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Introduction
More than 99% of mitochondrial proteins are encoded by the nu-

clear genome, synthesized in the cytoplasm as precursor proteins, 

and imported posttranslationally into the mitochondria (Koehler, 

2004; Bohnert et al., 2007). Most proteins destined for the 

matrix and several proteins destined for the inner membrane or 

intermembrane space (IMS) possess a cleavable N- terminal pre-

sequence that functions for the mitochondrial matrix targeting. 

Unlike these proteins, the mitochondrial outer membrane (MOM) 

proteins are synthesized as mature proteins, and the targeting sig-

nals are contained within the mature protein sequence (Rapaport, 

2003). MOM contains three distinct protein types: proteins em-

bedded in the membrane in a β-barrel structure such as porin and 

Tom40 (Paschen et al., 2005), proteins anchored to the membrane 

through one or several α-helical hydrophobic transmembrane 

segments (TMSs), and proteins peripherally associated with the 

MOM such as Sam35/Tom38/Tob38 (Ishikawa et al., 2004; 

Waizenegger et al., 2004; Bohnert et al., 2007). The preprotein 

import receptors Tom70 and Tom20 are anchored to the MOM 

through their single-spanning N-terminal TMS, whereas other 

proteins such as Bak and Bcl-XL are anchored to the membrane 

through a single-spanning C-terminal TMS (C-terminal tail anchor 

[C-TA] proteins; Setoguchi et al., 2006). Additionally, there are 

several examples of proteins with multiple TMSs. Yeast Fzo1 (or 

mammalian mitofusin 1 [Mfn1] and Mfn2) is anchored to the 

MOM through two TMSs localizing at the C-terminal segment 

and mediates mitochondrial fusion (Fritz et al., 2001). The pe-

ripheral benzodiazepine receptor (PBR) is anchored to the MOM 

through fi ve TMSs and is involved in cholesterol import (Joseph-

Liauzun et al., 1998). A mitochondrial ubiquitin ligase (MITOL; 

also named MARCH-V) is embedded in the MOM with four 

putative TMSs and regulates mitochondrial dynamics (Nakamura 

et al., 2006; Yonashiro et al., 2006; Karbowski et al., 2007).

It is generally thought that the preprotein import machin-

ery of the outer membrane (translocase of outer membrane 

[TOM] complex) is responsible for the import of virtually all of 

the nuclear-encoded mitochondrial proteins (Rapaport, 2005). 
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Indeed, β-barrel proteins porin and Tom40 synthesized in the 

cytoplasm are delivered to the import receptors Tom70 and 

Tom20 and are transferred through the Tom40 channel into 

the IMS, where they are integrated into the MOM through 

the sorting and assembly machinery (SAM; also named TOB  

[topogenesis of MOM β-barrel proteins]) complex assisted by 

IMS-localizing small Tim proteins (Koehler, 2004; Bohnert 

et al., 2007). The N-terminal signal anchor proteins, yeast Tom70 

and Tom20, are integrated into the MOM independently of sur-

face receptors but dependent on a region of Tom40 other than its 

pore segment (Ahting et al., 2005).

To our knowledge, the import pathway of the TMS-

 containing MOM proteins has been analyzed only for the com-

ponents of the TOM complex, and little is known for proteins 

other than the TOM components as to which import receptor is 

responsible for the initial recognition and whether the Tom40 

channel is involved in their membrane insertion.

In this study, we analyzed the membrane insertion of MOM 

proteins with multiple TMSs using in situ immunofl uorescence 

microscopy and import into mitochondria isolated from TOM or 

SAM component–depleted semi-intact and intact cells. These 

experiments revealed a novel MOM insertion pathway.

Figure 1. MOM integration of PBR in TOM component–depleted semi-intact and intact cells. (A) HeLa cells were semipermeabilized with digitonin and 
incubated with reticulocyte lysate–synthesized PBR-HA. After fi xation and permeabilization, the cells were processed for immunofl uorescence microscopy 
using anti-HA and anti-Tom22 antibodies. (B) Reticulocyte lysate–synthesized biotin-labeled PBR-HA was incubated with semi-intact cells as in A. The cells 
were treated with 50 μg/ml proteinase K at 26°C for 3 min and analyzed by SDS-PAGE and immunoblotting using HRP-conjugated streptavidin (PBR-HA), 
anti-Tom20, or anti-HtrA2 antibodies. (C) HeLa cells subjected to RNAi for the indicated proteins were analyzed by SDS-PAGE and subsequent immuno-
blotting using the indicated antibodies. AIF, loading control. (D) TOM component knockdown semi-intact cells were subjected to import assay as in B. 
Cytochrome c, loading control. (E and F) HeLa cells subjected to RNAi were transfected with the expression vector for Su9-GFP or PBR-HA. The cells were 
treated with digitonin to permeabilize the plasma membrane and centrifuged to separate the supernatant (S) and membrane (P) fractions (Otera et al., 
2005), which were analyzed by SDS-PAGE and immunoblotting using the antibodies against HA or the indicated proteins. (G) Su9-GFP and PBR-HA were 
coexpressed in TOM component knockdown HeLa cells. The cells were analyzed by immunofl uorescence microscopy. The cells (100 cells in three distinct 
fi elds) exhibiting cytosolic localization of Su9-DHFR or PBR-HA in each RNAi experiment were counted. Error bars represent SD. Bars, 20 μm.
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Results and discussion
In vitro assay for integration of PBR into 
the MOM
Membrane topology of PBR as deduced from yeast mitochon-

