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Abstract

A total of 20%–25% of the proteins in a typical genome are helical membrane proteins. The transmembrane
regions of these proteins have markedly different properties when compared with globular proteins. This
presents a problem when homology search algorithms optimized for globular proteins are applied to
membrane proteins. Here we present modifications of the standard Smith-Waterman and profile search
algorithms that significantly improve the detection of related membrane proteins. The improvement is based
on the inclusion of information about predicted transmembrane segments in the alignment algorithm. This
is done by simply increasing the alignment score if two residues predicted to belong to transmembrane
segments are aligned with each other. Benchmarking over a test set of G-protein-coupled receptor sequences
shows that the number of false positives is significantly reduced in this way, both when closely related and
distantly related proteins are searched for.
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As a result of the genome sequencing projects, we are faced
with an exponentially increasing number of protein se-
quences, but with only a very limited knowledge of their
function. Because the experimental determination of func-
tion is a nontrivial task, the quickest way to gain some
understanding of these proteins is by relating them to pro-
teins with known properties. Improving the algorithms that
examine these relationships is a fundamental challenge in
bioinformatics today.
Many algorithms have been developed to increase the

sensitivity and specificity of homology searches for globu-
lar proteins. These algorithms often use evolutionary and
structural information to improve the detection of related
proteins. However, they may not be generally applicable to

membrane proteins, as membrane proteins have different
structural features (von Heijne 1981) and different amino-
acids composition and residue exchangeabilities (Tourasse
and Li 2000). Helical integral membrane proteins account
for 20%–25% of all proteins encoded in a typical genome
(Krogh et al. 2001) and their central importance in many
cellular processes makes it of great importance to increase
the ability to detect related membrane proteins. Here we
present modifications of the standard Smith-Waterman, and
profile search algorithms increase the specificity and sensi-
tivity of homology searches for membrane proteins.
The detection of globular proteins can be improved by

including information from secondary structure predictions
(Fischer and Eisenberg 1996; Rice and Eisenberg 1997;
Rost et al. 1997; Hargbo and Elofsson 1999). To our knowl-
edge, similar schemes have not been described for integral
membrane proteins (for which classical secondary structure
prediction methods do not work) (Wallace et al. 1986). Con-
sidering that membrane protein topology predictions are
much more accurate than secondary structure prediction in
globular proteins (Krogh et al. 2001), we have tested
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whether such predictions can be used to improve homology
searches of membrane proteins.
For helical membrane proteins (White and Wimley 1999;

Popot and Engelman 2000), topology predictions provide
secondary structure information, that is, they pin-point
likely transmembrane�-helical segments. We have thus ex-
tended the classical Smith-Waterman (Smith and Waterman
1981) and profile (Gribskov et al. 1987) search algorithms
by including helix predictions from the topology prediction
program TMHMM (Krogh et al. 2001). This resembles the
use of secondary structure predictions in threading methods
(Fischer and Eisenberg 1996; Rost et al. 1997). However,
there are two differences, first, information from one of
the best-performing membrane protein topology predic-
tion methods, TMHMM (Krogh et al. 2001), is used and
second, no information about the true secondary structure is
used; instead, we match a prediction against a prediction.
Further, we have tested as similar modification of profile
searches (Gribskov et al. 1987) to detect related membrane
proteins.
One problem during development and fine-tuning of the

