history of contingent experiments of na-
ture (Gould 1989), recorded in life’s molecules. Do the
structures of these molecules evolve at random? Or, are
there hidden constraints on their patterns (Banavar et al.
2002), scope, and complexity? The very existence of a
grammar argues for the latter view. Some structures, albeit
conceivable, are simply not valid sentences in the language
of proteins. Further, if a grammar for proteins is anchored in
the chemistry of polypeptide chains, then the set of valid
folds is predetermined, and evolution can only fill in the
blanks. It is our conjecture that the discovered grammar is
an expression of nature, not just a coincidental post hoc
invention that happens to be consistent with the facts of life.

Appendix

Translation to graph theory

A practical, step-wise procedure for partitioning a fold into
its recursive domains was implemented, using graph theory
(Fig. 8). In particular, our definition of a recursive domain
was chosen deliberately to correspond to the graph-theoretic
concept of a connected component. In graph theory, two

Fig. 8. Consecutive steps in the construction of the graph for a jelly roll, from Fig. 3. Vertices correspond to individual strands, and
they are connected by neighbor edges, represented by directed arrows. Domain edges are shown as bold lines. Initially, all neighbor
edges are between sequentially consecutive strands, and there are no domain edges. In each successive panel, new domain edges
introduced on application of either a folding rule or closure operation are shown in red. (a) Initial graph. (b) Hairpin rule. (c) Closure.
(d) Hairpin rule. (e) Closure. (f) Hairpin rule. (g) Indirect �-beta wind. (h) Final graph after removing neighbor edges.
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vertices belong to the same connected component of a graph
if there is a connecting path between them. This is precisely
the definition a recursive domain, as described below. Ac-
cordingly, a protein can be partitioned into recursive do-
mains by an algorithm that identifies connected components
in a graph (Cormen et al. 1990).

In our graph of an all-� fold, each vertex corresponds to
a �-strand. The graph will have two types of edges: domain
edges and neighbor edges, which are introduced as a result
of folding rules or closure operations, respectively.

Domain edges connect strands within the same recursive
domain. At the start of the procedure, before a folding rule
is applied, there are no domain edges in the graph. On
application of a folding rule, any strands grouped by the rule
become members of the same recursive domain and are
connected by a domain edge. In general, two strands belong
to the same recursive domain if there is a path along domain
edges connecting the vertex corresponding to one strand to
the vertex corresponding to the second strand. The relation
of belonging-to-the-same-recursive-domain is transitive.

Neighbor edges reflect information about neighboring
strands. At the start of the procedure, the only neighbor
edges are between pairs of strands that are consecutive in
sequence. New neighbor edges can be introduced on clo-
sure. At each new iteration, the closure operation simply
searches the graph for the existence of pairs of vertices
corresponding to strands that are distant in sequence but
close in space. Such pairs arise as a consequence of spatial
restrictions that are imposed by the folding rules during the
previous iteration. If such a pair is found, then a neighbor
edge is introduced. In effect, the neighbor edge is a short-cut
between the two vertices. Unlike domain edges, neighbor
edges have a direction: the vertex corresponding to the
strand that is closer to the N terminus is the beginning of the
edge, and the vertex corresponding to the strand that is
closer to the C terminus is the end of the edge.

To partition a protein into recursive domains, the folding
rules are applied repeatedly until no further application is
possible. At this point, the graph will have a number of
domain edges. Next, recursive domains are determined.
Only domain edges are pertinent for this step; neighbor
edges are disregarded.
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