dria harboring human PBR revealed that it assumes a fi ve-

 transmembrane topology extruding the N-terminal fi ve amino 

acid residues into the IMS, whereas the C-terminal 14-residue 

segment remains in the cytoplasm (Joseph-Liauzun et al., 1998). 

We analyzed membrane orientation of the exogenously ex-

pressed rat PBR (N- or C-terminal HA-tagged versions) in cul-

tured cells using a proteinase K–induced size-shift assay and 

confi rmed the reported terminal orientation (Fig. S1 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200702143/DC1). 

We established an in vitro assay for MOM integration of PBR, 

taking advantage of the proteinase K sensitivity, which removes 

surface-adsorbed PBR and trims the C-terminal segment of the 

correctly inserted form (Fig. S1, C–E).

MOM integration of PBR depends on 
Tom70 but not on other TOM components
We then analyzed the import pathway of PBR using TOM com-

ponent–depleted semi-intact cells. HeLa cells were treated with 

25 μg/ml digitonin to selectively permeabilize the plasma mem-

brane, cells were incubated with reticulocyte lysate–synthesized 

PBR-HA, and intracellular localization was analyzed by immuno-

fl uorescence microscopy. The imported PBR-HA colocalized 

with mitochondrial Tom22 (Fig. 1 A), exposing the C-terminal 

HA to the cytoplasm (Fig. 1 B). We then analyzed the effect of 

knockdown of TOM components on PBR import. This manipu-

lation effi ciently reduced the level of the target proteins (Fig. 1 C), 

and immunofluorescence microscopy (not depicted) and a 

proteinase K–induced size-shift assay (Fig. 1 D) revealed that 

PBR import was compromised by the Tom70 knockdown. 

Knockdown of other components, including the import recep-

tors Tom20, Tom22, the central channel Tom40, and Sam50 had 

little effect on PBR import (Fig. 1 D).

These results were confi rmed using intact cells. PBR-HA 

was exogenously expressed in TOM or SAM component–

 depleted HeLa cells, and its intracellular localization was exam-

ined by in situ immunofl uorescence microscopy (unpublished 

data) and cell fractionation. Knockdown of Tom70 but not other 

TOM components signifi cantly inhibited PBR import (Fig. 1 E). 

As controls, the import of both Su9-GFP and Tim23, the inner 

mitochondrial membrane protein with uncleavable targeting 

 signal and four TMSs, was clearly compromised by the knock-

down of Tom20, Tom22, or Tom40, whereas Tom70 knockdown 

had no inhibitory effect (Fig. 1 F; and not depicted for Tim23). 

Double expression of Su9-GFP and PBR-HA in the TOM-

 component knockdown cells further confi rmed these results 

(Fig. 1 G).

Membrane integration of PBR occurs in the 
absence of Tom40
We examined whether the membrane integration of PBR de-