methods used in database searches is the need to know the
true relationship between the different proteins in a test set.
During the last few years, several studies have proposed
new ways to evaluate methods for detecting relationships
between proteins (Abagyan and Batalov 1997; Brenner et al.
1998; Park et al. 1998; Salamov et al. 1999; Lindahl and
Elofsson 2000). These studies differ in detail but have a
common theme, they use an existing structural classification
to create the benchmark used for evaluating the perfor-
mance of different search methods. The use of structural
protein-family databases such as SCOP (Murzin et al. 1995)
and CATH (Orengo et al. 1997) has enabled the creation of
test sets in which the true relationship can be quite accu-
rately assumed. However, for membrane proteins, no such
high-quality test sets based on 3-D structural databases exist
so far. To circumvent this problem, we have chosen to use
the GPCRDB database (Horn et al. 2001). GPCRDB pur-
portedly includes all known and predicted 7-TM receptors,
and we thus assume that all proteins in GPCRDB are 7-TM
receptors and that all other proteins found in SWISS-PROT
(Bairoch and Apweiler 1996) but not in GPCRDB are not
7-TM receptors. A similar benchmark was used recently by
Rehsmeier (Muller et al. 2001). This study showed that a
nonsymmetric score matrix performed better than a standard
(symmetric) substitution matrix for helical membrane pro-
teins. However, no comparison with multiple sequence-
based methods, such as PSI-BLAST (Altschul et al. 1997),
was made.
In contrast, we now report that the inclusion of informa-

tion about predicted transmembrane segments leads to a
significant improvement over standard sequence-alignment
methods, including the iterative multiple sequence-align-
ment method PSI-BLAST.

Results

Inclusion of information about predicted
transmembrane segments in standard
search algorithms

In the tests reported here, information about transmembrane
segments predicted by TMHMM was included in standard
Smith-Waterman (SW) and profile-search implementations
simply by adding an extra score when two residues that are
both predicted to belong to transmembrane segments are
aligned (see Materials and Methods). For the profile search
methods, the extra score is added only after the sequence
profile has been generated by PSI-BLAST, not during the
iterative construction of the profile.
Our test sets (see Table 1) were derived from the

GPCRDB database as described in the Materials and Meth-
ods section. The classification in GPCRDB is based on
classes, that is, proteins with broadly similar function and
rather close sequence homology. The whole GPCRDB can
be considered as the superfamily of G-protein-coupled re-
ceptors. We have used both of these levels for the tests
described below.
The relationships between protein sequences span a broad

range, from almost identical sequences to apparently unre-
lated sequences sharing only a similar overall fold. Finding
homologous sequences on the various levels of similarity
poses different problems for search algorithms. For globular
proteins, we have shown that the inclusion of evolutionary
information (multiple sequence alignments) is most impor-
tant for the detection of proteins at the superfamily level,
and that the inclusion of structural information mainly helps
at the fold level (Lindahl and Elofsson 2000).
To study the detection of membrane proteins at different

homology levels, we performed two different tests. First, we
tested the ability to detect sequences within a GPCRDB
class. Here, hits to GPCR sequences outside a class are
ignored, see Table 2. Second, we tested the ability to detect
GPCRs from different classes. Here, hits to GPCR se-
quences in other classes are considered correct, whereas hits
to sequences in the same class are ignored. This is identical
to how the performance of fold recognition methods was

Table 1. Description of test set

Class
No. of seq.
in GPCRDB

No. of seq.
in Test set

Rhodopsin like 1207 50
Secretin like 86 19
Metabotropic
glutamate/phermone 62 18

Fungal phermone 16 4
cAMP receptors 4 1
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investigated at different levels of relationship (Lindahl and
Elofsson 2000).
Performances as measured by the Matthews correlation

coefficient (Mc) are shown in Table 3. In this Table, we
report results for the standard Smith-Waterman sequence
alignment (SW) method, for standard PSI-BLAST searches
using different E-value cutoffs (PSI−3, PSI−5, and PSI−15),
and for these methods augmented with information about
predicted transmembrane helices from TMHMM (TMSW,
TMPSI−3, TMPSI−5, and TMPSI−15).

Inclusion of transmembrane segment predictions
increases the sensitivity when detecting closely
related proteins

Performances as measured by the Matthews correlation co-
efficient (Mc) are shown in Table 3. In this table, we report
results for the standard Smith-Waterman sequence align-
ment (SW) method, for standard PSI-BLAST searches us-
ing different E-value cutoffs (PSI−3, PSI−5 and PSI−15), and
for these methods augmented with information from
TMHMM (TMSW, TMPSI−3, TMPSI−5, and TMPSI−15).

