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Abstract

Although much of the motivation for experimental studies of protein folding is to obtain insights for
improving protein structure prediction, there has been relatively little connection between experimental
protein folding studies and computational structural prediction work in recent years. In the present study, we
show that the relationship between protein folding rates and the contact order (CO) of the native structure
has implications for ab initio protein structure prediction. Rosetta ab initio folding simulations produce a
dearth of high CO structures and an excess of low CO structures, as expected if the computer simulations
mimic to some extent the actual folding process. Consistent with this, the majority of failures in ab initio
prediction in the CASP4 (critical assessment of structure prediction) experiment involved high CO struc-
tures likely to fold much more slowly than the lower CO structures for which reasonable predictions were
made. This bias against high CO structures can be partially alleviated by performing large numbers of
additional simulations, selecting out the higher CO structures, and eliminating the very low CO structures;
this leads to a modest improvement in prediction quality. More significant improvements in predictions for
proteins with complex topologies may be possible following significant increases in high-performance
computing power, which will be required for thoroughly sampling high CO conformations (high CO
proteins can take six orders of magnitude longer to fold than low CO proteins). Importantly for such a
strategy, simulations performed for high CO structures converge much less strongly than those for low CO
structures, and hence, lack of simulation convergence can indicate the need for improved sampling of high
CO conformations. The parallels between Rosetta simulations and folding in vivo may extend to misfolding:
The very low CO structures that accumulate in Rosetta simulations consist primarily of local up-down
�-sheets that may resemble precursors to amyloid formation.
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One of the central motivations for experimental studies of
protein folding is the development of models and ideas that
can lead to reliable predictions of native structure. In recent
years, experimental studies have focused on characterizing
protein folding rates, intermediates, and transition states
(Fersht 1998; Jackson 1998; Baldwin and Rose 1999;
Plaxco et al. 2000), whereas ab initio structure prediction
work has focused on energy functions and search strategies

that are in some cases somewhat removed from the actual
folding process, such as genetic algorithms (Bowie and Ei-
senberg 1994; Pedersen and Moult 1997) and exhaustive
enumeration (Samudrala et al. 1999). Because of these dif-
ferences in focus, there has been some question about the
current relevance of experimental protein folding studies to
protein structure prediction efforts.

A recent experimental insight into protein folding from
experimental work was the finding that protein folding rates
are correlated with the relative contact order (CO) of the
native structure (Plaxco et al. 1998; Grantcharova et al.
2001). The relative CO is the average sequence separation
of residues that form contacts in the three-dimensional
structure divided by the length of the protein. As illustrated
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in Figure 1, proteins with primarily local (close along the
sequence) contacts fold more rapidly than do proteins with
primarily nonlocal contacts. The dependence of folding
rates on the CO reflects the contribution of chain entropy
loss to the folding free energy barrier—low CO proteins can
make stabilizing interactions early in folding with less loss
in chain entropy than high CO proteins, and hence have
lower folding free energy barriers. In the present study, we
draw parallels between this experimental insight and current
problems in ab initio protein structure prediction.

We have recently developed a method for ab initio pro-
tein structure prediction, Rosetta, which is based on a pic-
ture of protein folding in which local sequence segments
flicker between different possible local structures, and fold-
ing occurs when the conformations and relative orientations
of these segments allow burial of the hydrophobic residues
and pairing of the �-strands without steric clashes (Simons
et al. 1997, 1999a,b; Bonneau et al. 2001). A key assump-
tion underlying the procedure is that the distribution of
structures sampled by an isolated chain segment is reason-
ably well approximated by the distribution of conformations
adopted by that sequence segment and related sequence seg-
ments in the protein structure database. Nonlocal interac-
tions are optimized by a Monte Carlo search through the set
of conformations that can be built from the observed local
structures for each sequence segment to produce structures
that have low free energy local and nonlocal interactions.

Because the conformational search is a stochastic proce-
dure, different simulations starting from different random
seeds will produce different final structures. Our standard
procedure is guided by the experimental observation that the
folding of most small proteins is a single exponential pro-
cess; that is, the probability of folding to the native structure
is independent of time for an individual polypeptide chain.