pends on the import channel of Tom40. Mitochondria were iso-

lated from Tom40 knockdown HeLa cells (Fig. 2 C), and we 

examined whether import of PBR would be affected by blocking 

Figure 2. Effect of Tom40 channel block on 
MOM integration of PBR-HA. (A) Reticulocyte 
lysate–synthesized 35S–PBR-HA or 35S-pAd was 
imported into the control or Tom40 knockdown 
mitochondria in the presence of recombinant 
Su9-DHFR. The reaction mixtures were treated 
with (for PBR) or without (for pAd) proteinase K 
and analyzed by SDS-PAGE and subsequent 
digital autoradiography. (B) The band intensi-
ties (proteinase K–resistant band for PBR and 
mature band for pAd) were quantifi ed setting 
those in the absence of Su9-DHFR at 100%. 
Results obtained from three independent experi-
ments are shown. (C) The mitochondria used 
in A were analyzed by SDS-PAGE and immuno-
blotting using antibodies against the indicated 
proteins. This procedure depleted Tom40 by 
�95%. Error bars represent SD.
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Figure 3. Analysis of import steps of PBR. (A and B) Reticulocyte lysate–synthesized PBR-HA, Su9-DHFR-HA, or T7–Bcl-XL was incubated with FLAG-tagged 
Tom proteins or FLAG-GFP-Tom70∆N purifi ed from HeLa cells. They were subjected to pull-down reaction and subsequent immunoblotting using the 
indicated antibodies. (C) Reticulocyte lysate–synthesized PBR-HA was incubated with 100 U/ml apyrase, 10 mM AMP-PNP, or 1 mM novobiocin (NB). The 
reaction mixtures were subjected to pull-down assay as in B. (D) Rat liver mitochondria were subjected to BN-PAGE followed by immunoblotting using 
anti-PBR antibodies. (E and F) Reticulocyte lysate–synthesized 35S–PBR-HA was incubated with control or Tom70-knockdown mitochondria under the indicated 
 conditions. The reaction mixtures were analyzed by BN-PAGE and subsequent digital autoradiography. Band intensities of stage I and the mature form are 
shown, setting those of stage I (25°C for 15 min) and the mature form (25°C for 90 min plus 33°C for 60 min; E) or that of control (30 min) at 100% (F). 
Results obtained from three independent experiments are shown. Error bars represent SD. (G) Reticulocyte lysate–synthesized 35S–PBR-HA was passed through 
a spin column and subjected to import in the absence or presence of 1 mM ATP or AMP-PNP under the indicated conditions. Other conditions were set as 
in E. (H) Reticulocyte lysate–synthesized 35S–PBR-HA was subjected to mitochondrial import at 25°C for 15 min (binding). The mitochondria were reisolated 
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the channel with tightly folded Su9–dihydrofolate reductase 

(DHFR). Mitochondrial import of the matrix-targeted pre protein 

pAd was inhibited by Tom40 knockdown, and the residual 

activity was further inhibited by the channel blockage (Fig. 2, 

A and B). As an additional control, Tom40 knockdown effi ciently 

inhibited MOM integration of Tom40-dependent substrates 

VDAC2 and rat Tom5 (Setoguchi et al., 2006). In contrast, neither 

of these manipulations affected the import of PBR. We concluded 

that Tom40 is not involved in any mode in the MOM integration 

of PBR.

Binding of PBR to Tom70
We examined binding of PBR to Tom70 by immunoprecipita-

tion (Fig. 3, A and B). Reticulocyte lysate–synthesized PBR-HA 

and Su9-DHFR–HA were separately incubated with FLAG-

tagged Tom20, Tom22, Tom40, or Tom70 purifi ed from HeLa 

cells followed by immunoprecipitation using anti-FLAG beads. 

Tom70 but not other TOM components specifi cally bound PBR-

HA. Conversely, Tom20, Tom22, and Tom40 recognized Su9-

DHFR but not PBR-HA. Furthermore, FLAG-GFP-Tom70∆N, 

the fusion construct between the cytoplasmic fragment of 

Tom70 and FLAG-GFP, specifi cally bound PBR-HA (Fig. 3 B). 

Confi rming a previous study (Young et al., 2003), FLAG-GFP-

Tom70∆N also bound Hsp90 present in reticulocyte lysate. 

Because Hsp90 delivers phosphate carrier and peptide transporter 

to Tom70 before translocation through the Tom40 channel in 

mammalian mitochondria, we analyzed whether Hsp90 is 

involved in PBR binding to Tom70. Novobiocin, a coumarin 

antibiotic, binds to the C-terminal domain of Hsp90 to inhibit 

its dimerization and substrate binding and, as such, inhibits 

the docking of phosphate carrier and peptide transporter to Tom70 

(Fan et al., 2006). However, it did not inhibit the binding of PBR 

to Tom70 (Fig. 3 C). Although overall MOM integration of 

PBR depended on ATP hydrolysis (Fig. 3, G and H), binding of 

PBR to Tom70 was not affected by ATP depletion or by non-

hydrolyzable ATP analogue AMP-PNP (Fig. 3 C). As a  control, 

depletion of cytoplasmic ATP completely blocked the mito-

chondrial import of Su9-DHFR (unpublished data). Thus, Hsp90 

and ATP hydrolysis were not required for the docking of PBR 

onto Tom70.

