Skip to main content
. 2002 Apr;11(4):795–805. doi: 10.1110/ps.2500102

Table 2.

Comparison of the predictive ability (Qcum2) and goodness of fit (R2Ycum) of PLS models obtained from GPCR sequences using ACC transformed descriptors with maximum lag 80

A. Models of 11 receptor classes (prostanoid and orphan receptors not included)
A-component models 18 component models
Centering of z-scales Normalization (p) A R2Ycum Qcum2 R2Ycum Qcum2
1a original 1 17 0.912 0.833 0.918 0.844
2a original 0.5 16 0.909 0.866 0.922 0.879
3a original 0 16 0.905 0.841 0.920 0.858
4a centred 1 12 0.890 0.820 0.936 0.877
5a centred 0.5 12 0.894 0.860 0.939 0.905
6a centred 0 16 0.925 0.871 0.936 0.882
B. Models of 12 receptor classes (prostanoid receptors included). p denotes normalization according to Eq. 1 and 2
A-component models 18 component models
Centering of z-scales Normalization (p) A R2Ycum Qcum2 R2Ycum Qcum2
A denotes the number of significant PLS components according to cross validation. A-component model represents the PLS model with A number of components. 18-component models represent PLS models with 18 PLS components.
1b original 1 16 0.886 0.800 0.904 0.826
2b original 0.5 18 0.910 0.864 0.910 0.864
3b original 0 17 0.897 0.836 0.906 0.847
4b centred 1 13 0.885 0.814 0.922 0.860
5b centred 0.5 13 0.888 0.858 0.927 0.895
6b centred 0 17 0.918 0.872 0.925 0.880