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Abstract

A major bottleneck in comparative modeling is the alignment quality; this is especially true for proteins
whose distant relationships could be reliably recognized only by recent advances in fold recognition. The
best algorithms excel in recognizing distant homologs but often produce incorrect alignments for over 50%
of protein pairs in large fold-prediction benchmarks. The alignments obtained by sequence–sequence or
sequence–structure matching algorithms differ significantly from the structural alignments. To study this
problem, we developed a simplified method to explicitly enumerate all possible alignments for a pair of
proteins. This allowed us to estimate the number of significantly different alignments for a given scoring
method that score better than the structural alignment. Using several examples of distantly related proteins,
we show that for standard sequence–sequence alignment methods, the number of significantly different
alignments is usually large, often about 1010 alternatives. This distance decreases when the alignment
method is improved, but the number is still too large for the brute force enumeration approach. More
effective strategies were needed, so we evaluated and compared two well-known approaches for searching
the space of suboptimal alignments. We combined their best features and produced a hybrid method, which
yielded alignments that surpassed the original alignments for about 50% of protein pairs with minimal
computational effort.
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Crucial insights into the functions of proteins are provided
by their three-dimensional structures. Enzymatic reactions,
substrate recognitions, and protein–protein interactions all
happen on a molecular level, and whether we want to un-
derstand, inhibit, or enhance them, it is necessary to look at
the three-dimensional molecular structures of proteins. The
importance of protein structure in understanding function is
exemplified by the recent Structural Genomics Initiative: a
massive effort to solve the structure of at least one repre-

sentative from every protein family (Burley et al. 1999;
Berman et al. 2000).

However, the Structural Genomics Initiative could not
provide us with experimental structures for all known pro-
teins. The number of known protein sequences is several
orders of magnitude larger than the most optimistic esti-
mates of the number of protein structures that will be solved
by high-throughput structure determination; the best chance
of gaining structural insights for many proteins will be com-
parative modeling. In such predictions, a model for a pro-
tein’s structure is built on the basis of a known experimental
structure of a homologous protein. The number of experi-
mentally determined structures has grown rapidly in the last
few years and this growth is expected to accelerate with the
advent of the Structural Genomics Initiative. Coupled with
recent advances in algorithms for fold recognition, this
growth has made it possible to build reliable models for
over 50% of bacterial proteins and about 40% of higher
eukaryotic proteins (Pawlowski et al. 2001). We can expect
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that comparative modeling will apply to more proteins as
the number of solved structures for different protein folds
increases.

The process of building a protein model is highly modu-
lar, typically consisting of three major stages: recognizing
the best template for the target protein, calculating the align-
ment between the target and the template, and building the
final model using the template’s three-dimensional (3D)
structure.

Each step has unique challenges, and errors in earlier
steps cannot be corrected later. For example, choosing the
wrong template could not be improved by doing a good
alignment. And the quality of the alignment decides the
quality of the final model (Sanchez and Sali 1997). Despite
advances in the methodology for automated loop building,
even the best loop-building algorithm cannot correct mis-
alignments at the ends of the secondary structure elements
or missing some of them in the alignment. The quality of
loop building decides the quality of the final model, but only
if no errors were made in earlier stages. However, this is
seldom the case except for very close homologs. Fold (or
distant homology) recognition and loop building have re-
ceived a lot of attention, but surprisingly much less effort
was put into improving the alignment quality. In this article,
we focus on the alignment stage of comparative modeling,
or, rather, on the question of how much the alignment qual-
ity can be improved within the current generation of the
fold-recognition algorithms.

The development of fold-recognition algorithms, thread-
ing, and sophisticated profile-alignment methods, has in-
creased the applicable range of comparative modeling, but
has also exacerbated existing problems in the alignment step
(CASP4 2000). The most important difference between
teams at the Asilomar Critical Assessment of Techniques
for Protein Structure Prediction (CASP) meetings was their
ability to minimize errors in the alignments (Jones and
Kleywegt 1999). CASP4 evaluators established that there
was no significant improvement in alignment accuracy (as
measured by “percent correctly aligned residues”) between
CASP3 and CASP4 (Tramontano et al. 2001), despite a
significant progress in the recognition step.