Analysis of the import steps of PBR
Mitochondrial PBR is organized in clusters of four to six 

 molecules, as revealed by immunogold electron microscopy 

 (Papadopoulos et al., 1997). Consistent with this study, digitonin-

solubilized mitochondrial PBR migrated in blue-native (BN) 

PAGE more slowly than the SDS-solubilized monomeric form 

of �18 kD (Fig. 3 D). Therefore, we analyzed the PBR assem-

bly process using BN-PAGE and found that PBR matured 

through the monomeric stage I intermediate; it was formed during 

import at 20–25°C and could be chased to mature form upon in-

cubation at 30–33°C (Fig. 3, E and F). Moreover, we found that 

(1) the PBR assembly was strongly compromised by removing 

mitochondrial surface proteins by trypsin (Fig. 3 F); (2) the 

level of stage I intermediate was markedly decreased by Tom70 

knockdown (Fig. 3 F); (3) production of stage I intermediate 

depended on ATP hydrolysis (Fig. 3 G); (4) maturation of stage I 

intermediate to the oligomeric form did not require ATP 

 hydrolysis (Fig. 3 H); (5) PBR in stage I but not the mature form 

was sensitive to externally added proteinase K, indicating that 

stage I PBR is exposed to the mitochondrial surface (Fig. 3 I); 

and (6) stage I PBR as well as the mature form was resistant to 

alkali extraction, indicating that PBR in both stages was inserted 

into the membrane through hydrophobic interactions (Fig. 3 J). 

Together, these results suggested that PBR in stage I had left the 

receptor Tom70, which is associated with the surface of MOM 

through hydrophobic interactions and is migrated as a monomer 

in BN-PAGE. Considering that PBR binding to Tom70 occurred 

in the absence of ATP, these results suggested that the transfer 

of PBR from Tom70 to the following steps required ATP hydro-

lysis, although its function in maintaining the nascent PBR in 

the import-competent state was not ruled out.

PBR partly shares the MOM integration 
pathway with C-TA proteins
We previously demonstrated that MOM integration of C-TA 

proteins follows the TOM component–independent pathway 

(Setoguchi et al., 2006); the requirements were similar to those 

of PBR except for the Tom70 dependency. Therefore, we exam-

ined whether PBR and C-TA proteins have an overlapping im-

port pathway using competition assays in semi-intact cells. 

Surprisingly, the import of PBR-HA, like HA-Bak, was inhib-

ited by an excess amount of 6myc-Bak (Fig. 4, A–C). In contrast, 

the import of Tom40-HA (Fig. 4, B and C) and Su9-GFP (not 

depicted) was not affected. As a control, GFP-Bak∆BH3, in 

which the BH3 domain of Bak was deleted, also inhibited the 

import, indicating that the proapoptotic activity of Bak is not 

involved in this inhibition (Fig. 4 D). Furthermore, proapoptotic 

factor tBid permeabilized MOM to release cytochrome c from 

mitochondria, whereas no such effect was observed with 6myc-

Bak (Fig. 4 E), indicating that 6myc-Bak did not perturb MOM 

integrity but specifi cally inhibited MOM integration of PBR. 

We concluded that PBR shared the import pathway with the 

C-TA proteins after the initial docking on Tom70.

We noticed that PBR behaved like C-TA proteins in sev-

eral additional aspects. PBR import was compromised at 4°C, 

very much like C-TA proteins, whereas the import of Tom40 

and Su9-DHFR was less sensitive to the lower temperature 

(Fig. S2, A and C; available at http://www.jcb.org/cgi/content/full/

jcb.200702143/DC1). Moreover, the import of PBR and C-TA 

and incubated at 33°C for 60 min (chase) in the import buffer with or without 1 mM ATP or AMP-PNP. Other conditions were set as in E. (I) Reticulocyte  lysate–
synthesized 35S–PBR-HA was imported into mitochondria under the indicated conditions. The reaction mixtures were treated with or without proteinase K 
and analyzed by BN-PAGE and digital autoradiography. (J) Reticulocyte lysate–synthesized 35S–PBR-HA was subjected to mitochondrial import. The mito-
chondria were treated with 100 mM Na2CO3, pH 11.5, and centrifuged to separate the supernatant (S) and membrane (P) fractions, which were analyzed 
by SDS-PAGE and subsequent digital autoradiography.
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proteins was signifi cantly stimulated by the knockdown of 

VDAC1, the most abundant MOM protein, whereas no such 

stimulation was detected for the import of Tom40, VDAC2, and 

Su9-DHFR (Fig. S2, B and D; and not depicted for Su9-DHFR). 

These results might refl ect the importance of the phospholipid 

phase as a rate-limiting step for the import of PBR and C-TA 

proteins, which is in contrast to import of the TOM complex–

dependent substrates.

