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Abstract

A total of 20%—-25% of the proteins in a typical genome are helical membrane proteins. The transmembrane
regions of these proteins have markedly different properties when compared with globular proteins. This
presents a problem when homology search algorithms optimized for globular proteins are applied to
membrane proteins. Here we present modifications of the standard Smith-Waterman and profile search
algorithms that significantly improve the detection of related membrane proteins. The improvement is based
on the inclusion of information about predicted transmembrane segments in the alignment algorithm. This
is done by simply increasing the alignment score if two residues predicted to belong to transmembrane
segments are aligned with each other. Benchmarking over a test set of G-protein-coupled receptor sequences
shows that the number of false positives is significantly reduced in this way, both when closely related and
distantly related proteins are searched for.
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As a result of the genome sequencing projects, we are facadembrane proteins, as membrane proteins have different
with an exponentially increasing number of protein se-structural features (von Heijne 1981) and different amino-
quences, but with only a very limited knowledge of their acids composition and residue exchangeabilities (Tourasse
function. Because the experimental determination of funcand Li 2000). Helical integral membrane proteins account
tion is a nontrivial task, the quickest way to gain somefor 20%—-25% of all proteins encoded in a typical genome
understanding of these proteins is by relating them to pro¢Krogh et al. 2001) and their central importance in many
teins with known properties. Improving the algorithms thatcellular processes makes it of great importance to increase
examine these relationships is a fundamental challenge ithe ability to detect related membrane proteins. Here we
bioinformatics today. present modifications of the standard Smith-Waterman, and
Many algorithms have been developed to increase therofile search algorithms increase the specificity and sensi-
sensitivity and specificity of homology searches for globu-tivity of homology searches for membrane proteins.
lar proteins. These algorithms often use evolutionary and The detection of globular proteins can be improved by
structural information to improve the detection of relatedincluding information from secondary structure predictions
proteins. However, they may not be generally applicable tdFischer and Eisenberg 1996; Rice and Eisenberg 1997;
Rost et al. 1997; Hargbo and Elofsson 1999). To our knowl-
edge, similar schemes have not been described for integral
membrane proteins (for which classical secondary structure
Reprint requests to: Arne Elofsson, Stockholm Bioinformatics Center,prediction methods do not work) (Wallace et al. 1986). Con-
Stockholm  University, SCFAB, SE-10691 Stockholm, Sweden; sidering that membrane protein topology predictions are
e-mail:arne@sbc.su.se; fax: 46-8-5537-8214. . .
much more accurate than secondary structure prediction in
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10.1110/ps.39402. globular proteins (Krogh et al. 2001), we have tested
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Detection of membrane proteins

whether such predictions can be used to improve homologResults
searches of membrane proteins.
For helical membrane proteins (White and Wimley 1999; |\ clusion of information about predicted
Popot and Engelman 2000), topology predictions prOVidetransmembrane segments in standard
secondary structure information, that is, they pin—pointsearch algorithms
likely transmembranea-helical segments. We have thus ex-
tended the classical Smith-Waterman (Smith and Watermaf the tests reported here, information about transmembrane

1981) and profile (Gribskov et al. 1987) search algorithmssegmemS predicted by TMHMM was included in standard
by including helix predictions from the topology prediction gmith-Waterman (SW) and profile-search implementations
program TMHMM (Krogh et al. 2001). This resembles the sjmply by adding an extra score when two residues that are
use of secondary structure predictions in threading methodsoth predicted to belong to transmembrane segments are
(Fischer and Eisenberg 1996; Rost et al. 1997). Howevenjigned (see Materials and Methods). For the profile search
there are two differences, first, information from one Ofmethods, the extra score is added only after the sequence

the best-performing membrane protein topology prediCyrofile has been generated by PSI-BLAST, not during the

second, no information about the true secondary structure is oyr test sets (see Table 1) were derived from the

used; instead, we match a prediction against a predictionspCcRDB database as described in the Materials and Meth-
searches (Gribskov et al. 1987) to detect related membrangasses, that is, proteins with broadly similar function and
proteins. rather close sequence homology. The whole GPCRDB can

One problem during development and fine-tuning of thepe considered as the superfamily of G-protein-coupled re-
methods used in database searches is the need to know $&ptors. We have used both of these levels for the tests

true relationship between the different proteins in a test selescribed below.