The serious problems with alignment quality can be eas-
ily illustrated by the analysis of graphical summaries made
available by CASP4 organizers on its web site: http://pre-
dictioncenter.llnl.gov/casp4/. CASP4 organizers provide a
comprehensive graphical description of alignment accuracy.
The graphs are based on the comparison of the models with
real structures of the targets superimposed with the Local-
Global Alignment (LGA) program (Zemla et al. 1999). Be-
cause most of the groups submitted 3D structures, we can-
not directly assess the accuracy of all the alignments used to
build the models. Most groups succeeded at finding the
structural template for the target, and there is a common
opinion that the discrepancies between the models and real

structures detected with the LGA algorithm (Zemla et al.
1999) mainly reflect errors in the alignments. There is a
very wide distribution of alignment accuracy, and even the
alignments for relatively easy targets submitted by most
groups differ significantly from the structural alignment
within loop regions and secondary structure elements (Fig.
1A). For more difficult targets, the situation is more dra-
matic (Fig. 1B).

For protein pairs in which both 3D structures are known,
it is possible to compare the alignment obtained from se-
quence comparison with the one obtained from comparing
structures. Despite some ambiguities in the definitions of
structural alignments (Godzik 1996), structural alignments
are often treated as the “standards of truth” in evaluating
sequence alignments because it is generally accepted that,
with increasing evolutionary distance, structures change
less than do sequences (Vogt et al. 1995). By this criterion,
standard alignment methods are usually correct if the amino
acid sequences of the target and template are more than 50%
identical. When proteins are 30%–50% identical, then sig-
nificant shifts between different alignments emerge, mostly
in the loop regions. When sequence identity is below 30%,
then sequence alignments become very unstable, changing
dramatically with scoring matrices and gap penalties (Vogt
et al. 1995); they essentially become random for structurally
similar proteins with undetectable sequence similarity
(Holm et al. 1992; Pascarella and Argos 1992; Orengo et al.
1997).

Comparison of sequence-based alignments obtained with
fold-recognition algorithms with structural alignments indi-
cates that structural alignments correctly describe the rela-
tionship between proteins of moderate or low sequence
similarity. Hence, good-quality alignments for distantly re-
lated protein pairs exist but they could not be found with
currently existing algorithms without knowing both struc-
tures. A procedure for finding such alignments would sig-
nificantly increase the range of applications for comparative
modeling to proteins with moderate-to-low sequence simi-
larity.

For known protein structures, it is possible to evaluate the
accuracy of a given alignment by testing how well it de-
scribes the similarity between these structures. Throughout
this article, we use structure-based criteria to evaluate se-
quence-based alignments and we call alignments “good” or
“bad”, depending on how closely they recover structural
similarity. This is possible in the context of a benchmark, in
which the structures of both proteins are known; such analy-
ses allow us to develop tools and insights for the analysis of
alternative alignments in real prediction cases.

We calculate the structural similarity of the target and
template as seen by the alignment to be evaluated and we
use this value as a measure of the alignment accuracy. We
used this approach to evaluate the accuracy of alignments
obtained with different methods (Jaroszewski et al. 2000); a
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similar approach was used to evaluate structure predictions
in the CASP4 meeting (CASP4 2000; Sippl et al. 2001).

We used three particular measures of protein structural
similarity: contact map overlap (CMO), root mean square

deviation (RMSD) (Kabsch 1978) and percent of the struc-
tural alignment (PSA) reproduced by a given alignment.
CMO (Godzik et al. 1993; Godzik 1996) has several advan-
tages, and, in particular, it is less sensitive to extending the

Fig. 1. LGA (Zemla et al. 1999) structural alignments of the models submitted by the predictors with the real structures of the two
CASP4 (Fourth Meeting on the Critical Assessment of Techniques for Protein Structure Prediction) targets. The discrepancies between
these alignments reflect the discrepancies between the alignments used for homology modeling. Real structure (the case of 100%
correct prediction) would be the diagonal straight line on this plot. (A) T0117 (AF185268) is deoxyribonucleoside kinase from
Drosophila melanogaster. (B) T0109 (P45340) is oligoribonuclease from Haemophilus influenzae.
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alignment into less similar regions. The other similarity
measure, RMSD, is very susceptible to extending the align-
ment. A detailed description of alignment accuracy mea-
sures and a discussion of their features were recently pub-
lished (Jaroszewski et al. 2000). PSA was obtained by com-
parison of a given alignment with the structural alignment
obtained from the Combinatorial Extension (CE) algorithm
(Shindyalov and Bourne 1998). The percent of overlap be-
tween these two alignments was calculated as the percent of
residue pairs aligned in the same way in both alignments. To
compare different algorithms, we calculated average values
for these measures over the entire benchmark. Our opinion
is that this is the best way to detect some general trends. It
should be noted that, for weakly and moderately similar
protein pairs, alignment accuracies are widely distributed
and the average values only give some general insights.