MOM integration of PBR depends on 
IMS components
Membrane integration of mitochondrial inner membrane pro-

teins with multi-TMSs such as ADP/ATP carrier and Tim23 and 

β-barrel MOM proteins depends on small Tim proteins in the 

IMS, which function as the chaperones to transfer incoming 

membrane proteins to the Tim22 complex or to the SAM com-

plex (Koehler, 2004). Thus, we examined this point for MOM 

Figure 4. Inhibition of MOM integration of PBR by an excess amount of Bak. (A) The reticulocyte lysate–synthesized proteins used (4 μl each) were ana-
lyzed by SDS-PAGE and immunoblotting (IB) using the indicated antibodies. (B) The indicated proteins were subjected to mitochondrial import in semi-intact 
cells in the presence or absence of an excess amount of 6myc-Bak (70 μl; import substrates, 20 μl each) and subsequent immunofl uorescence microscopy. 
Imported proteins and 6myc-Bak are shown in green and red, respectively. (C) The extent of import was quantifi ed using ImageJ (National Institutes of 
Health). Each graph indicates the mean ± SD (error bars) of three independent experiments of at least 100 cells. The fl uorescence intensities of 6myc-Bak (−) 
cells were set at 100%. (D) Mitochondrial import of PBR-HA and Tom40-HA was performed as in B in the presence or absence of GFP-Bak∆BH3. 
(E) Semi-intact cells were treated with tBid or 6myc-Bak, and the cells were analyzed by immunofl uorescence microscopy using the antibodies against 
 cytochrome c (green), Tom22 (red), or myc-tag (red). Asterisks indicate cytochrome c–released cells.
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integration of PBR and found that depletion of IMS compo-

nents by swelling the mitochondria strongly compromised the 

reaction (Fig. 5 A). MOM was not dissociated from the mito-

plasts because levels of Tom40/Tom70 and Tim17 as the outer 

and inner membrane markers, respectively, were not changed 

after swelling the mitochondria (Fig. 5 E). The assembly of 

Tom22 to the TOM complex and matrix import of Su9-DHFR 

were not or were only slightly affected by this manipulation 

(Fig. 5, B–D), indicating that PBR import was specifi cally com-

promised by the depletion of IMS proteins.

Polytopic MOM proteins Mfn1, Mfn2, and 
MITOL are integrated into the membrane 
through a similar pathway as PBR
We addressed the integration pathway of MOM proteins with 

multiple TMSs other than PBR, including Mfn proteins and 

 MITOL, and found that mitochondrial import of all of these pro-

teins depended on Tom70 but not on any other TOM components 

(Fig. S3, A and B; available at http://www.jcb.org/cgi/content/

full/jcb.200702143/DC1; and not depicted for Mfn1). Further-

more, MOM integration of Mfn2 as assessed by BN-PAGE was 

severely compromised by the depletion of IMS factors (Fig. S3 D). 

Thus, these polytopic MOM proteins are integrated into the 

MOM possibly through the PBR-like import pathway.

In conclusion, these experiments revealed a novel inser-

tion pathway for several MOM proteins with multiple TMSs. 

The exact mechanism that facilitates the ATP-dependent mem-

brane integration after targeting to Tom70 remains to be elucidated. 

One possibility might be spontaneous and direct insertion into the 

lipid bilayer without the assistance of a membrane translocation 

channel. However, because PBR and Mfn2 were not imported 

into the trypsin-treated mitochondria lacking the surface import 

receptors, direct insertion bypassing the Tom70 step into the 

lipid bilayer was ruled out. However, the possibility of Tom70-

mediated direct integration into lipid bilayer  remains because 

Tom70 has a chaperone function for several classes of  membrane 

proteins. Similarly, IMS proteins that facilitate MOM  integration 

of multi-TMS proteins remain to be identifi ed. They might bind 

to the IMS-exposed loop and the fl anking hydrophobic regions 

of multi-TMS proteins and function as a ratchet to promote 

membrane insertion, or they might be involved in releasing the 

insertion intermediate from the putative import conduit into the 

lipid bilayer.

Materials and methods
Materials
Antibodies against HA (Covance), FLAG (M2; Sigma-Aldrich), Hsp60 
(Assay Designs), mHsp70 (Assay Designs), Tom20 (Santa Cruz Biotechnol-
ogy, Inc.), Tom22 (Sigma-Aldrich), Tim8 (Santa Cruz Biotechnology, Inc.), 
cytochrome c (BD Biosciences), and rat calnexin (Assay Designs) were pur-
chased from the indicated vendors. Antibodies against Tim17 and Tim23 
(Ishihara and Mihara, 1998), Tom40 (Suzuki et al., 2000), and Tom70 
(Suzuki et al., 2002) were described previously. Polyclonal antibodies against 
rat mitochondrial Sam50 was prepared by raising purifi ed recombinant 
rat Sam50 in rabbits. Expression plasmids for Mfn1- and Mfn2-FLAG were 
constructed as described previously (Eura et al., 2003). MITOL-FLAG ex-
pression vector was a gift from S. Yanagi (Tokyo University of Pharmacology 
and Life Science, Tokyo, Japan).