Concerning the detection of proteins that belong to the
same GPCR class, Table 3 (column Mc-class) shows that
TMSW performs significantly better than standard Smith-
Waterman alignments: a Mc of 0.93 versus 0.83. For PSI-
BLAST and TMPSI, the highest Mc is obtained if a strict
cutoff is used. The highest correlation coefficients, 0.98, are
thus seen for PSI−15 and TMPSI−15. The inclusion of infor-
mation about predicted transmembrane segments results in
only limited improvements to the Mc in this case. The table
also shows that PSI-BLAST and TMPSI are able to detect
almost all proteins within a class of GPCRs.
A more detailed understanding of the performance can be

obtained from spec-sens plots, see Figure 1. It is clear that
TMPSI has a significantly higher specificity than PSI-
BLAST, irrespective of the cutoff E-value. Without the in-
formation about transmembrane segments, it is necessary to
use an E-value cutoff of 10−15 to increase the specificity
beyond 98%. For the single-sequence-based methods, trans-
membrane segment information significantly increases both
the specificity and sensitivity.
For distantly related GPCRs, it can be seen that PSI-

BLAST with a less restrictive E-value cutoff performs sig-
nificantly better than SW or PSI-BLAST with the 10−15

cutoff, see Figure 2. Compared with the standard SW
method (Mc � 0.01) the increase in performance is remark-
able (Mc � 0.60 forPSI−3), see Table 3.PSI−3 detects al-
most 50% of the nonclass-related GPCRs at 80% specific-
ity.
In conclusion, the inclusion of predicted transmembrane

segments improves the detection rate significantly, mainly
by reducing the number of false positives, that is, by in-
creasing the specificity.

Discussion

PSI-BLAST is not ideally tuned to detect
membrane proteins

A series of recent studies show that PSI-BLAST is better
than SW for the detection of distantly related globular pro-
teins (Park et al. 1998; Lindahl and Elofsson 2000). In fact,
PSI-BLAST is one of the most sensitive sequence-based
database search methods available and it is also fast enough
to be used on large databases. Due to the iterative approach
and the position-specific profiles, PSI-BLAST is able to
find more distantly related sequences than most other meth-
ods. However, the underlying statistics used in BLAST is
calculated from globular proteins and not from membrane
proteins. Because unrelated transmembrane segments are
more similar to each other than unrelated globular regions,
the E-values reported by BLAST will be too small for un-
related membrane proteins. The simplest way to avoid this
problem is to use a more restrictive E-value cutoff for the
inclusion of proteins in the iterative BLAST search. This

Table 2. Summary of how correct and false matches are stated
in the two tests used in this study

Class test Superfamily test

ClassA–ClassA correct ignored
ClassA–ClassB ignored correct
ClassA–nonGPCR false false

ClassA–ClassA represents a match between two proteins from the same
class, ClassA–ClassB represents a match between two proteins from dif-
ferent classes, and ClassA–nonGPCR represents a match between a GPCR
and non-GPCR.

Table 3. Methods used in this study and the best obtained
Matthews correlation coefficient at GPCR class and superfamily
GPCR levels

Name Description
Mc–
class

Mc–
superfamily

SW Smith-Waterman, BLOSUM-62 0.83 0.01
PSI−3 PSI-BLAST, 5-iterations, E-value 10−3 0.95 0.60
PSI−5 PSI-BLAST, 5-iterations, E-value 10−5 0.96 0.46
PSI−15 PSI-BLAST, 5-iterations, E-value 10−15 0.98 0.16
TMSW Smith-Waterman with TMHMM