During the last few years, several studies have proposed The relationships between protein sequences span a broad
new ways to evaluate methods for detecting relationship%nge, from almost identical sequences to apparently unre-
between proteins (Abagyan and Batalov 1997; Brenner et alated sequences sharing only a similar overall fold. Finding
1998; Park et al. 1998; Salamov et al. 1999; Lindahl andyomologous sequences on the various levels of similarity
Elofsson 2000). These studies differ in detail but have g,oses different problems for search algorithms. For globular
common theme, they use an existing structur_al classificatioBoteins, we have shown that the inclusion of evolutionary
to create the benchmark used for evaluating the perforpformation (multiple sequence alignments) is most impor-
mance of different search methods. The use of structurghnt for the detection of proteins at the superfamily level,
protein-family databases such as SCOP (Murzin et al. 1995)q that the inclusion of structural information mainly helps
and CATH (Orengo et al. 1997) has enabled the creation okt the fold level (Lindahl and Elofsson 2000).

test sets in which the true relationship can be quite accu- T study the detection of membrane proteins at different
rately assumed. However, for membrane proteins, no suchomology levels, we performed two different tests. First, we
high-quality test sets based on 3-D structural databases exigisted the ability to detect sequences within a GPCRDB
so far. To circumvent this problem, we have chosen to Us@|ass. Here, hits to GPCR sequences outside a class are
the GPCRDB database (Horn et al. 2001). GPCRDB purignored, see Table 2. Second, we tested the ability to detect
portedly includes all known and predicted 7-TM receptors,GpcRs from different classes. Here, hits to GPCR se-
and we thus assume that all proteins in GPCRDB are 7-TMyyences in other classes are considered correct, whereas hits
receptors and that all other proteins found in SWISS-PROkg sequences in the same class are ignored. This is identical

(Bairoch and Apweiler 1996) but not in GPCRDB are notyg how the performance of fold recognition methods was
7-TM receptors. A similar benchmark was used recently by

Rehsmeier (Muller et al. 2001). This study showed that a
nonsymmetric score matrix performed better than a standarglaple 1. Description of test set
(symmetric) substitution matrix for helical membrane pro-

teins. However, no comparison with multiple sequence-_ ”’:‘% F?(f:;lglé ’;:10-T2fst3§gt-

based methods, such as PSI-BLAST (Altschul et al. 1997)

was made. Rhodopsin like 1207 50
In contrast, we now report that the inclusion of informa- Se‘iri“rt‘ like 86 19

H H etabotropic

tlpn la_lbout_predlcted transmembrane segments Iegds to '\églutamate/phermone 62 18

significant improvement over _standard_ sequence—allgnmerﬁunga| phermone 16 4

methods, including the iterative multiple sequence-align-cAMmP receptors 4 1

ment method PSI-BLAST.
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Table 2. Summary of how correct and false matches are stated Concerning the detection of proteins that belong to the
in the two tests used in this study same GPCR class, Table 3 (column-Mass) shows that
TMSW performs significantly better than standard Smith-
Waterman alignments: a Mof 0.93 versus 0.83. For PSI-
ClassA-ClassA correct ignored BLAST and TMPSI, the highest Mis obtained if a strict
g:g:ﬁ:gﬁ;g R gl‘sged ]f:lrsr:‘"‘t cutoff is used. The highest correlation coefficients, 0.98, are

thus seen for PSt® and TMPST*®. The inclusion of infor-
ClassA-ClassA represents a match between two proteins from the sanmat'o.n ‘T"boqt predicted transmembrang segments results in
class, ClassA-ClassB represents a match between two proteins from diénly limited improvements to the Mn this case. The table
ferent classes, and ClassA—nonGPCR represents a match between a GP§R g shows that PSI-BLAST and TMPSI are able to detect
and non-GPCR. . -

almost all proteins within a class of GPCRs.

A more detailed understanding of the performance can be

. . . . . . obtained from spec-sens plots, see Figure 1. It is clear that
investigated at different levels of relationship (Lindahl andTMPSI has a significantly higher specificity than PSI-

Elg:ff%?ngggg's as measured by the Matthews CorrelatiofI_%)LAST, irrespective of the cutoff E-value. Without the in-
coefficient (Mc) are shown in Table 3. In this Table, we rmation about transmembrane segments, it is necessary to

) use an E-value cutoff of I6° to increase the specificity
re.port results for the standard Smith-Waterman sequencgeyond 98%. For the single-sequence-based methods, trans-
ahgnmept (SW) method, for standard PSL'BLAST S?""mhe?‘nembrane segment information significantly increases both
using different E-value cutoffs (PS| PS>, and PSI*),

and for these methods augmented with information aboutthe specificity and sensitivity.