Structural alignments used in this publication were ob-
tained by using the Combinatorial Extension algorithm
(Shindyalov and Bourne 1998). The program was down-
loaded from the San Diego Supercomputer Center’s ftp site:
ftp://ftp.sdsc.edu/pub/sdsc/biology/CE/src/. We used the CE
program’s default parameters. As discussed earlier, struc-
tural alignments obtained with different algorithms differ
from each other but their differences are usually small in
comparison to errors made by sequence-based methods.

To obtain more general information about alignment ac-
curacy as a function of sequence identity, we compared
different alignments for large sets of protein pairs that were
less than 45% identical. The alignments were calculated
with two popular sequence alignment programs: FASTA
(Pearson and Lipman 1988) and PSI-BLAST (Altschul et al.
1997). The structural alignment was calculated with the CE
algorithm (Shindyalov and Bourne 1998). These compari-
sons indicate that alignments can be completely incorrect
below 25%–30% of sequence identity between sequences
(Fig. 2A,B). The alignments obtained with PSI-BLAST can
differ over their entire lengths from the alignments obtained
with FASTA and they can be completely different from the
structural alignments. The distribution of alignment accu-
racy is very broad—some PSI-BLAST and FASTA align-
ments for this range of sequence identities were very accu-
rate despite low sequence identity.

The majority of alignments in the 30%–45% sequence
identity range were partly correct and there was some over-
lap between the PSI-BLAST and FASTA alignments (Fig.
2A,B). There is much less alignment variation with protein
pairs with identities above the 45% threshold, which until
recently were the focus of most modeling projects, perhaps
explaining why the alignment-quality problem has not been
widely appreciated. There have been some serious attempts
to address the problem of alignment quality, but they con-
centrated on optimizing alignment parameters (Vogt et al.
1995) or identifying an alignment’s reliable fragments (Vin-
gron and Argos 1990; Mevissen and Vingron 1996).

Dynamic programming (Needleman and Wunsch 1970;
Smith and Waterman 1981), the most popular alignment
algorithm, calculates the score of the best alignment be-
tween two proteins and provides a single alignment with
this score. It does not provide information about how many
different alignments have scores close to the optimal one,
and how different these alignments are. In principle, this
information is easily available in alignment algorithms
based on high-scoring segment pairs, such as those used in
BLAST, but the most popular implementations of these al-
gorithms do not provide such information. In fact, none of
the widely used alignment algorithms tells anything about
the shape and structure of the suboptimal alignments’ space.
To the best of our knowledge, only one publicly available
program provides tools for visualization of the density of
suboptimal alignments: the fold-recognition program
MatchMaker from TRIPOS. The space of suboptimal align-
ments was studied by several authors and sampling strate-
gies for this space are in the literature (Saqi and Sternberg
1991; Zuker 1991; Waterman et al. 1992; Naor and Brutlag
1994; Waterman 1995); however, none of these methods is
publicly available, with the exception of the declumping
algorithm in the USC (University of Southern California)
software alignment package (http://www-hto.usc.edu/).

The dynamic programming algorithm requires two types
of parameters: a substitution matrix and the penalties for
introducing gaps into the alignment. The first group of pa-
rameters yields information about the probability of one
amino acid being replaced by another via substitution. The
derivation of substitution matrices can be based on various
information sources: structural equivalence of numerous
protein sequences, genetic code similarity, chemical simi-
larity, hydrophobicity, physical property indices, main-
chain folding angles, contact potential, and neighborhood
selectivity (Tomii and Kanehisa 1996). Various groups have
derived hundreds of various substitution matrices. They
have been collected, systematically analyzed, and made
publicly available on the Internet (Tomii and Kanehisa
1996). The second type of parameter is the gap introduction
and extension penalty (Waterman et al. 1992), which has no
clear physical interpretation and is usually determined by an
empirical optimization.

Enumeration of all possible alignments for medium-size
proteins leads to a combinatorial explosion. Estimates (Wa-
terman 1995) indicate that the explicit construction of all
possible alignments is computationally unfeasible; how-
ever, it is possible to enumerate all significantly different
alignments by imposing some constraints on the alignments.
By imposing such constraints on the alignments, we were
able to assess the distance between the lowest-scoring align-
ment and the structural alignment for some protein pairs.
Even after imposing such constraints, the number of result-
ing alignments is still enormous and limits the practical
significance of this method.