Thus, if simulations do not become trapped in local minima,
the yield of correctly folded structures in many short simu-
lations should be similar to that obtained in a small number
of long simulations that involve the same total simulation
time. Because of a drastic slowing down of the dynamics in
the collapsed state during Rosetta simulations, we have
found the many short simulation strategy to be the most
effective in practice. Large numbers of independent short
simulations are performed, and the resulting structures are
clustered to identify the broadest minima in the folding free
energy landscape(Shortle et al. 1998). The CASP3 (critical
assessment of structure prediction) and CASP4 protein
structure prediction experiments have shown that Rosetta is
one of the best current methods for structure prediction in
the absence of a homolog of known structure (Simons et al.
1999a, Bonneau et al. 2001b).

Results and Discussion

CO and structure prediction

The experimentally observed relationship between CO and
protein folding rates prompted us to examine the depen-
dence of Rosetta ab initio folding simulations on the native
state CO. Figure 1 indicates that during the actual folding
process, high CO structures are sampled much less fre-
quently than are lower CO structures, and thus, if the simu-
lations parallel the folding process, they might be expected
to produce primarily low CO structures. The absolute CO
distributions in native and Rosetta-generated structures are
compared in Figure 2A. For proteins of >80 residues, high
CO conformations are clearly undersampled in the Rosetta-
generated structures. For �-sheet proteins, the failure to pro-
duce high CO structures results in a critical overabundance
of local �-strand pairing arrangements and a deficit of non-
local strand pairing in the Rosetta-generated conformations
relative to native structures (Fig. 2C).

The failure to produce substantial numbers of high CO
conformations is clearly a problem for ab initio protein
structure prediction—many native proteins have COs out-
side of the range frequently sampled by Rosetta. Initial at-
tempts to remedy the problem by explicitly favoring high
CO structures during the simulation were not successful,
probably because biases toward nonlocal interactions
quench the conformational search process, as do nonlocal
constraints(Bowers et al. 2000). A somewhat more success-
ful approach takes advantage of the observation that high
CO conformations are generated, albeit at very low frequen-
cies, in standard Rosetta simulations: A very large number
of independent simulations are performed, and the resulting
conformations are filtered to correct for the drastic overrep-
resentation of lower CO conformations. This strategy was
first tested by attempting the folding of five proteins among
the most complex for their size range (four of the five were

Fig. 1. Correlation between relative contact order (CO) and folding rate.
The relative CO is plotted against the log folding rate for proteins with
structures known to fold via single exponential kinetics (Plaxco et al. 1998;
Grantcharova et al. 2001).
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IgG folds between 80 and 120 residues in length, whereas
the fifth was a 126 residue �-propeller [1bfg]). The standard
Rosetta protocol produces primarily low CO conformations
for these proteins, whereas the correct native states have
high COs. After the production of very large numbers of
additional independent conformations using approximately
two orders of magnitude more computing time, populations
were filtered to eliminate the majority of the overly low CO
structures (the filtered population is equal in size to the
original population but has a higher fraction of high CO
conformations; see Materials and Methods). The standard
clustering procedure (Bonneau et al. 2001), applied to these
CO-normalized populations, resulted in correct first rank
clusters for the two smallest proteins in the set (1ten and
1tit; see Fig. 3), but did not converge on correct models for
the three larger proteins (1wiu, 1tul, 1bfg), probably be-
cause even this 100-fold increase in sampling was not suf-
ficient to adequately sample higher CO conformations for
these larger proteins.