. . For distantly related GPCRs, it can be seen that PSI-
predicted transmembrane helices from TMHMM (TMSW, : i ) -
TMPSI2, TMPSTS, and TMPST™), BLAST with a less restrictive E-value cutoff performs sig

nificantly better than SW or PSI-BLAST with the 18
cutoff, see Figure 2. Compared with the standard SW
method (M, = 0.01) the increase in performance is remark-
able (M, = 0.60 forPSI®), see Table 3PS detects al-
most 50% of the nonclass-related GPCRs at 80% specific-
ity.

Performances as measured by the Matthews correlation co- " conclusion, the inclusion of predicted transmembrane
efficient (M) are shown in Table 3. In this table, we report S€9MeNts improves the detection rate significantly, mainly
results for the standard Smith-Waterman sequence aligry "€ducing the number of false positives, that is, by in-
ment (SW) method, for standard PSI-BLAST searches us<€asing the specificity.

ing different E-value cutoffs (PSt, PSI'® and PST*9), and

for these methods augmented with information frompDiscussion

TMHMM (TMSW, TMPSI"3, TMPSIS, and TMPST®).

Class test Superfamily test

Inclusion of transmembrane segment predictions
increases the sensitivity when detecting closely
related proteins

PSI-BLAST is not ideally tuned to detect

membrane proteins

Table 3. Methods used in this study and the best obtained . . .
Matthews correlation coefficient at GPCR class and superfamilyA Series of recent studies show that PSI-BLAST is better

GPCR levels than SW for the detection of distantly related globular pro-
teins (Park et al. 1998; Lindahl and Elofsson 2000). In fact,
Name Description é\lf'acgs Sup’;"r%m“y PSI-BLAST is one of the most sensitive sequence-based
database search methods available and it is also fast enough
SwW Smith-Waterman, BLOSUM-62 0.83 0.01 to be used on large databases. Due to the iterative approach
psr? PSI-BLAST, 5-iterations, E-value 18 0.95 0.60 and the position-specific profiles, PSI-BLAST is able to

PSI® PSI-BLAST, 5-iterations, E-value I® 0.96 0.46

pS[is PSI-BLAST. 5-iterations, E-value 16 098 0.16 find more distantly related sequences than mqst other mgth—
TMSW  Smith-Waterman with TMHMM 093 022 ods. However, the underlying statistics used in BLAST is
predictions calculated from globular proteins and not from membrane
TMPSI®  Profile alignment with TMHMM 0.96 0.62 proteins. Because unrelated transmembrane segments are
S prgﬁslgfi'gr?;:ﬁlnﬁif:e-r;ﬁﬁﬁ’mes 097 050 more similar to each other than unr_elated globular regions,
predictions using the PS profiles the E-values reported b)_/ BLAST vylll be too small for. un-
TMPSI'5  Profile alignment with TMHMM 098 0.22 related membrane proteins. The simplest way to avoid this
predictions using the PSP profiles problem is to use a more restrictive E-value cutoff for the

inclusion of proteins in the iterative BLAST search. This
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Fig. 1. Comparison of the SW and PSI algorithms (broken lines) and the modified TMSW and TMPSI algorithms (solid lines) for the
ability to distinguish GPCRs from the same class. The creation of the profiles were made using PSI-BLAST and three different cutoffs
(1073, 10°°, and 10'). Note the scale on the x-axis.