In search for more accurate alignments
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There are two practical approaches to alternative align-
ment calculations. In the first “iterative elimination” ap-
proach, one uses single-sequence similarity function and
iteratively calculates suboptimal alignments. Several vari-

ants of this method have been described (Saqi and Sternberg
1991; Waterman 1995) and are effective in some examples
(Saqi and Sternberg 1991; Saqi et al. 1992). In the second,
“parametric” approach, alternative alignments are generated

Fig. 2. The distribution of discrepancies between the different alignments as a function of sequence identity. Alignment discrepancy
is measured as the percentage of differently aligned residues in the shorter of two alignments. The discrepancies have been calculated
for a comprehensive benchmark of protein pairs consisting of 742 protein pairs selected from the Structural Classification of Proteins
(SCOP) database. (A) PSI-BLAST (Altschul et al. 1997) alignments versus FASTA (Pearson and Lipman 1988) alignments. (B)
PSI-BLAST alignments versus CE (Shindyalov and Bourne 1998) structural alignments.
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by varying scoring functions and gap penalties (Jaroszewski
et al. 1998a; Pawlowski et al. 1997; Waterman et al. 1992).
The concept behind this strategy is that there is no single
optimal similarity measurement for all pairs of distant pro-
tein homologs. If several combinations of parameter sets
optimized for special situations are applied, then one may
have a greater chance for finding a correct alignment than
by iterative elimination of suboptimal alignments by using a
single similarity measure. These two approaches are two
search strategies in two projections of the same, huge space
of alternative alignments.

An effective method for calculating alternative align-
ments should provide sets of alignments that contain at least
one alignment that is significantly more accurate than the
best-scoring alignment (illustrated in Fig. 3). Of course, the
presence of the accurate alignment in the set of suboptimal

alignments has little practical significance unless it is pos-
sible to recognize it before both structures are known. It is
possible to select the best alignment by building the models
using all of the alignments and then evaluating their self-
threading energy (Pawlowski et al. 1997; Jaroszewski et al.
1998a) or core volumes and packing pair potentials (Saqi et
al. 1992). Our version of this approach, the multiple model
approach (MMA), was tested for 16 pairs of distantly re-
lated proteins (Pawlowski et al. 1997; Jaroszewski et al.
1998a). Other approaches for verifying the quality of align-
ments are possible: neural networks (Jones 1999) and en-
ergy calculations in the defrosted approximation (Godzik et
al. 1992).

However, in this manuscript we focused on the question
of whether a good alignment exists in a set of alternative
alignments using a given method. The question of how to

Fig. 3. Fold and Function Assignment System (FFAS) similarity matrix (Rychlewski et al. 2000) calculated for 1r69 and 1lccA
sequences and presented as a surface plot (blue colors mean higher similarity; red colors mean lower similarity). (A similarity matrix
is a matrix describing a similarity score assigned to each pair of potentially aligned residues. Here, the X-axis corresponds to the query
sequence and the Y-axis corresponds to the target sequence.) The picture illustrates an obvious discrepancy between the C-terminal
fragments of the best-scoring Fold and Function Assignment System (FFAS) alignment (shown as a black path on the A1 matrix
surface) and the CE structural alignment (shown in blue). The best suboptimal alignment (shown in pink) overlaps with 90% of the
structural alignment. Root mean square deviation values of the FFAS alignment, the best suboptimal alignment, and the structural
alignment are 3.6, 2.6, and 2.1 Å, respectively. All three alignments correctly assign the second and third helix of 1r69 to the first and
second from 1lccA, but the lowest-scoring FFAS alignment incorrectly embraces the C-terminal part of the last helix from 1lccA. 1lccA
is the N-terminal domain of the Lac repressor (LacR) from Escherichia coli. 1r69 is the DNA-binding domain of the C1 repressor from
E. coli-derived Phage 434. Both proteins belong to the same structural superfamily in the SCOP database.
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recognize such alignments will be discussed in a separate
publication.

All tests and calculations were obtained with the profile–
profile alignment algorithm Fold and Function Assignment
System (FFAS) (Rychlewski et al. 2000), which was devel-
oped by our group and tested in the CASP4 fold-prediction
experiment, where it compared favorably with other auto-
mated fold-recognition algorithms (the second-best score
among automated fold-prediction servers).

Results

We evaluated the average alignment accuracy for each of
the different ranges of FFAS z-score (Table 1) and found
that the FFAS z-score is a good indicator of the alignment
quality. Hence, we used these FFAS z-score-based similar-
ity ranges in subsequent computational experiments.

