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Abstract

Reliability in docking of ligand molecules to proteins or other targets is an important challenge for molecular
modeling. Applications of the docking technique include not only prediction of the binding mode of novel
drugs, but also other problems like the study of protein-protein interactions. Here we present a study on the
reliability of the results obtained with the popular AutoDock program. We have performed systematical
studies to test the ability of AutoDock to reproduce eight different protein/ligand complexes for which the
structure was known, without prior knowledge of the binding site. More specifically, we look at factors
influencing the accuracy of the final structure, such as the number of torsional degrees of freedom in the
ligand. We conclude that the Autodock program package is able to select the correct complexes based on
the energy without prior knowledge of the binding site. We named this application blind docking, as the
docking algorithm is not able to “see” the binding site but can still find it. The success of blind docking
represents an important finding in the era of structural genomics.
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Structure-based drug design builds on the availability of a
reliable structure of a complex of a target molecule and a
drug. The most important experimental source for such
structures is X-ray crystallography. There is, however, a
need for additional methods to predict complex structures,
and computer-based molecular modeling is an obvious
choice.

In the past decade, molecular docking has proven to be an
important tool of computer-aided drug design. Basically,
three steps are necessary for successful prediction of a tar-
get/ligand complex: (1) definition of the structure of the
target molecule, (2) location of the binding site, and (3)
determination of the binding mode. Ideally, the structure of
the target molecule should be determined experimentally,
although some applications of docking have been reported
based on a modelled target (Stigler et al. 1999; Menziani et
al. 2001; Hetényi et al. 2002). The second step, location of

the binding site, can be taken computationally as well, and
there are several approaches for finding binding pockets on
a protein molecule. The simplest algorithms use shape-
based fitting of the ligand to the macromolecular surface
(Hendlich et al. 1997; Brady and Stouten 2000). Alterna-
tively, an empirical method for identifying interaction sites
based on known protein-ligand complexes (Verdonk et al.
2001) has been reported. The third step is the “typical”
application for docking algorithms: Given the binding site
on a target molecule, determine the binding mode of a li-
gand. A large number of programs have been developed to
this end, for example, DOCK (Shoichet and Kuntz 1993),
AutoDock (Morris et al. 1996, 1998), and some more recent
algorithms described in Budin et al. (2001) and Pang et al.
(2001).

In most published docking applications, only the third
step is taken, and the binding modes of small ligands have
been reproduced (Stigler et al. 1999; Sotriffer et al. 1999,
2000). In all these cases, the binding site was predeter-
mined, and therefore, the search space was limited to that
region of the protein in the docking simulations. The con-
vincing results of such studies hint to the possibility of
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applying the same methodology to searching a space larger
than a single binding site. In a recent report, protein-protein
interactions were reproduced successfully by a combination
of ab initio docking and nuclear magnetic resonance data
(Morelli et al. 2001). These investigators used shape-based
fitting as the main step of the searching process because of
the large size of the proteins. Protein-protein interactions
were modeled by docking a completely rigid oligopeptide
fragment of a protein using the entire surface of the neigh-
boring protein as a target (Neurath et al. 1996). However,
for molecules with many degrees of freedom (e.g., flexible
peptides), such shape-based fitting or docking of a rigid
ligand to the protein would not be fruitful (Klepeis et al.
1998). We have previously scanned the entire surface of an
amyloid peptide for possible binding sites of flexible
�-sheet breaker peptides (Hetényi et al. 2002) and predicted
a complex with features that agree very well with nuclear
magnetic resonance data. There are, however, very few re-
ports dealing with the latter kind of blind docking, in which
a flexible ligand was docked to a target without prior knowl-
edge of the binding site.

In the present study, we used the AutoDock program
package (Morris et al. 1998) to test whether it is possible to
find the binding sites (and binding modes) of flexible pep-
tides on a protein without any prior knowledge of their
location and conformation. A parameter set based on the
AMBER force field (Cornell et al. 1995) and the possibility
of using flexible as well as fixed torsions for the ligands
during the docking procedure make AutoDock an appropri-
ate tool for such a test.