has been suggested by others (Jones et al. 1994; McGuffin High-scoring false hits seem to be a problem when PSI-
et al. 2000). However, to our knowledge no one has sysBLAST is used without manual checking of the sequences
tematically optimized the E-value for membrane proteinincorporated into the profiles. Once a false hit is incorpo-
searches. An alternative possibility is to mask so-called lowrated, every subsequent iteration might result in more false
complexity regions (transmembrane helices often score ihits being included, and the final result will be biased by a
this category) in BLAST. However, when applied to mem- high number of high-scoring incorrect matches. The top 100
brane proteins, this throws away much information from thefalse hits in the PSI search are mainly caused by five
outset in an uncontrollable way, and we have chosen not t&PCR sequences in the test set. Of the 100 highest-scoring
use this option. Further, it might be possible that one couldalse positives from SWISS-PROT, 57 have no predicted
make PSI-BLAST better able to calculate E-value by changTM-helices, 35 have one, and 2 have 8 regions according to
ing the standard amino acid composition used. TMHMM. This shows that, at most, two of these proteins
In Figures 1 and 2 it can be seen that PSI-BLAST per-may in fact be GPCRs (that have not found their way into
forms significantly better than the SW method, both for theGPCRDB) and that PSI-BLAST runs an obvious risk of
detection of closely and distantly related GPCRs. Forincorporating high-scoring false hits both to transmembrane
closely related proteins, the best specificity is obtained forand globular proteins. The mediocre performance of PSI
the very restrictive cutoff of 13°. For distantly related for detecting distantly related proteins further suggests that
proteins, however, PSI-BLAST performs better when theusing very restrictive cutoffs is not without problems.
E-value is less restrictive (see Fig. 2 ). The high error rate However, it is well known that PSI-BLAST performs
for PSI-BLAST on our test set stands in contrast to thevery well to detect closely and distantly related globular
performance obtained for globular proteins, in whidb%  proteins.
of the family related proteins can be detected before any The performance increase using predicted secondary
false positives (Lindahl and Elofsson 2000) and even a sigstructures is quite marginal for globular proteins (Lindahl
nificant proportion of superfamily related proteins can beand Elofsson 2000). This puts forward the question as to
detected without any false positives. when parameters should be optimized for a particular case
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Fig. 2. Comparison of the SW and PSI algorithms (broken lines) and the modified TMSW and TMPSI algorithms (solid lines) for the
ability to detect distantly related GPCRs, that is, GPCRs from different classes. The creation of the profiles were made using
PSI-BLAST and three different cutoffs, (1% 1075, and 10%%). Note the scale on the x-axis.

and when it is appropriate to use general parameters. Hermembrane proteins (at least insofar as the GPCR superfam-
we use a standard substitution matrix for membrane proHy is representative of membrane proteins in general). The
teins, whereas in earlier studies it has been shown that theest results are obtained using TMPSI, that is, by a combi-
use of a special matrix might improve performance (Mullernation of profiles from PSI-BLAST profiles and TMHMM

et al. 2001). In general, it could be possible that the bespredictions. Using TMPSI, it is possible to obtain a speci-
performance would be obtained by use of a special set dicity higher than 99.5% for the detection of GPCRs from
parameters for each class of proteins (such as globular, fthe same class. The inclusion of TMHMM predictions in a
brous, porins, etc.), or even for each type of secondarprofile search is seen to increase the specificity compared
structures. However, taking into account the difficulties inwith PSI-BLAST alone. However, no significant improve-
optimizing these parameters, we think that, in general, it isnents are seen at lower specificity. This indicates that the
better to use parameters that are general. This study showslusion of predicted membrane regions into profiles
an exception to this assumption, as the transmembrane rerainly functions as a filter to avoid incorrect matches,
gions differ significantly from globular regions in proteins. whereas it does not significantly increase the detection of
However, due to the limitations with this benchmark, we dodistantly related proteins. Comparing Figures 1 and 2, it
not think it is possible to obtain the ideal values for gapseems as if the best compromise to detect both closely and
penalties and substitution matrices. Therefore, we choose tistantly related GPCRs might be to use TMPSI

use default values to as large a degree as possible. It should be noted that information from TMHMM was
only included in the final profiles, that is, it was not used
during the creation of the profiles. From the improvements
seen for TMSW compared with SW, it seems safe to assume
that if this were done, additional improvement would be
obtained. We have not tested this possibility, as the inclu-
sion of TMHMM predictions into PSI-BLAST is techni-
As can be seen in Figures 1 and 2, the use of transmembracally not straight forward. We will explore this possibility in
predictions significantly helps in the detection of relatedfuture work.