In the first numerical experiment, we enumerated all pos-
sible alignments for selected protein pairs. The distance
between the best-scoring alignment and structural alignment
does not directly depend on the total number of possible
suboptimal alignments. The distance to the structural align-
ment is diverse and does not correlate with the accuracy of
the alignment obtained with a hybrid method (Table 2). For
example, in the case of the 1yhb/1pfsA protein pair, the
distance to the structural alignment is 10 times smaller than
the total number of alignments, and in this case the hybrid
method found the alignment with an RMSD value of 3.3Å:
to be the same as the RMSD of the structural alignment. On
the other hand, the 1huw/1cnt1 and 2ligA/256bA protein
pairs have quite short distances between the best-scoring
alignments and the structural alignments, but the align-
ment’s improvement by the hybrid method is not as striking
as for 1yhb/1pfsA. This may indicate that the search for the
optimal scoring function for a given protein pair may yield
a correct alignment even in cases where the distance to the
structural alignment is enormous if accessed for a single
scoring function.

In the second computational experiment, we compared
the parametric, iterative, and hybrid method of calculation
of suboptimal alignments in terms of how many alignments

they generated and the percentage of significantly improved
alignments. These results indicate that the iterative method
is less efficient than the parametric method: it yields a simi-
lar percent of improved alignments but only after testing
many more suboptimal alignments (Table 3). The hybrid
method turned out to be superior in efficiency. The signifi-
cant gain from linking iterative and parametric methods is
connected to the fact that each component method explores
a different subset of alignments (for example, see Fig. 4).
The application of the hybrid method to example pairs of
distant homologs is shown in Figure 5.

In the next computational experiment, we separately
evaluated the effectiveness of the hybrid method for the
different ranges of the FFAS z-score. It is clear that improv-

Table 1. The average global accuracy of FFAS profile–profile
alignments for different ranges of FFAS z-score

Benchmark
subset

FFAS
z-score
range

Average
RMSD (Å)

Average
CMO (%)

Average
PSA (%)

High similarity >14 6.2 (1.5) 52 (6) 72 (9)
Moderate similarity 14–7 9.1 (2.3) 36 (8) 45 (10)
Low similarity 7–2 12.3 (1.9) 26 (9) 4 (11)
Undetectable similarity <2 13.7 (2.0) 19 (11) 11 (8)

Values of variance are given in parentheses. (FFAS) Fold and Function
Assignment System; (RMSD) root mean square deviation; (CMO) contact
map overlap; (PSA) percent of the structural alignment.

Table 2. A detailed analysis of the suboptimal alignment space
for selected protein pairs

Query/target

Number of
secondary

structure elements
Total number
of alignments

Distance to
structural

alignmenta

1huw/1cnt1 4 1 × 106 4800
1yhb/1pfsA 5 2 × 106 5 × 105

2ligA/256bA 5 4 × 107 36
1neu/1fna 6 5 × 107 2 × 105

1dcoA/1xxaA 6 1 × 108 3 × 106

1urnA/1aps 7 1 × 108 2 × 107

Query/target

RMSD of
the best scoring

FFAS alignmentb

RMSD of the best
alignment from
hybrid method

RMSD of
structural
alignment

1huw/1cnt1 15.0 10.5 2.9
1yhb/1pfsA 9.8 3.3 3.3
2ligA/256bA 14.3 6.6 2.9
1neu/1fna 15.2 5.8 3.2
1dcoA/1xxaA 12.8 7.1 2.8
1urnA/1aps 11.5 7.9 3.2

The results of direct enumeration of suboptimal alignments within reduced
alignment spaces and the effectiveness of the suboptimal alignment calcu-
lations with the hybrid method.
a Distance to structural alignment is defined as the number of alignments
scoring better than the structural alignment (e.g., number of alignments
between the best scoring alignment and structural alignment.
b (RMSD) Root mean square deviation; (FFAS) Fold and Function As-
signment System.

Table 3. The effectiveness of calculating suboptimal alignments
using different methods

The method of
alignment
calculation

%
Alignments
significantly

improved

Average
number of
alignments

Maximum
number of
alignments

Minimum
number of
alignments

Parametric method 34 49 (34) 138 1
Iterative method 35 275 (130) 469 25
Hybrid method 48 733 (300) 2210 131

Only the results for the moderate similarity range (FFAS z-score 14–7) are
shown. Values of variance are given in parentheses.
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ing the suboptimal alignment search strongly depends on
the similarity of a given protein pair (Table 4). The percent-
age of improved alignments by the best hybrid method de-
creased with an increasing FFAS z-score. For the most simi-
lar protein pairs (FFAS z-score higher than 14.0), we found
better suboptimal alignments in only 34% of cases. For the
least similar protein pairs (FFAS z-score lower than 2.0), a
better alignment was found in 78% of cases, but these im-
proved alignments were often inaccurate (average RMSD of
9.5). We have concluded that this suboptimal alignment
search has the greatest practical potential in the region of
moderate similarity: protein pairs with FFAS z-scores be-
tween 14 and 7. Alignments in this region are better in a
reasonable percentage of the cases and are fairly accurate.
We should note the very high diversity of the accuracy of
calculated alignments as illustrated by high values of vari-
ance for all alignment accuracy measures. The general im-
provement of alignment accuracy achieved by suboptimal
alignment exploration is unquestionable, because it was ob-
served for all similarity ranges and tested with different
criteria, but it is quite difficult to predict the improvement of
the alignment accuracy for a particular protein pair.