Results and Discussion

To verify the method of blind docking of ligands to proteins,
a set of different protein-peptide complexes was chosen

from the Brookhaven Protein Databank. Peptides are ideal
test molecules, because they have several possible torsional
degrees of freedom, they have different functional groups,
and they are composed of amino acids, the same force field
parameters can be used as for the target molecule. Target
proteins of up to 316 residues were selected for the inves-
tigations to keep the computational cost within reasonable
limits. Properties of the investigated protein-ligand systems
(with increasing number of torsions) are presented in Table
1. In addition to the different protein-peptide systems, the
well-known benzamidine-trypsin complex (A) was used as
a first test, because benzamidine is a small and rigid mol-
ecule that binds to a well-defined pocket on trypsin.

Generally, in docking calculations several consecutive
trials are made for the same system. If a ligand has to
maneuver over a large piece of the protein surface to find its
proper location, then the probability of finding the energy
minimum is much smaller than in the case of docking to a
well-defined binding site on the protein, as the searching
space is considerably smaller in that case. The necessity of
using numerous trials in the latter cases is probably not as
critical as in our studies. Virtually no information is avail-
able about the number of trials and the number of energy
evaluations necessary for blind docking jobs. Therefore, a
systematic scan of parameters (trials and energy evalua-
tions) was made to test their influence on the ability of
AutoDock to reproduce complex structures. After each job,
a uniform evaluation procedure was performed (see Mate-
rials and Methods), the results of which are summarized in
Tables 2 and 3.

The most important requirement of a blind docking cal-
culation is its ability of distinguishing the real binding site
on the protein from nonspecific and/or energetically unfa-
vorable ones. Ideally, the crystal structure (or a structure
with very low root mean square deviation [RMSD]) should

Table 1. Properties of the protein-ligand systems investigated in this study

Letter
code

PDB
code Protein

No. of
residues Ligand Ref a

No. of free
torsions

No. of heavy
atoms

Edocked of
crystal

(kcal/mole)

A 3ptb Trypsin 229 Benzamidine I 0 9 −7.77
B 1ak4 cyclophilin A 165 Ace-AGP-Nme II 6 21 −7.45
C 3tpi Trypsinogen 281 IV I 7 16 −8.91
Cw 3tpi Trypsinogen 281 IV I 7 16 −9.13
D 3cpa carboxypeptidase A 307 GY III 7 17 −3.86
E 8gch �-chymotrypsin 237 GAW IV 8 24 4.64b

F 5sga SG protease A 181 Ace-APY V 9 28 −8.08
G 1ak4 cyclophilin A 165 Ace-HAGP-NMe II 9 31 −9.01
H 1lna Thermolysin 316 VK VI 10 17 −7.77
Hw 1lna Thermolysin 316 VK VI 10 17 −9.13
I 5sga SG protease A 181 Ace-PAPY V 11 35 −8.31
J 1sua subtilisin BPN1 262 ALAL VII 12 27 −11.88

a References: I. Marquart et al. 1983, II. Gamble et al. 1996, III. Rees and Lipscomb 1983, IV. Harel et al. 1991, V. James et al. 1980, VI. Holland et al.
1995, and VII. Almog et al. 1998.
b Positive energy of the crystal structure of the ligand is due to close contacts (see text and Harel et al. [1991] for details).
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be predicted as having the lowest energy (Edocked). Because
the AutoDock program package allows the use of ligands
with fixed and flexible torsions, both types were involved in
our investigations.

Rigid ligands

Table 2 contains the results of blind docking of rigid li-
gands, in which the ligand had the conformation it has in the
experimental complex. Therefore, the docking algorithm
only has to optimize the position and orientation of the
ligand molecule. In all cases, the minimum energies Edocked

of the first classes and the average ones of subclasses (see
Materials and Methods for definition of the term “subclass”
in this study) were lower than or close to the energies
Edocked calculated for the original crystal structures (Table
1). The reasons for this are the finite grid spacing and the
limited accuracy of the force field. For the simplest system,
benzamidine-trypsin (A), not much difference was found
between the three types of jobs (with different number of
trials and energy evaluations, see Materials and Methods).
Hence, we performed only one type of the three jobs (100
trials and 50 × 106 energy evaluations per trial) for the other
systems.