Predicted secondary structures improve detection of
membrane proteins
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Conclusions ognition/threading techniques (Fischer and Eisenberg 1996). Thus,
the score for an alignment is calculated as:

In this study, we have introduced a novel modification to theg~qpE — S(S[ij] + flss,
Smith-Waterman and profile-based methods that is shown '

to increase their ability to detect related helical membrangyhere Sji j] is the standard alignment score for aligning residues i
proteins. The improvement is based on the inclusion ofndj, and f(ssss) is a score dependent on residues i and j are both

information about predicted transmembrane segments in thfedicted to belong to transmembrane segments:
alignment algorithm. This is done by adding a constant to
the alignment score if two residues predicted to belong tJ[SS-S§! =

transmembrane segments are aligned with each othefr[sgs] — Sifss #s
Benchmarking shows that the number of false positives is™ 3 ¥

significantly reduced in this way, both when closely related|, yhis study we have used = 1 and 3 = 0.

and distantly related proteins are searched for. With these

modifications, we find that almost all G-coupled receptors The difference from the earlier studies is that we use predicted
from a class can be detected reliably, and that about half dfansmembrane segments both for the query and the target se-

the G-coupled receptors from different classes can be deluence, whereas in the threading methods, the predicted secondary
tected at a specificity of 80% structure of the query is matched against the real secondary struc-

ture of the target.

The location and orientation of possible transmembrane helices
are predicted using TMHMM (Krogh et al. 2001). If the residues
in an aligned pair are both predicted to be located in a transmem-
brane helix, an additional positive score of one is added to the
substitution score, as indicated above. The same substitution ma-
trix and gap penalties as used in the standard Smith-Waterman
Test set search are used also in this case.

For the PSI-BLAST searches, we have used the default PSI-

A test set was created from the sequences in the GPCRDB (D&LAST parameters, except for the E-value used to include a se-
cember 2000 release) (Horn and Cohen 2001). This set of s€iuénce in the next iteration and for the nulmber of iterations. We
quences was reduced by removing sequences with high-sequen@@ve used three E-values (£010°° and 10"°) and a maximum
identity. The final test set contained 100 sequences from 5 classe@f five iterations. Low-complexity regions were not masked in the
in which no 2 sequences had more than 50% sequence identifyS!-BLAST runs. , . .
according to FASTA, see Table 1. The number of sequences from Finally, the novel TMPSI method includes both the information
the Rhodopsin-like class was reduced so as not to bias the tesf®m TMHMM and the multiple sequence information from PSI-
toward this class. Beside these five classes, there is a set of Ie8-AST. In this method, a standard profile search (Gribskov et al.
well-characterized classes/families in GPCRDB; these were ex1987) is performed, using the profile obtained from PSI-BLAST.
cluded from the test set as the relationships of these proteins af8 addition, we add a score of one for each residue in the query
less clear. Each sequence in the test set was then searched agaRféfile and SWISS-PROT protein when both are predicted to be in
SWISS-PROT (release 39 ). To easily detect hits to related selfansmembrane segments. For the query profile, the prediction of
quences, all sequences with >95% sequence identity to any srfansmembrane segments is the same as that obtaln_ed for the initial
guence in the GPCRDB was excluded from SWISS-PROT and€ed sequence in the PSI-BLAST run. A gap opening penalty of
replaced by the corresponding sequences in GPCRDB before thel0 and a gap extension penalty of -4 was used. Due to compu-
SWISS-PROT contains GPCRSs that are not present in GPCRDB/alues.

in which case, hits to related sequences will incorrectly be con-

sidered as false. However, we think that it is reasonable to assume ]

that most GPCRs in SWISS-PROT are present in GPCRDB. Thi&omparison and assessment

assumption is, in any case, necessary, and any incorrect assign-

ments should average out when different methods are comparedV€ have used spec-sens plots (Rice and Eisenberg 1997; Hargbo
and Elofsson 1999) as our primary measure of performance. The

main advantage of this is that such plots measure the ability of a
method to reliably find all pairwise matches in the database. The

ivs§])

S if s = sg

Materials and methods

Search algorithms fraction of possible correct hits found, sensitivity, is defined as:
For the standard Smith-Waterman (SW) algorithm (Smith and Wa- SENSscore = TR(scorg
terman 1981), we used the BLOSUMG62 matrix (Henikoff and TP(score + FN(score

Henikoff 1992), a gap-opening penalty of —10, and a gap-exten-

sion penalty of —4. Computational limitations made it impossiblein which TP&corg is the number of correct hits having a score

to make a systematic search using different matrices and/or gagbovescorg andFN(scorg being the number of correct hits with

penalties. a score less thascore The specificity measures the probability
The approach used to add information about predicted transthat a pair of sequences with a score greater than a certain thresh-

membrane segments is similar to the one used in earlier fold reald really is a true hit, defined as:
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