Discussion

We have previously shown that the FFAS z-score is a good
estimate of the alignment accuracy and profile–profile simi-

larity (Jaroszewski et al. 2000), and in general for this and
other methods statistical significance of the alignment cor-
relates well with its accuracy. In this article, we used this
parameter to divide our alignment-accuracy benchmark into
subsets corresponding with different similarity ranges. We
showed that the methods for generating suboptimal align-
ments are most useful for protein pairs of moderate and low
sequence similarity.

We tested three simple methods for generating subopti-
mal alignments and evaluated the effectiveness and effi-
ciency of their suboptimal alignment space explorations.
The most efficient methods were the parametric methods
relying on the variation of protein–protein similarity scoring
functions. The iterative elimination methods based on the
single protein–protein similarity matrix required calculation
of many more alignments to yield comparable results. The
possible explanation of this is that there are several different
types of similarity between distantly related pairs and vari-
ous gap parameters and substitution matrices are optimized
for different similarity types. For this reason, applying sev-
eral of the combinations gives us a better chance of finding
the right one.

The hybrid method encompassing the threading similarity
function variation and the iterative elimination yielded bet-
ter suboptimal alignment for many more protein pairs than
for each of its components. These two approaches are ap-
parently not redundant and there is a significant gain from

Fig. 4. The subsets of suboptimal alignments as explored with the parametric method (circles) and the iterative method (dots). In
addition, CE structural alignment is shown (black line).
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constructing a hybrid method, because the methods explore
different alignment space regions (for example, see Fig. 4).

In this article, we ascertained the possibility of obtaining
a relatively small set of the alignments that contains at least
one significantly better alignment. The issue of how to se-
lect this alignment is of great practical importance, but was

not addressed here. There is strong evidence that recogniz-
ing the correct alignment is possible by building a protein
model and evaluating it (Saqi et al. 1992; Pawlowski et al.
1997; Jaroszewski et al. 1998a). At this stage of model
building, additional 3D constraints are imposed; these con-
straints are not present in the sequence–sequence or profile–

Fig. 5. Applying the suboptimal alignment calculations. This graph illustrates the discrepancies between the original FFAS alignments
and the CE structural alignments. The best suboptimal alignment is also shown in the graph. (A) 1bbt is foot-and-mouth disease virus
protein; 1smv is sesbania mosaic virus coat protein. (B) 1bdm is malate dehydrogenase; 1dih is dihydrodipicolinate reductase.
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profile similarity function. Moreover, protein models may
be evaluated with energy-like functions, which do not apply
directly to the alignments. Several advanced algorithms for
evaluating protein models are in the literature (Chiche et al.
1990; Matsuo et al. 1995; Eisenberg et al. 1997; Golovanov
et al. 1999; Petrey and Honig 2000). Further developing
strategies for generating suboptimal alignments and for
evaluating the resulting models is the subject of our ongoing
research.

The accuracy of the best suboptimal alignment is decisive
for the success of the protocol described earlier, because
existing model evaluation tools work best in the conforma-
tional region close to the native structure. We can therefore
succeed in determining the optimal model, if we can obtain
at least one reasonably accurate alignment out of a relatively
small set of alternative alignments.

The most important conclusion of this article is that one
has much better chance of finding better alignment by ap-
plying several protein–protein similarity functions to a
given protein pair than by iterative elimination of the alter-
native alignments using one protein–protein similarity func-
tion.

Materials and methods

The benchmark

The benchmark used here consists of 742 protein pairs selected
from the SCOP database (Murzin et al. 1995) clustered at the 45%
sequence identity threshold. Each protein pair shares at least one
similar domain as identified by SCOP; entire proteins were in-
cluded to make the test more realistic (before structures are known,
we do not know the extent of the domains). We used the SCOP
fold, superfamily, and family similarity levels to divide the bench-
mark pairs into groups of 108, 225, and 409 protein pairs, respec-
tively. To avoid biasing the results by the few most popular folds,
we selected only one protein pair to represent each fold type at a
given similarity level. A similar benchmark was previously used to
assess and compare fold-prediction algorithms (Rychlewski et al.