The RMSD values of the first class and its subclass were
generally <0.7 Å. For system B, the RMSD value was >1.0
Å. In that case, a piece of the central part of the cypA-
binding loop of the p24 (HIV capsid) protein was used as a

ligand. This particular fragment of the loop proved to be too
small to mimic perfectly the fit of the central part of the loop
of p24 on the cypA molecule. With the use of an additional
amino acid (His) of the p24-loop in the fragment to be
docked, a more accurate fit was obtained (system G), indi-
cating that it may be possible to predict protein interactions
by blind docking of a fragment. However, one should be
careful with the selection of the appropriate fragment of a
protein for such a modeling as both the presence and the
absence of a single amino acid could, in principle, result in
different binding modes or even different binding positions.

The energy minima of all jobs were in the subclasses of
the first classes, namely, the structures with low RMSD
values with respect to the crystal structure. One can there-
fore conclude that blind docking is a reliable technique for
finding the binding site of rigid ligands up to at least 30
heavy atoms. In many pharmaceutical applications, the li-
gand is almost rigid or has a well-defined conformation
(Sotriffer et al. 2000).

Flexible ligands

The real challenge for docking is the use of flexible ligand
molecules, that is, those with rotatable torsion angles. The
results of these types of dockings are listed in Table 3. In all
cases, the energies (Edocked) of the first classes (subclasses)
were lower than or close to Edocked calculated for the origi-
nal crystal structures (Table 1). We found this for the rigid

Table 2. Results of blind docking of the investigated systems using rigid ligands

Systema
No. of
trials

No. of
evaluations

×106
Serial

no.

Classb Subclassc

CPU
(h)

Edocked

(min)
kcal/mole

RMSD
(min) Å N

Edocked

(avg.)
kcal/mole

RMSD
(avg.) Å N

A1 100 10 1 −7.94 0.371 98 −7.93 0.318 98 8
A2 500 5 1 −7.94 0.379 456 −7.93 0.322 455 19
A3 100 50 1 −7.94 0.368 100 −7.94 0.366 100 38
B 100 50 1 −9.16 1.080 86 −9.155 1.081 86 72
C 100 50 1 −12.43 0.415 57 −12.43 0.415 57 44
Cw 100 50 1 −15.26 0.217 75 −15.26 0.216 75 44
D 100 50 1 −11.03 0.653 66 −11.03 0.653 66 58
E 100 50 1 −11.55 0.0 88 −11.55 0.011 88 56

(0.676)d

F 100 50 1 −12.58 0.293 91 −12.58 0.291 91 11
G 100 50 1 −10.53 0.681 71 −10.53 0.683 71 89
H 100 50 1 −10.16 0.573 91 −10.15 0.531 91 54
Hw 100 50 1 −11.53 0.309 76 −11.53 0.305 76 51
I 100 50 1 −13.93 0.338 99 −13.93 0.340 99 64
J 100 50 1 −11.18 0.156 57 −11.18 0.156 57 36

a Subscripted numbers denote different types of jobs at the same system.
b The energy minima of the first classes are the ones of the jobs too (see also Materials and Methods for explanation of the evaluation of the docking
experiments).
c For definition of term subclass, see Materials and Methods.
d As the crystal structure had close contacts and positive energy (see Table 1), the energy minimum structure of job 3 was used as a reference. The RMSDs
were calculated for the crystallographic ligand structure as well and given in brackets.
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ligands as well (Table 2), but here the effect is somewhat
larger in some cases, owing to the extra degrees of freedom.
In other cases, the rigid ligands do find lower energies (e.g.,
Cw) and lower RMSD, most likely because one effectively
has more energy evaluations for searching the right confor-
mation.

Efficiency and robustness

For small peptides such as Ile-Val (system C and Cw) and
Gly-Tyr (system D), RMSD values <1.0 Å (Figs. 1a, 2a)

and 1.5 Å (Fig. 1b), respectively, were achieved. Moreover,
the lowest energy conformations of 100 out of 500 docking
trials were the members of the subclasses in all cases. The
occupancies (N) of the classes and their subclasses were
lower, than those of C, Cw, and D in Table 2. This is owing
to the larger number of degrees of freedom of the ligand:
The search algorithm was used not only for finding the
correct binding position/orientation but also for searching
the conformation of the ligand in this case. Therefore, the
number N of successful docking trials was lower. For Ile-

Table 3. Results of blind docking of the investigated systems using flexible ligands

Systema
No. of
trials

No of
evaluations

×106
Serial

no.