Cell culture, transfection, and immunofl uorescence microscopy
HeLa cells were cultured on coverslips in 35-mm dishes in 2 ml DME with 
10% FCS at 37°C overnight under an atmosphere of 5% CO2 in air. Trans-
fection was performed using FuGene 6 reagent (Roche). When mitochon-
dria were to be stained, 40 nM MitoTracker Red CMX Ros (Invitrogen) was 
added to the medium and incubated for 20 min before fi xation. For immuno-
cytochemistry analysis, HeLa cells were seeded onto glass slides in 
mounting medium and observed by confocal fl uorescence microscopy. 
Cells were fi xed with 4% PFA, permeabilized with 1% Triton X-100 in 
PBS at room temperature for 5 min, and immunostained with the appro-
priate antibodies. Antigen–antibody complexes were detected using Alexa-
Fluor488- or 568-conjugated goat anti–rabbit or anti–mouse IgG antibody 
(Invitrogen). Importantly, in these experiments, no AlexaFluor568 signal 
was detected in the 488-nm (green) AlexaFluor488 channel and vice versa. 
Immunofl uorescence images were captured with the same detection sensi-
tivity and were processed with Photoshop 8.0.1 software (Adobe). Prepara-
tion of semi-intact HeLa cells and preprotein import using semi-intact cells 
were conducted as described previously (Setoguchi et al., 2006).

Figure 5. Depletion of IMS proteins inhibits PBR 
import. (A) Reticulocyte lysate–synthesized [35S]PBR-
HA was imported into intact or hypotonic buffer–
treated mitochondria. The reaction mixtures were 
aliquoted and incubated with or without 100 μg/ml 
proteinase K. The other aliquots (post-import) were 
treated with proteinase K under hypotonic conditions 
or in the presence of 1% Triton X-100. Samples 
were analyzed by SDS-PAGE and subsequent digi-
tal autoradiography. (B and C) Reticulocyte lysate–
synthesized 35S-Tom22 (B) and 35S–Su9-DHFR (C) 
were imported into mitochondria and analyzed by 
BN-PAGE (for Tom22) or SDS-PAGE (for Su9-DHFR). 
p, precursor; i, intermediate; m, mature form. (D) Im-
port effi ciencies of PBR, Tom22, and Su9-DHFR 
were calculated setting each activity (PBR, protein-
ase K–resistant bands [percentage of input]; Tom22, 
�400-kD band; Su9-DHFR, m/(p + I + m]) of un-
treated mitochondria at 100%. Results obtained 
from two or four independent experiments are shown. 
Error bars represent SD. (E) Intact and hypo tonic 
buffer–treated mitochondria were analyzed by SDS-
PAGE and subsequent immunoblotting using the indi-
cated antibodies.
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siRNA treatment and mitochondrial protein import assay in vivo
The following RNA oligonucleotide pairs were used to create siRNA duplexes: 
GFP (5′-C U A C A A C A G C C A C A A C G U C dTdT-3′ and 5′-G A U G U U G U C G G U-
G U U G C A G dTdT-3′) and Sam50 (5′-G C U G A A A G U U A A C C A G G A A dTdT-3′ 
and 5′-C G A C U U U C A A U U G G U C C U U dAdA-3′). Validated specifi c siRNAs 
from QIAGEN (sequence not available) were used for the knockdown of 
Tom70, Tom40, Tom20, Tom22, Tim8B, and Tim10.

For microscopic assay of mitochondrial protein import in siRNA-
treated cells, HeLa cells were transfected with the target siRNAs twice 
within a 24-h interval. At 72 h after the initial treatment, cells were trans-
fected with expression plasmids for Su9-GFP, PBR-HA, Mfn2-FLAG, or 
MITOL-FLAG. 16 h after the DNA transfection, the cells were processed for 
double indirect immunofl uorescence microscopy. Cell fractionation was 
performed as described previously (Otera et al., 2005). Fractionated sam-
ples were assessed by SDS-PAGE followed by immunoblotting using the 
appropriate antibodies.

cDNA cloning of rat PBR
The cDNA fragment encoding PBR was prepared by RT-PCR using rat liver 
poly(A)+-RNA as the template and the following oligonucleotides as the 
primers: 5′-C C G G A A T T C A T G T C T C A A T C C T G G G T A C C C -3 and 5′-GCG-
G G A T C C T C A C T C T G T G A G C C G G G A G C C -3′, where underlining indicates 
the EcoRI and BamHI sites, respectively. The PCR fragment thus obtained 
was digested with EcoRI and BamHI and cloned into the EcoRI–BamHI sites 
of p3xFLAG–cytomegalovirus (Sigma-Aldrich).