2000). The list of all benchmark pairs is available from our WWW
server http://bioinformatics.burnham-inst.org/benchmarks.

The effectiveness of methods aimed toward improving align-
ments strongly depends on the accuracy of the initial alignment,
which here is performed with the FFAS algorithm (Rychlewski et
al. 2000). We have shown that the accuracy of the FFAS alignment
is strongly correlated with the value of the FFAS z-score (Jaros-
zewski et al. 2000), which itself strongly correlates with the reli-
ability of the prediction. This is true for FFAS alignments, but
anecdotal evidence suggests that this is true for all alignment meth-
ods. In other words, better fold-recognition usually implies better
alignment.

The benchmark was divided into four subsets of protein pairs
corresponding to different FFAS z-score ranges (see Table 1). For
FFAS z-scores higher than 14, the alignments are in most cases
quite accurate. In the FFAS z-score region between 14 and 7, it is
usually possible to pick up the protein pair from the database, but
the accuracy of the alignment may be quite low; the methods
described in this article may improve the alignment. In the range
between 7 and 2, the similarity is often too low to select the correct
template protein structure from the database; however, if the tem-
plate’s structure can be identified with other considerations, the
accurate alignment can be obtained. For FFAS z-scores lower than
2, even the most sensitive methods cannot detect any similarity
between protein sequences.

Evaluating the effectiveness of suboptimal alignment
calculation methods

Our goal is to obtain a set of acceptably accurate alignments after
considering only a manageably small number of the possible sub-
optimal (alternative) alignments. In other words, the goal is to
effectively explore the alignment space. We can describe the ef-
fectiveness of the search by the accuracy of the best suboptimal
alignment and the total number of alignments that must be tested
before a significantly better alignment is found. Therefore, our
criterion for the method’s effectiveness is the percent of bench-
mark pairs in which a suboptimal alignment of significantly better
accuracy was found. “Significantly better accuracy” was defined
as follows: alignment RMSD at least 25% lower than the RMSD
of the original alignment with the same or greater CMO or align-
ment CMO at least 25% higher than the CMO of the original
alignment with the same or lower RMSD. The parameters of each
method were optimized by grid search to maximize the number of
protein pairs in which significantly better alignment accuracy was
achieved.

Enumerating all possible alignments in the simplified
alignment space

The comprehensive method for analyzing alignment space would
be the complete enumeration of all possible alignments; this is not
practically possible or necessary because we can impose some
limits on the size of the search space by using known features of
protein structures. This simplified space is based on a well-known
fact: mutations in loop regions are much more tolerated than in a
protein’s core. We therefore assumed that there were no gaps
within the template’s secondary structure elements. The space was
further simplified by excluding the less reliable calculations of
alignments in the loop fragments. These assumptions made it pos-
sible to enumerate all possible alignments for a pair of medium-
sized proteins. In this simplified description, alignment enumera-
tion always yielded one alignment identical to the structural one.

Table 4. The effectiveness of the suboptimal alignment search
by hybrid method

Benchmark
subset

%
Alignments
improved

Average Improvement

RMSD (Å) CMO (%)

High similarity 34 6.2 (1.5) to 4.8 (1.4) 52 (6) to 56 (7)
Moderate

similarity 48 9.1 (2.3) to 6.5 (1.7) 36 (8) to 40 (4)
Low similarity 65 12.3 (1.9) to 8.7 (1.9) 26 (9) to 33 (5)
Undetectable

similarity 78 13.7 (2.0) to 9.5 (2.1) 19 (11) to 27 (11)

The average improvement of RMSD and CMO. Values of variance are
given in parentheses. (RMSD) Root mean square deviation; (CMO) contact
map overlap.
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The enumeration of all possible alignments gave us two interesting
values: an estimate of the alignment space’s size (the total number
of alignments), and a rough estimate of the distance between the
structural alignments and the best-scoring alignments, as measured
by the number of alignments with scores better than the scores for
the structural alignments.

The last value roughly describes the difficulty of reaching the
structural alignment. The distance from the best-scoring align-
ments to the structural alignments for our protein pairs is shown in
Table 2.