A more comprehensive test of the CO normalization (see
Materials and Methods) was performed for the 54 most
challenging �/� and �-proteins (between 60 and 150 resi-
dues in length) in a previously described test set (Simons et
al. 2001) using approximately one order of magnitude more
computing time to increase the frequency of higher CO
structures, rather than the two orders of magnitude more

computing time used in the cases described above. The
more extensive normalization performed for the five large
�-sheet proteins was not feasible for a large test set, given
current computer resources. In a number of cases, signifi-
cant improvement was seen in the quality of models se-
lected by our automatic clustering procedure (Fig. 3), de-
spite the only partial readjustment of the CO distributions
possible owing to computing time limitations. Comparison
of the CO distributions of the unfiltered and CO-normalized
decoy populations to the correct native CO values show that
for some cases, the filtering and enriching procedure was
sufficient to shift the CO distribution into the native range
(1kte; Fig. 4) and lead to correct predictions from popula-
tions that, before the filtering, produced incorrect predic-
tions, whereas for other, more topologically complex pro-
teins (1tul; Fig. 4), the normalization did not sufficiently
sample high CO regions of conformational space.

Why does the CO enrichment only improve model qual-
ity for a relatively small subset of proteins in the test set?
First, Rosetta may fail for reasons other than high CO; for
example, Rosetta may fail if the secondary structure predic-
tions that contribute to the fragment selection process are in
error. Secondary structure prediction methods consider only
residues in a window surrounding the residue being pre-
dicted and might be expected to be less accurate when a
larger percentage of contacts involve residues outside the

Fig. 2. Comparison of absolute contact order (CO) distributions of native and simulated structures. (A) The CO distribution of native
structures (top) and 152,000 decoys (bottom) generated for 152 proteins using Rosetta for different length ranges (y-axis). Absolute
CO was used here rather than relative CO because it more clearly differentiates the native and decoy populations. Because Rosetta
decoys do not have explicit side-chains, two residues are considered contacting if their �-carbons are within 8 Å. To avoid biases from
the fragment libraries, contacts between residues closer than three sequence positions apart were discounted from the calculation. (B)
Two-dimensional histograms of the number of local and nonlocal strand pairings found in Rosetta decoy populations for four relatively
local proteins are shown. The numbers superimposed on the boxes correspond to the percentage of decoys in the population of decoys
generated for each protein that have that combination of local and nonlocal pairings. The pattern of strand pairing found in the correct
native structure for each protein is indicated by a box surrounding the correct bin. Notice that for these four simulations, the native
structure falls well within the CO distribution. (C) Same as in B for decoy populations for four proteins with higher CO topologies.
The native structures (indicated by black boxes) now fall in sparsely populated or unpopulated regions of the decoy CO distribution,
illustrating the need for correcting the systematic CO bias of Rosetta when folding more nonlocal proteins.
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window. Indeed, secondary structure predictions for high
CO structures were somewhat worse than those for low CO
structures in CASP4 (data not shown). Second, for a subset
of proteins in the test set, the CO distribution was already
adequately sampled before the enrichment process, whereas
other proteins were so large and complex that the CO fil-
tering was not enough to effect a noticeable improvement.
Thus, we see improvement primarily for proteins in the test
set on the cusp of what was possible before the CO nor-
malization.

Casp4 results

The renormalization of the CO distributions produced by
Rosetta was a central part of our ab initio structure predic-
tion protocol during the CASP4 structure prediction experi-
ment. For the larger of the targets, we were unable, even
with considerable computer time, to generate CO distribu-
tions matching those of native proteins of similar length and
secondary structure class. This inability to adequately
sample the highest CO structures is consistent with Figure

1: High CO proteins can take up to six orders of magnitude
longer to fold than do low CO proteins, and by analogy,
adequately sampling conformational space for high CO pro-
teins may take vastly more computer time. Despite this
inability to fully sample higher CO conformations for the
larger targets (see Fig. 5), we produced good blind predic-
tions for 17 of the 21 domains (ranging in size from 70 to
300 residues in length) attempted using our standard ab
initio folding protocol (Bonneau et al. 2001b).