predictions
0.93 0.22

TMPSI−3 Profile alignment with TMHMM
predictions using the PSI−3 profiles

0.96 0.62

TMPSI−5 Profile alignment with TMHMM
predictions using the PSI−5 profiles

0.97 0.50

TMPSI−15 Profile alignment with TMHMM
predictions using the PSI−15 profiles

0.98 0.22
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has been suggested by others (Jones et al. 1994; McGuffin
et al. 2000). However, to our knowledge no one has sys-
tematically optimized the E-value for membrane protein
searches. An alternative possibility is to mask so-called low-
complexity regions (transmembrane helices often score in
this category) in BLAST. However, when applied to mem-
brane proteins, this throws away much information from the
outset in an uncontrollable way, and we have chosen not to
use this option. Further, it might be possible that one could
make PSI-BLAST better able to calculate E-value by chang-
ing the standard amino acid composition used.
In Figures 1 and 2 it can be seen that PSI-BLAST per-

forms significantly better than the SW method, both for the
detection of closely and distantly related GPCRs. For
closely related proteins, the best specificity is obtained for
the very restrictive cutoff of 10−15. For distantly related
proteins, however, PSI-BLAST performs better when the
E-value is less restrictive (see Fig. 2 ). The high error rate
for PSI-BLAST on our test set stands in contrast to the
performance obtained for globular proteins, in which∼ 35%
of the family related proteins can be detected before any
false positives (Lindahl and Elofsson 2000) and even a sig-
nificant proportion of superfamily related proteins can be
detected without any false positives.

High-scoring false hits seem to be a problem when PSI-
BLAST is used without manual checking of the sequences
incorporated into the profiles. Once a false hit is incorpo-
rated, every subsequent iteration might result in more false
hits being included, and the final result will be biased by a
high number of high-scoring incorrect matches. The top 100
false hits in the PSI−15 search are mainly caused by five
GPCR sequences in the test set. Of the 100 highest-scoring
false positives from SWISS-PROT, 57 have no predicted
TM-helices, 35 have one, and 2 have 8 regions according to
TMHMM. This shows that, at most, two of these proteins
may in fact be GPCRs (that have not found their way into
GPCRDB) and that PSI-BLAST runs an obvious risk of
incorporating high-scoring false hits both to transmembrane
and globular proteins. The mediocre performance of PSI−15

for detecting distantly related proteins further suggests that
using very restrictive cutoffs is not without problems.
However, it is well known that PSI-BLAST performs

very well to detect closely and distantly related globular
proteins.
The performance increase using predicted secondary

structures is quite marginal for globular proteins (Lindahl
and Elofsson 2000). This puts forward the question as to
when parameters should be optimized for a particular case

Fig. 1. Comparison of the SW and PSI algorithms (broken lines) and the modified TMSW and TMPSI algorithms (solid lines) for the
ability to distinguish GPCRs from the same class. The creation of the profiles were made using PSI-BLAST and three different cutoffs
(10−3, 10−5, and 10−15). Note the scale on the x-axis.
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and when it is appropriate to use general parameters. Here,
we use a standard substitution matrix for membrane pro-
teins, whereas in earlier studies it has been shown that the
use of a special matrix might improve performance (Muller
et al. 2001). In general, it could be possible that the best
performance would be obtained by use of a special set of
parameters for each class of proteins (such as globular, fi-
brous, porins, etc.), or even for each type of secondary
structures. However, taking into account the difficulties in
optimizing these parameters, we think that, in general, it is
better to use parameters that are general. This study shows
an exception to this assumption, as the transmembrane re-
gions differ significantly from globular regions in proteins.
However, due to the limitations with this benchmark, we do
not think it is possible to obtain the ideal values for gap
penalties and substitution matrices. Therefore, we choose to
use default values to as large a degree as possible.