The iterative elimination method

An elegant method for calculating suboptimal alignments was pro-
posed by Saqi and Sternberg in 1991. The algorithm was based on
a standard sequence–sequence similarity calculated with a substi-
tution matrix and by a modified dynamic programming protocol.
The sequence–sequence similarity matrix was calculated by using
a standard substitution matrix. Standard dynamic programming
was used to obtain the best-scoring alignment. The matrix is then
modified to “penalize, but not eliminate, the equivalencing of resi-
dues” obtained from the first alignment (Saqi and Sternberg 1991).
More precisely, the previously obtained alignment is penalized by
adding small values to similarity matrix cells, which were included
in this alignment, and after calculating the next alignment it is
penalized again in the similarity matrix and the procedure is re-
peated. This algorithm yields a set of alignments that differ sig-
nificantly from the best-scoring alignment. The crucial parameter
of this algorithm is the value of �, which is added to the similarity
matrix cells “visited” by the previous alignments. Smaller values
of � allow a more complete exploration of suboptimal alignments
but at a higher computational cost.

As recommended in the literature (Saqi and Sternberg 1991), the
value of the � parameter was set to 1/4 of the average absolute
value of the similarity matrix terms. This value was then decreased
until it was observed that the best suboptimal alignment no longer
improved. Similarly, the number of iterations was increased until
no further improvement of the benchmark results was detected.
The accuracy of the best alignment yielded by the method stabi-
lized at a � equal to 0.01 and 1000 iterations.

The parametric method

The “parametric approach” to generating suboptimal alignments is
based on observations that different gap penalty parameters (Wa-
terman et al. 1992), substitution matrices (Pawlowski et al. 1997;
Jaroszewski et al. 1998a), and threading algorithms usually yield
different alignments for distantly related proteins.

In our implementation, the method generated a set of suboptimal
alignments for a given sequence and the template structure se-
lected from the Protein Data Bank (PDB) database. After calcu-
lating the initial alignment based on the FFAS profile–profile al-
gorithm, the similarity matrix of the two proteins was recalculated
using different combinations of profile–profile and threading
terms. The result of this procedure is a set of alignments that
emphasize different aspects of sequence-structure matching.

Simi,j = Pi,j + �Bi,j + �Li,j (1)

where:

Simi,j is the similarity matrix term for the query residue number i
and template residue number j.

Pi,j is the FFAS profile–profile matching term (Rychlewski et al.
2000) for the query residue number i and target residue number j.

Bi,j is the burial term adopted from the threading algorithm (Ja-
roszewski et al. 1998b).

� is the weight of the threading term.
Li,j is the local structure propensity term adopted from the thread-

ing algorithm (Jaroszewski et al. 1998b).
� is the weight of the local structure propensity term.

For each combination of profile–profile and threading terms, a set
of alignments was calculated using several gap-penalty param-
eters. The rationale was that there is no one ideal pair of gap-
penalty parameters suitable for all protein families; therefore, we
increased the chance of getting the correct alignment by applying
several gap-penalty parameters.

We increased the number of applied weights of threading terms
and gap penalties until we observed no further improvement of the
best suboptimal alignment. The optimal number of applied weights
was surprisingly low. In other words, the testing of a few threading
parameters yielded a significant number of alignments that were
more accurate than the original FFAS alignment; testing more
parameter values did not improve these alignments.

The optimal set of threading term weights was: (0, 1⁄3, 2⁄3,1) for
� and (0, 1⁄3, 2⁄3, 1) for �. The optimal set of gap penalties were (0,
3, 6, 9) for the gap-opening parameter and (0, 1⁄3, 2⁄3, 1) for the
gap-extension parameter. Thus the method used 4×4×4×4 � 256
parameter sets. The number of different alignments generated by
the method were often significantly lower because many parameter
sets yielded identical alignments.

A hybrid method

A hybrid method was constructed by combining the parametric
method with the iterative method: the iterative elimination was
applied to each parameter set generated by the parametric ap-
proach. The best alignment scoring was calculated for each set of
threading energy weights and gap penalties; then the best scoring
alignment was “penalized” by adding small values to the similarity
matrix’s cells, which were then “visited” by this alignment. The
best scoring alignment was then found for such a modified simi-
larity matrix and the process was repeated. The parameters were
adopted from optimized parametric and iterative methods, so that
the maximal number of suboptimal alignments generated is the
product of the 1000 iterations and the 256 combinations of weights
and gap penalties. In fact, many of the alignments are identical, so
that the average number of alternative alignments that was gener-
ated by hybrid method was 733 (see Table 3). For our compre-
hensive benchmark, the maximal number of alignments generated
with this method did not exceed 2500 and always exceeded 100
(see Table 3). Within this range, the number of suboptimal align-
ments generated for protein pairs is quite diverse, as indicated by
high values of its variance.
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