As is evident in Figures 2 and 5, there is a strong inverse
correlation between the CO of the native state and the prob-
ability of the Rosetta method generating a native-like
model. Intriguingly, there is also a correlation between the
CO of the native structure and the extent to which the simu-
lations for a given target converged. As illustrated in Figure
5, the simulations for low CO proteins converged more than
simulations for high CO proteins. Although the CO of the
native structure is not known before the determination of the
three-dimensional structure, the results shown in Figure 5
indicate that CO can be predicted to some degree based on
the extent to which the Rosetta simulation of a given protein

Fig. 3. Performance of Rosetta with contact order (CO) filtering. Rosetta simulations were performed for 54 proteins, the conforma-
tions with COs lower than that seen in 95% of proteins of similar length and secondary structure class were discarded, and approxi-
mately one order of magnitude of more computer time was used to generate additional high CO conformations. The quality of these
CO-normalized (filtered and enriched with respect to CO) populations are compared to populations of equal numbers of unfiltered
decoy conformations. (A) The similarity to the native structure of the top 10 cluster centers for each protein obtained, both with and
without this normalization of the CO distribution, was assessed using MaxSub (Siew et al. 2000). The higher the MaxSub score, the
more superimposable a predicted structure is on the native structure. The score is highly correlated with the length of the correctly
predicted region for a given prediction and was shown at CASP3 (critical assessment of structure prediction) to reproduce the rankings
given to predictions by experts in the field (Siew et al. 2000). The y-axis in the figure is the highest MaxSub score obtained for any
of the top 10 cluster centers without CO renormalization; the x-axis is the highest MaxSub score obtained after CO renormalization
(2000 conformations were clustered in both cases). The improvements evident for seven of the proteins in the bottom right of the figure
are quite large: Before CO normalization, 1kte (far right) was predicted to within 5.5 Å over 75 residues; after CO normalization, 99
residues were predicted to 2.9 Å root mean square deviation (RMSD). For two proteins (1dun and 1c1l; bottom of plot) Rosetta did
not converge at all before CO filtering but produced models with 64 of 120 residues predicted with an RMSD of 5.5 Å and 55 of 136
residues predicted at 4.4 Å RMSD. (B) The improvement in MaxSub score obtained for the CO-normalized populations in part A is
shown as a histogram.

Bonneau et al.

1940 Protein Science, vol. 11



converged. A somewhat fanciful use of this information
would be to predict the folding rate of the protein (Fig. 1).
A more exciting possibility is to use the relationship be-
tween simulation convergence and CO to improve the per-
formance of Rosetta on more complex proteins with highly
nonlocal structures. After the estimation of the CO of the
native structure from the extent of convergence of a set of
preliminary simulations, conformations in this CO range
could be selected from a very large number of further in-
dependent simulations. An obvious feature of this proposed
procedure is the likely requirement for very large amounts
of computer time (generating suitable numbers of high CO
structures could take orders of magnitude of more computer
time than used to generate our CASP4 predictions)—this
may be an area in which powerful computers such as Blue
Gene (http://www.research.ibm.com/bluegene/) could con-
tribute. Given the widely recognized problems with current

potential functions (Park and Levitt 1996; Park et al. 1997),
computer time has not been a major limitation for most
current ab initio prediction strategies (all too many confor-
mations with computed energies lower than the native struc-
ture can be generated in relatively small amounts of com-
puter time), and thus, this clear role for substantial computer
time is noteworthy.

There is a fairly intuitive explanation of the origin of the
CO-simulation convergence relationship. Low CO struc-
tures are readily sampled in the short folding times to which
our Rosetta simulations correspond. If the native structure is
low in CO, there will be a readily accessible low free energy
minimum (the native state), and a large fraction of the simu-
lations will end up in the same minimum. Conversely, if the
native structure is high in CO, there will not be a readily
accessible low free energy minimum, and different simulations
will end up dispersed throughout the free energy landscape.

Fig. 4. Contact order (CO) distributions for filtered and unfiltered decoy populations: For both proteins, the CO of the native protein
is indicated on all histograms by a bold “N.” Unfiltered indicates standard populations of Rosetta decoys; filtered, populations for which
the lower cutoff (shown in Fig. 6) was applied to remove overly local conformations; and filtered/enriched, populations filtered with
the lower CO filter and then enriched with respect to higher CO bins with approximately one order of magnitude more sampling. (Top).
The unfiltered CO distribution (left) for 1tul shows that the CO distribution is clearly below what is seen for �-proteins ∼100 residues
in length. The minimal filter rids the population of overly local structures but leaves the high CO region near the native state relatively
undersampled (middle). The filtered and enriched population still leaves the native-like high CO region of the distribution minimally
sampled, and clustering this population produces incorrect fold predictions. (Bottom) The upper tail of the unfiltered CO distribution
for 1kte (left) encompasses the native state, but attempts to cluster this protein nevertheless produce overly local, incorrect, cluster
centers. The enriched-filtered population (bottom right) is well sampled in the native-like regions of the CO distribution, and clustering
this filtered enriched population results in correct top ranked clusters.
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Conclusions