Classb Subclassc

CPU
(h)

Edocked

(min)
kcal/mole

RMSD
(min) Å N

Edocked

(avg.)
kcal/mole

RMSD
(avg.) Å N

B1 100 10 1 −10.66 9.008 6 — — — 30
2 −9.79 2.458 12 −9.39 1.005 2

B2 500 5 1 −10.70 9.037 25 — — — 62
2 −9.79 2.421 68 −8.88 1.075 14

B3 100 50 1 −10.47 8.514 6 — — — 124
2 −9.82 2.433 18 −8.95 1.065 1

C1 100 10 1 −11.52 0.712 9 −11.11 0.847 8 10
C2 500 5 1 −11.53 0.716 41 −11.18 0.905 39 52
C3 100 50 1 −11.53 0.723 38 −11.51 0.740 37 103
Cw1 100 10 1 −14.32 0.739 6 −13.10 0.989 6 27
Cw2 500 5 1 −14.38 0.680 17 −14.14 0.845 17 40
Cw3 100 50 1 −14.41 0.706 22 −14.08 0.775 22 80
D1 100 10 1 −8.41 1.362 18 −8.32 1.402 7 19
D2 500 5 1 −8.41 1.367 67 −8.27 1.448 20 57
D3 500 50 1 −8.43 1.314 88 −8.36 1.362 31 570
E1 100 10 1 −13.20 0.178 16 −13.08 0.254 5 27

(4.908)d

E2 500 5 1 −13.13 0.226 46 −12.52 0.710 10 67
(4.961)d

E3 100 50 1 −13.33 0.000 17 −13.27 0.148 7 138
(4.930)d

F1 100 10 1 −10.07 0.675 12 −9.92 0.707 10 29
F2 500 5 1 −9.99 0.521 35 −9.64 0.830 11 78
F3 100 50 1 −10.15 1.308 13 −9.97 0.787 5 155
G1 100 10 — −11.03 28.048 2 — — — 47
G2 500 5 1 −11.41 1.960 14 −11.02 1.581 4 119
G3 100 50 1 −12.28 1.852 6 −12.275 1.740 2 235
H1 100 10 1 −14.48 17.496 19 — — — 27

4 −10.96 4.733 5 — — —
H2 500 5 1 −14.31 17.541 95 — — — 56

4 −11.78 5.036 10 — — —
H3 100 50 1 −14.40 17.613 29 — — — 114

4 −11.62 4.251 6 — — —
Hw1 100 10 1 −11.60 1.855 9 −10.87 1.533 5 21
Hw2 500 5 1 −11.21 1.681 42 −10.66 1.330 18 57
Hw3 100 50 1 −11.86 3.701 20 −11.12 1.556 16 162
I1 100 10 1 −11.74 7.543 6 — — — 43
I2 500 5 1 −11.63 7.256 9 — — — 213
I3 500 50 1 −11.86 7.418 23 — — — 1017
J1 100 10 1 −10.88 7.590 3 — — — 41
J2 500 5 1 −12.03 1.584 10 −12.03 1.584 1 102
J3 100 50 1 −12.41 1.545 5 −12.38 1.523 2 161

See notes for Table 2.
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Val, both solvated (Cw) and water-free (C) targets were
used. The presence of water molecules right above the bind-
ing site did not hinder docking to the site: The occupancies
N were smaller, but the Edocked values were lower than in
the case of “dry” protein. This trend was found also for the
crystal energies and the Edocked values of rigid ligands ow-
ing to interactions with the water molecules (Tables 1, 2). In
system B, the real binding position of the loop was found
only in the second class. This limited success is caused by
the length of the peptide fragment that was used as a ligand
(for details, see Rigid Ligands section). Tripeptides, such as
Gly-Ala-Trp (system E; Fig. 2b) and Ace-Ala-Pro-Tyr (sys-
tem F; Fig. 1c), were also docked successfully to their re-
spective pockets (Table 3). The Gly-Ala-Trp (�-chymotryp-
sin) system is a difficult task for docking calculations. The
crystal structure of this complex (Harel et al. 1991) contains
an average structure of a covalently bound ligand and a
nonbonded complex. Obviously, the molecular mechanics-
based docking technique is developed for only nonbonded
interactions. Despite the problematic crystal structure, the
hydrophobic pocket (the most important part of the binding
site, see Fig. 2b) of �-chymotrypsin was identified repro-