Predicted secondary structures improve detection of
membrane proteins

As can be seen in Figures 1 and 2, the use of transmembrane
predictions significantly helps in the detection of related

membrane proteins (at least insofar as the GPCR superfam-
ily is representative of membrane proteins in general). The
best results are obtained using TMPSI, that is, by a combi-
nation of profiles from PSI-BLAST profiles and TMHMM
predictions. Using TMPSI, it is possible to obtain a speci-
ficity higher than 99.5% for the detection of GPCRs from
the same class. The inclusion of TMHMM predictions in a
profile search is seen to increase the specificity compared
with PSI-BLAST alone. However, no significant improve-
ments are seen at lower specificity. This indicates that the
inclusion of predicted membrane regions into profiles
mainly functions as a filter to avoid incorrect matches,
whereas it does not significantly increase the detection of
distantly related proteins. Comparing Figures 1 and 2, it
seems as if the best compromise to detect both closely and
distantly related GPCRs might be to use TMPSI−5.
It should be noted that information from TMHMM was

only included in the final profiles, that is, it was not used
during the creation of the profiles. From the improvements
seen for TMSW compared with SW, it seems safe to assume
that if this were done, additional improvement would be
obtained. We have not tested this possibility, as the inclu-
sion of TMHMM predictions into PSI-BLAST is techni-
cally not straight forward. We will explore this possibility in
future work.

Fig. 2. Comparison of the SW and PSI algorithms (broken lines) and the modified TMSW and TMPSI algorithms (solid lines) for the
ability to detect distantly related GPCRs, that is, GPCRs from different classes. The creation of the profiles were made using
PSI-BLAST and three different cutoffs, (10−3, 10−5, and 10−15). Note the scale on the x-axis.
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Conclusions

In this study, we have introduced a novel modification to the
Smith-Waterman and profile-based methods that is shown
to increase their ability to detect related helical membrane
proteins. The improvement is based on the inclusion of
information about predicted transmembrane segments in the
alignment algorithm. This is done by adding a constant to
the alignment score if two residues predicted to belong to
transmembrane segments are aligned with each other.
Benchmarking shows that the number of false positives is
significantly reduced in this way, both when closely related
and distantly related proteins are searched for. With these
modifications, we find that almost all G-coupled receptors
from a class can be detected reliably, and that about half of
the G-coupled receptors from different classes can be de-
tected at a specificity of 80%.

Materials and methods

Test set

A test set was created from the sequences in the GPCRDB (De-
cember 2000 release) (Horn and Cohen 2001). This set of se-
quences was reduced by removing sequences with high-sequence
identity. The final test set contained 100 sequences from 5 classes,
in which no 2 sequences had more than 50% sequence identity
according to FASTA, see Table 1. The number of sequences from
the Rhodopsin-like class was reduced so as not to bias the tests
toward this class. Beside these five classes, there is a set of less
well-characterized classes/families in GPCRDB; these were ex-
cluded from the test set as the relationships of these proteins are
less clear. Each sequence in the test set was then searched against
SWISS-PROT (release 39 ). To easily detect hits to related se-
quences, all sequences with >95% sequence identity to any se-
quence in the GPCRDB was excluded from SWISS-PROT and
replaced by the corresponding sequences in GPCRDB before the
comparisons were made. This approach may lead to problems if
SWISS-PROT contains GPCRs that are not present in GPCRDB,
in which case, hits to related sequences will incorrectly be con-
sidered as false. However, we think that it is reasonable to assume
that most GPCRs in SWISS-PROT are present in GPCRDB. This
assumption is, in any case, necessary, and any incorrect assign-
ments should average out when different methods are compared.

Search algorithms

For the standard Smith-Waterman (SW) algorithm (Smith and Wa-
terman 1981), we used the BLOSUM62 matrix (Henikoff and
Henikoff 1992), a gap-opening penalty of −10, and a gap-exten-
sion penalty of −4. Computational limitations made it impossible
to make a systematic search using different matrices and/or gap-
penalties.
The approach used to add information about predicted trans-

membrane segments is similar to the one used in earlier fold rec-

ognition/threading techniques (Fischer and Eisenberg 1996). Thus,
the score for an alignment is calculated as:

SCORE� �(S[i,j] + f[ssi,ssj])

where S[i,j] is the standard alignment score for aligning residues i
and j, and f(ssi ssj) is a score dependent on residues i and j are both
predicted to belong to transmembrane segments:

f[ssi,ssj] � S� if ssi � ssj

f[ssi,ssj] � S� if ssi � ssj

In this study we have used S� � 1 and S� � 0.