The dependence of both protein folding rates and the suc-
cess rate of Rosetta on the CO of the native state indicate
that the simulation procedure mimics some aspects of the
folding of real proteins. The necessity of ordering a large
fraction of the chain before large numbers of stabilizing
interactions can be formed for high CO proteins is likely to
lead to a large entropic barrier to folding both in solution
and in silico. The parallels between folding in silico and in
vivo may extend further to misfolding. The assembly of
misfolded proteins into amyloid fibrils with �-strands per-
pendicular and �-sheets parallel to the fiber axis is associ-
ated with many human diseases (Sunde et al. 1997); recent
studies of fibrils derived from an SH3 domain indicate that
the strands are packed into quite flat �-sheets (Jiminez et al.
EMBO 1999). The most prevalent low CO structures gen-
erated in Rosetta simulations consist of flat �-sheets formed
by all local �-hairpins (Fig. 2B), and it is tempting to specu-
late that these structures resemble the precursors to amyloid
formation. This conjecture is consistent with the ubiquitous
and confounding presence of low CO �-sheet structures in
Rosetta simulations, which parallels recent findings that in-
dicate almost all proteins can form fibrils (Bucciantini et al.
2002), and with what is known about the structure of amy-
loid fibrils. Confirmation, however, must await higher-reso-

lution structural information on fibrils and their precursors.
Conversely, the very low CO conformations that accumu-
late in Rosetta simulations for proteins that form fibrils
could perhaps serve as tentative models to guide experimen-
tal characterization of the process of amyloid formation.

Although this work deals primarily with the Rosetta ab
initio prediction method, the problems we face when pre-
dicting larger, more complex topologies also seem to limit
other current ab initio procedures; performance on large
complex targets was considerably worse for ab initio meth-
ods at CASP3 and CASP4. Although the high resolution
necessary for drug design is still far out of reach, ab initio
structure prediction using Rosetta has now improved to the
point at which reasonable models can be produced for large
fragments of most domains <150 amino acids in length, and
significant progress in predicting the structures of the re-
maining proteins may be possible with increases in com-
puting power together with use of the CO-simulation con-
vergence correlation.

Materials and methods

Model generation

Fragment libraries for each three- and nine-residue segment of the
chain are extracted from the protein structure database using a
sequence profile-profile comparison method as described previ-
ously (Simons et al. 1997). At no point is knowledge of the native
structure used to select fragments or fix segments of the structure.
The conformational space defined by these fragments is then
searched using a Monte Carlo procedure with an energy function
that favors compact structures with paired �-strands and buried
hydrophobic residues. Independent simulations are performed
(starting from different random number seeds) for each query se-
quence, and the resulting structures are filtered and then clustered
as described below and previously. Before clustering, the majority
of structures produced by Rosetta are incorrect (i.e., good struc-
tures account for <10% of the conformations produced); for this
reason, we refer to conformations generated by Rosetta as decoys.

Determination of CO bins

Estimation of the allowable CO range for different length and
secondary structure classes was performed using a nonredundant
set of proteins from 50 to 160 residues in length provided by
Roland Dunbrack (Hobohm et al. 1993). Absolute CO was used as
in Figure 1. Two residues were considered contacting if their
�-carbons are within 8 Å. Contacts between residues closer than
three positions along the sequence were not included in the cal-
culation. Because CO is length dependent, we chose to make the
boundaries of our CO bins length dependent. For each secondary
structure class, all possible sets of lines were generated that di-
vided the plot of CO versus length into lower 5%, lower-middle
45%, upper-middle 45%, and upper 5% regions. For each percen-
tile range, the delimiting line that best maintained the specified
partitioning of the CO distribution across the entire length interval
was then selected. The resultant length-dependent binning of the
CO length distribution for native proteins is shown in Figure 6.