ducibly. Together with system B, the latter example proves
the robustness of the method: The binding location was
found even when only part of the ligand or of the site was
defined properly. In the complex of SG protease and Ace-
Pro-Ala-Pro-Tyr (system I), the first Pro residue of the pep-
tide has no specific contacts with the protein (and there was
only a small energy difference between the crystal struc-
tures of systems F and I; see Table 1), and hence, docking
was not as successful as with the truncated peptide Ace-
Ala-Pro-Tyr (Fig. 1c). However, because the rigid ligand
docks with 2 kcal/mole lower energy than the flexible one,
and with low RMSD with respect to the crystal structure, we
should conclude that the poor results with system I are
owing to insufficient searching.

The Ace-Ala-Gly-Pro-NMe tripeptide (B) proved to be
too small to perfectly mimic the binding loop of p24 protein

Fig. 2. (a) The Ile-Val dipeptide (system Cw) located below the crystallo-
graphic water molecules after the docking. (b) The aromatic side-chain of the
Gly-Ala-Trp tripeptide (system E) found the hydrophobic pocket on the pro-
tein surface (in van der Waals representation). For clarity, only the crystallo-
graphic (red) conformation and the one of job type 3 (blue) were used.

Fig. 1. Comparison of the original, crystallographic position (in red) of the
different peptides: system C (a), system D (b), system F (c), system G (d),
and system J (e). The crystal positions are compared to the energy minima
of each job type (green indicates job type 1; grey, job type 2; blue, job type
3; see Table 3). A good correspondence was obtained in all cases.
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(Fig. 3); a different conformation was found with lower
energy than the crystal structure. In contrast, the Ace-His-
Ala-Gly-Pro-Nme tetrapeptide was more successful (system
G; see Fig. 1d): The subclass of the first class contained the
conformer closest to the crystal structure, in two out of three
jobs. The parameters of the first type of jobs (100 trials/
10 × 106 energy evaluations) were not sufficient for finding
the site of this larger peptide. The class/subclass populations
were also lower than in the case of the above-mentioned
shorter peptides: the minimization problem became more
difficult. Ala-Leu-Ala-Leu is a simple peptide (system J;
see Fig. 1e) but has the largest number of flexible torsions
among our test systems. The docked conformers closest to
the crystallographic one were reproducibly found in the first
class and had the lowest energies in the second and third
jobs, similarly to system G.

Effect of changes in parameters

We have systematically investigated the effects of the num-
ber of trials (runs), the number of energy evaluations, and
the size of the population of the genetic algorithm on the
quality of the docked complexes (RMSD and Edocked values
of the subclasses) and on the probability of finding the
binding position and mode (N values of Tables 2, 3). In

Figure 4a, we have plotted the number N in the first class
and subclass as a function of the number of trials for system
D (flexible). Both lines are roughly constant, indicating (as
expected) that the fraction of correct sites does not depend
on the number of trials. In contrast, the number of energy
evaluations (Fig. 4b) does have an influence: Below 10
million energy evaluations per trial, fewer correct binding
sites are found. Based on these results, it does not seem
worthwhile to use >20 million energy evaluations per trial
for systems like system D. This is also expected, as it takes
a certain number of energy evaluation to converge to the
correct energy minimum, but more members of the popu-
lation will converge to the lowest energy conformation.
With more energy evaluations, the system remains in the
same conformation. Finally, we performed a test with the
size of the population for the genetic algorithm. The popu-
lation size was increased while keeping the total number of
energy evaluations constant (at 5 × 106 energy evaluations
and 100 trials). We see that below 50 (the AutoDock default
value), the number of correct sites increases fast with the

Fig. 3. The Ace-His-Ala-Gly-Pro-NMe tetrapeptide (system G, red) mim-
ics the central part of the cypA-binding loop (cyan) of the N-terminal
domain of the HIV p24 capsid protein after a docking trial of 50 million
energy evaluations. See also Fig. 1d for a close-up of the crystallographic
position of the fragment of the loop and the docked results. The cypA
molecule is represented in blue.