Preparation of antibodies against rat PBR
The DNA fragment encoding full-length PBR was amplifi ed by PCR using 
rat PBR cDNA as the template and the following oligonucleotides as the 
primers: 5′-C T C G C A T A T G T C T C A A T C C T G G G T A C C C -3′ and 5′-G C G -
GG A T C C T C A C T C T G T G A G C C G G G A G C C -3′, where underlining indicates 
the NdeI and BamHI sites, respectively. The obtained fragment was sub-
cloned into the pET28a vector (EMD) to create pET28a-NHis-PBR, where 
the (His)6-tag was attached to the N terminus of the expressed protein. His-
tagged PBR was expressed in BL21 cells as inclusion bodies, which were 
resolved by SDS-PAGE, and the Coomassie Brilliant blue–stained band 
was excised from the gel and used to raise antibodies in rabbits using the 
Ribi Adjuvant system (Rini Immunochemical Research).

Construction of expression plasmids for rat PBR
The expression vector for the C-terminal HA-tagged PBR protein (PBR-HA) was 
constructed as follows. The coding region of rat PBR cDNA was amplifi ed by 
PCR using rat PBR cDNA as the template and the following oligonucleotides 
as the primers: 5′-G C C A A G C T T C C A C C A T G T C T C A A T C C T G G G T A -3′ and 
5′-G C G G G A T C C C T C T G T G A G C C A G G A G C C C C C -3′, where underlining 
indicates the HindIII and BamHI sites, respectively. The obtained fragment 
was subcloned into HindIII–BamHI-digested pcDNA3.1 to create pcDNA3.1–
PBR-HA. The N-terminal HA-tagged PBR protein (HA-PBR) was constructed 
using rat PBR cDNA as the template and the following oligonucleotides as 
the primers: 5′-G C C A A G C T T C C A C C A T G T G C T T A C C C T T A C G A C G T C C C-
T G A C T A C G C C T C T C T C A T G T C T C A A T C C T -3′ and 5′-C C G T C T A G A T C A C T-
C T G T G A G C C G G G A G C C -3′, where underlining indicates the HindIII and 
XbaI sites, respectively. The obtained PCR fragment was subcloned into 
HindIII–XbaI-digested pcDNA3.1 to create pcDNA3.1–HA-PBR. For in vitro 
expression, all constructs were recloned into pSP64 vectors.

Immunoblot analysis
Electroblot fi lters were incubated with the primary antibodies followed by 
peroxidase-coupled goat anti–rabbit or anti–mouse secondary antibodies 
(Invitrogen). Immunodetection was performed by ECL (GE Healthcare).

Preparation of rat liver mitochondria and submitochondrial fractionation
Rat liver mitochondria were prepared according to the method of Sakaguchi 
et al. (1992). Submitochondrial fractionation by sucrose density gradient 
centrifugation was performed as follows. Mitochondria were diluted into 
the hypotonic buffer (10 mM Hepes-KOH buffer, pH 7.4, containing 1 mM 
EDTA and protease inhibitor mix [5 μg/ml each of leupeptin, antipain, 
chymostatin, and pepstatin]) and incubated at 0°C for 30 min. The mixture 
was sonicated on ice fi ve times for 30 s each time and centrifuged at 
5,000 g for 10 min to obtain the supernatant. This fraction was layered 
over a linear gradient (0.6–1.6 M) of sucrose in the hypotonic buffer and 
centrifuged at 100,000 g for 15 h at 4°C.

Preparation of mitochondria from cultured COS-7 cells
Cultured cell mitochondria were prepared according to the protocol of 
Kanaji et al. (2000). COS-7 cells cultured in a 10-cm dish were washed 

with PBS and were scraped off in 1 ml PBS. Collected cells were precipi-
tated by centrifugation at 600 g for 5 min and washed with Hepes-EDTA 
buffer (10 mM Hepes-KOH buffer, pH 7.5, containing 1 mM EDTA and 
10% [wt/vol] sucrose). The cells were resuspended in 1 ml of the same 
 buffer containing protease inhibitor mix, homogenized by aspirating the 
cells fi ve times through a 27-gauge needle, and centrifuged at 600 g for 
5 min to obtain a postnuclear supernatant. The supernatant fraction was 
centrifuged at 6,000 g for 15 min to obtain the mitochondria.