The difference from the earlier studies is that we use predicted
transmembrane segments both for the query and the target se-
quence, whereas in the threading methods, the predicted secondary
structure of the query is matched against the real secondary struc-
ture of the target.
The location and orientation of possible transmembrane helices

are predicted using TMHMM (Krogh et al. 2001). If the residues
in an aligned pair are both predicted to be located in a transmem-
brane helix, an additional positive score of one is added to the
substitution score, as indicated above. The same substitution ma-
trix and gap penalties as used in the standard Smith-Waterman
search are used also in this case.
For the PSI-BLAST searches, we have used the default PSI-

BLAST parameters, except for the E-value used to include a se-
quence in the next iteration and for the number of iterations. We
have used three E-values (10−3, 10−5, and 10−15) and a maximum
of five iterations. Low-complexity regions were not masked in the
PSI-BLAST runs.
Finally, the novel TMPSI method includes both the information

from TMHMM and the multiple sequence information from PSI-
BLAST. In this method, a standard profile search (Gribskov et al.
1987) is performed, using the profile obtained from PSI-BLAST.
In addition, we add a score of one for each residue in the query
profile and SWISS-PROT protein when both are predicted to be in
transmembrane segments. For the query profile, the prediction of
transmembrane segments is the same as that obtained for the initial
seed sequence in the PSI-BLAST run. A gap opening penalty of
−10 and a gap extension penalty of −4 was used. Due to compu-
tational limitations, we were not able to examine more parameter
values.

Comparison and assessment

We have used spec-sens plots (Rice and Eisenberg 1997; Hargbo
and Elofsson 1999) as our primary measure of performance. The
main advantage of this is that such plots measure the ability of a
method to reliably find all pairwise matches in the database. The
fraction of possible correct hits found, sensitivity, is defined as:

SENS�score� =
TP�score�

TP�score� + FN�score�

in which TP(score) is the number of correct hits having a score
abovescore, andFN(score) being the number of correct hits with
a score less thanscore. The specificity measures the probability
that a pair of sequences with a score greater than a certain thresh-
old really is a true hit, defined as:

Detection of membrane proteins
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SPEC�score� =
TP�score�

TP�score� + FP�score�

in which FP(score) is the number of false hits that have a score
abovescoreand TP is defined as above. The sensitivity is plotted
as a function of specificity, each point corresponding to a certain
score. This measure is similar, but not identical, to plots in other
studies in which sensitivity, referred to as Fraction of homologous
pairs detected, was plotted against Rate of false positives, (Park et
al. 1997, 1998; Muller et al. 2001). Fraction of homologous pairs
is identical to sensitivity, whereas Rate of false positives is defined
as:

RoFP�score� =
FP�score�

ALL

where ALL is the total number non-related protein pairs.
In addition we have used the Matthews correlation coefficient

(Mc) (Matthews 1975) for measuring the performance.

Mc =
TP * TN− FP * FN

��TN+ FN��TN+ FP��TP+ FN��TP+ FP�

where TN is the number of correct hits that have a score less than
scoreand TP, FP and FN are defined as above.

Score normalizations

For all theSW, TMSWandTMPSIalgorithms the raw scoreSwas
normalized by the lengthm and n of the compared sequences,
following studies of the expected score for unrelated proteins
(Altschul et al. 1997):

S

log�m * n�

For PSI−BLAST, the E−value was used for scoring.

The Pmembr program, used in this study, is available both as a
webserver, and as source code from http://www.sbc.su.se/∼ arne/
pmembr/.
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