Fig. 4. Representation of the effect of different parameters on the fraction
of jobs with correct results. (a) Effect of the number of trials (runs) at
50 × 106 energy evaluations and Lamarckian genetic algorithm (LGA)
population size of 50. (b) Effect of the number of energy evaluations per
trial at 500 trials (runs) and LGA population size of 50. (c) Effect of the
LGA population size at 5 × 106 energy evaluations and 100 trials, that is,
at constant computational cost.
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population size. But even after 50, the number of correct
sites keeps increasing, indicating that it can be beneficial to
use a value well above the default. Although we have no
numbers for a population size of >300, it should be expected
that the number of correct sites will start to diminish at some
stage as the total number of energy evaluations per member
of the population (the number of generations) becomes too
low to find the minimum. A further test of our recommen-
dations with system F showed that the number of correct
sites (class) increases from nine to 22 when going from a
population size of 100 to 250, that is, roughly linear. With
a population size of 500, we find the correct site is found
only in 18 cases.

Limitations

The Val-Lys dipeptide (systems H and Hw) is a small but
quite flexible molecule. The side-chain of Lys and the C-
terminal group points toward the solvent in the crystal struc-
ture, and the atoms have high B-factors, whereas the hy-
drophobic side-chain of Val and the N-terminal group are
buried inside the protein. There is a considerable energy
difference between the crystal structures of Val-Lys in sys-
tem H (“dry” thermolysin target) and Hw (thermolysin tar-
get covered by crystal waters), because of the role of the
waters in the definition of the binding site. Docking jobs of
system H placed the real binding pocket in the fourth class
(with higher energies and large RMSD values), whereas
when using the crystal waters (Hw), the binding position
was ranked at the first place with the lowest energy, and the
RMSD values were also significantly lower. This finding
shows that solvent molecules can be important in the find-
ing of binding sites, and for some cases, it may therefore be
necessary to use explicit water molecules to explore the
binding site (Minke et al. 1999).

Another limitation of blind docking is the size of the
system or the computer time one can spend to perform
enough trials (Tables 2, 3). An example for this limitation is
system I, which has the largest ligand (Ace-Pro-Ala-Pro-
Tyr) used in our investigations. Although blind docking was
successful using the truncated Ace-Ala-Pro-Tyr form of this
ligand (system F), the longer tetrapeptide was docked with
limited success only (large RMSD values for the first rank)
to the target. Additionally, the weak interactions between
Pro1 and the protein makes this peptide a difficult ligand for
docking. Finally, the possibility of accurately docking a
ligand to a target depends critically on the quality of the
target structure, and AutoDock, like other docking pro-
grams, has as of yet no way to treat flexible target, although
a work-around using multiple target structures has been
tried with success (Österberg et al. 2002).

Recommendations

Based on our results (Tables 2,3; Fig. 4), we recommend the
use of a fairly large population size (e.g., 250) and at least

10 million energy evaluations per trial for blind docking of
flexible peptide ligands to proteins. The number of trials
should be �100. For rigid ligands, more modest require-
ments will do; the default population size of 50 and 50 trials
should suffice in most cases. Obviously, a finer grid size
would be advantageous for the quality of docking results
(Hetényi et al. 2002); however, the memory requirements of
the algorithm scale as the inverse third power of the grid
spacing make it difficult to go much beyond our current grid
spacing.

Conclusions

In the present work, we have used a docking algorithm for
combined binding site and binding mode search. We named
the method blind docking, and it represents a novel appli-
cation of docking programs. The latest version of the Au-
toDock package proved to be efficient and robust in finding
the binding pockets and binding orientations of the ligands,
even for problematic protein-peptide complexes. Using a
systematic test of parameters of the docking calculations,
we have shown that the results are reproducible. In some
cases, we found that the binding position could be located
using fragments of ligands. The latter finding hints at the
possibility of a combination of blind docking with fragment
docking (Friedman et al. 1994) and to studies of protein-
protein interactions. The limitations of our approach are
basically the same as those for directed docking: The target
molecule is rigid, and the accuracy of the force field pa-
rameters is limited. Furthermore, the computer time require-
ments are still considerable (Tables 2, 3).

Blind docking can be a useful tool for exploration of
possible binding sites of drugs on their target proteins, if the
active site of the drug is unknown. It is particularly attrac-
tive that a single method can be used for binding site search
and accurate docking of ligands.