Mitochondrial protein import in vitro
The reaction mixtures containing 5–25 μg mitochondria and 5 μl of rabbit 
reticulocyte lysate–synthesized 35S-labeled pAd, Su9-DHFR, Tom22, PBR, 
or Mfn2 were incubated in 50–100 μl of 10 mM Hepes-KOH buffer, 
pH 7.4, containing 1 mM ATP, 20 mM sodium succinate, 5 mM NADPH, 0.5 
mM magnesium acetate, and a protease inhibitor mixture at 30°C for 30 min. 
After import, the mitochondria were isolated, and the reaction mixtures 
were incubated with 100 μg/ml proteinase K at 10°C for 30 min and pre-
cipitated with TCA (PBR-HA) or left untreated. The mitochondria were then 
isolated by centrifugation and were analyzed by SDS-PAGE or BN-PAGE 
and subsequent immunoblotting using anti-HA antibody or digital auto-
radiography. The ATP requirement was determined as follows. Reticulocyte 
lysate–synthesized 35S–PBR-HA or 35S-pAd was passed through a spin 
column and used for mitochondrial import in the presence or absence of 1 mM 
ATP or AMP-PNP. Import of PBR-HA or pAd into the Tom40-depleted mito-
chondria in the presence or absence of recombinant Su9-DHFR precursor 
(Fig. 2) was performed as follows. �0–10 μg recombinant Su9-DHFR 
precursor was preincubated at 0°C for 10 min in the import buffer (total 
volume of 45 μl) containing 1 mM methotrexate, 1 mM NADPH, and 5 μg 
HeLa cell mitochondria, and 5 μl reticulocyte lysate–synthesized PBR-HA or 
pAd was added to the reaction mixture and incubated at 30°C for 30 min. 
The reaction mixtures were analyzed by SDS-PAGE or BN-PAGE and sub-
sequent digital autoradiography.

BN-PAGE
50 μg mitochondria was solubilized in 50 μl of solubilization buffer, and 
insoluble materials were removed by centrifugation at 10,000 g for 
15 min. The supernatant was mixed with 5 μl of sample buffer (5% Coo-
massie Brilliant blue G-250, 100 mM Bis-Tris, pH 7.0, and 500 mM 
6- aminocaproic acid) and electrophoresed through a 5–16% polyacrylamide 
gradient gel.

Purifi cation of recombinant Su9-DHFR-His6
5 ml of 16-h culture of Escherichia coli BL21 expressing Su9-DHFR-His6 
protein (in pET28a) was diluted with 100 vol yeast extract tryptone medium. 
After 3 h of culture at 37°C, IPTG was added to a fi nal concentration of 
1 mM. After 3 h at 37°C, the cells were harvested, resuspended in 20 ml 
of ice-cold suspension buffer consisting of 50 mM Tris-HCl, pH 7.5, buf-
fer containing 150 mM NaCl, and protease inhibitor mixture and were 
sonicated. The lysates were centrifuged to remove cell debris. The resulting 
supernatant was applied to a metal affi nity resin column (TALON). The col-
umn was washed with 10 mM imidazole, and Su9-DHFR precursor was 
eluted with 40 mM imidazole-containing buffer. The eluted fraction was di-
alyzed against the homogenize buffer and concentrated by ultrafi ltration to 
use for the general import pore block experiment.

Analysis of Tom70–PBR interaction using immunoprecipitation
HeLa cells cotransfected with PBR-HA and FLAG-GFP-Tom70∆N were lysed 
with the binding assay buffer (50 mM Tris-HCl buffer, pH 7.5, containing 
150 mM NaCl, 1% Triton X-100, 10% glycerol, 1 mM EDTA, and 1 mM 
PMSF) and centrifuged to remove cell debris. The resulting supernatant was 
mixed with anti-FLAG IgG-conjugated agarose beads, and beads were 
washed three times with the binding assay buffer. Coimmunoprecipitated 
proteins were analyzed by SDS-PAGE and subsequent immunoblotting using 
the appropriate antibodies.

Online supplemental material
Fig. S1 shows the membrane topology of PBR and in vitro import of PBR 
into mitochondria. Fig. S2 shows stimulation of mitochondrial import 
of PBR and C-TA proteins in VDAC1-depleted semi-intact cells. Fig. S3 
shows that swelling of mitochondria inhibits the mitochondrial import of 
Mfn2. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200702143/DC1.
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