Materials and methods

Preparation of ligand and target molecules

For system A, the original structure files of the ligand and target
molecules supplied with the test set of the AutoDock program
package were used. For the other tests with rigid ligands, the
crystallographic structures were used after the addition of polar
hydrogen atoms. For the tests with flexible peptides, starting con-
formations of the ligand molecules were built and optimized with
the aid of the TINKER program package (Pappu et al. 1998).
AutoTors (an AutoDock tool) was used to define the torsions of
the ligand molecules for the docking algorithm. The numbers of
released torsion angles are listed in Table 1. In addition to amide
and ring torsions, all torsions were released for flexible ligands.
AutoTors was used to create a united atom representation of the
ligands when necessary. Generally, all water molecules and ions
were removed from the original Protein Data Bank files. In case of
systems Cw and Hw, the original 151 and 157 water molecules,

Blind docking of peptides to proteins

www.proteinscience.org 1735



respectively, were used. The positions of the hydrogen atoms of
the water molecules were optimized using a short molecular dy-
namics simulation with GROMACS (Lindahl et al. 2001) and
treated as a part of the target during docking. Protein molecules
were equipped with polar hydrogen atoms, and AMBER charges
(Cornell et al. 1995) were used for protein as well as ligand.
Atomic solvation parameters and fragmental volumes were as-
signed using Addsol (an AutoDock tool).

Docking procedure

Mass-centered grid maps were generated with 0.55 Å spacing by
the AutoGrid program for the whole protein target. Lennard-Jones
parameters 12–10 and 12–6 (supplied with the program package)
were used for modeling H-bonds and Van der Waals interactions,
respectively. The distance-dependent dielectric permittivity of
Mehler and Solmajer (1991) was used for the calculation of the
electrostatic grid maps. The Lamarckian genetic algorithm (LGA)
and the pseudo-Solis and Wets methods were applied for minimi-
zation using default parameters (Table 4, except as indicated). The
number of generations was set to 10 million in all trials (runs), and
the stopping criterion was therefore defined by the total number of
energy evaluations. Random starting positions on the entire protein
surface, random orientations, and torsions (flexible ligands only)
were used for the ligands. Three different sets of jobs were per-
formed, (1) 100 trials, 10 × 106 energy evaluations; (2) 500 trials,
5 × 106 energy evaluations; and (3) 100 trials and 50 × 106 energy
evaluations (except D and I, 500 trials). The computational cost in
energy evaluations of the different job types is then (1) 109, (2)
2.5 × 109, and (3) 5 × 109 (D and I: 25 × 109). For all job types, the
populations in the genetic algorithm was 50. Some jobs with dif-
ferent parameters were performed, as indicated in the Results sec-
tion.

Evaluation of results of docking jobs

A two-step procedure was used for classification of the results of
each job. First, the docked conformations of the ligand peptides
were listed in increasing energy order. Subsequently, the ligand
conformation with lowest energy was used as a reference, and all

conformations with a centre of mass to centre of mass distance of
<3 Å from the reference were taken to belong to the first class.
Once a ligand was assigned to a class, it was not used again for
other (energetically less favorable) classes. Then the process was
repeated for all hitherto unclassified conformations until all con-
formations were put in a class.

Second, within each class, the positional RMSD of the nonhy-
drogen atoms of each ligand structure with respect to the crystal
ligand structure was calculated. Structures having RMSD <2 Å
were placed in subclasses of the classes. Therefore, in this study,
subclasses are defined as the subset of a class that contains the
ligand conformations that are structurally closest to the crystallo-
graphic ones. That is, ligands placed in the subclass of the first
class of a job have the best energies and the best correspondence
with the crystal structure. Note that a subclass of any class may be
empty if no structure with low RMSD with respect to the crystal
structure is found.

In real blind docking jobs (in which the crystallographic posi-
tion of the ligand on the target is unknown, and no further experi-
mental information is available), one can only assume that the
energy minimum represents the best model for the real ligand
binding site and binding mode. In that case, one can cluster the
results directly by calculating RMSD with the energy minimum.
Here we seek to distinguish trials that find the binding site (class)
and trials that find both the binding site (class) and the binding
mode (subclass).

The VMD program (Humphrey et al. 1996) was used for graphi-
cal interpretation and representation of results. Image rendering
was performed using Raster 3D (Merritt and Bacon 1997).
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