Fig. 5. Contact order (CO) and CASP4 (critical assessment of structure
prediction) predictions. The correlation between CO and clustering thresh-
old for CASP4 predictions. The clustering threshold is the root mean
square deviation (in Å) of the largest cluster; thus, the smaller the cluster-
ing threshold, the more tightly Rosetta converged. Targets for which our
best submitted models had significant portions predicted to within 6.5 Å
are shown as “1”; targets for which our predictions were incorrect are
indicated as zeros. The size of the “1s” are proportional to the Dali Z-
score between the best model and the correct native, thus larger “1s”
indicate stronger successes. Simulations for most proteins with lower CO
native structures converged on correct models, whereas simulations for
most high CO proteins were less converged and resulted in incorrect
models.
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Filtering procedure

The protocol for generating decoy populations with improved CO
distributions has two main phases. In the first phase of the proto-
col, decoys are generated using the standard method and discarded
only if they have COs lower than that seen for native proteins of
comparable length and secondary structure class. This first set of
runs thus fills in the lower part of the CO distribution and only
discards extremely local (and thus grossly nonnative) conforma-
tions. The second phase aims to enrich higher CO regions of the
CO distribution seen for native proteins of comparable size and
secondary structure. This is performed by generating large num-
bers of decoys and only accepting conformations that fall within
the upper 10% to 20% of the CO distribution seen for the original
Rosetta runs for that protein. As roughly one in 10 simulations will
produce decoys in the top tenth percentile, setting the cutoff at the
tenth percentile will lead to the generation of a roughly equal
number of decoys using 10-fold the computing time required to
generate the initial population, whereas if the upper limit was set
based on the native CO distribution (Fig. 6), the number of decoys
passing the filter in 10× time could be extremely small.

The comprehensive in-house test of the method was performed
on 54 proteins from a previously described test set (Simons et al.
2001) by first generating ∼2000 decoys for each protein in the set
with only a minimal CO cutoff filter in place (decoys were dis-
carded if their CO was in the lowest 5% bin of the CO distribution
for native proteins of comparable length; Fig. 6; a list of the 54
proteins is available as supplemental information). Approximately
10 times the computer time used to generate the initial runs was
then used to generate further decoys with COs >80th percentile in
the original runs. The CO-filtered population was then clustered as
described below. A population of equal size to the CO-normalized
population was also generated and clustered as described below for
comparison. A comparison of the results of clustering these two
populations (the unfiltered versus the extensively CO-normalized
results) is shown in Figure 3.

For CASP4, an average of 100,000 conformations were gener-
ated per target, and those with COs lower than the lower CO cutoff
(the lowest delimiting line in Fig. 6) were discarded (on average
∼70% of the conformations generated were discarded because of
low CO or improperly paired beta-strands). Other filters were used
as well to ensure proper packing and correct strand arrangement

before clustering and model selection (Bonneau 2001; Ruczinski
2002).

Clustering procedure

The procedure for clustering populations of decoys that survive the
filtering step has been described previously (Shortle 1998; Bon-
neau et al. 2001a). Two structures are considered neighbors if they
are closer in C� root mean square deviation than an empirically
derived cutoff. The clustering procedure is iterative and begins by
calculating a list of neighbors for each structure. The structure with
the largest number of neighbors according to this list is then the
center of the first, largest cluster. The root mean square deviation
cutoff for considering two structures neighbors is started at 8.0 Å
and iteratively reduced until the first cluster contains 50 or 100
decoys or until the cutoff has reached a lower threshold of 3.0 Å
(a lower resultant clustering threshold is indicative of a more
tightly converged population). Once one of these conditions is met,
the cutoff is fixed for the remaining iterations. The first cluster
center is written out, and its neighbors are removed from the
population. The process is repeated on the remaining population
until the cluster produced contains fewer than five neighbors. For
populations <3000 decoys, the first cluster was set to contain 50
members; for populations >3000, the first cluster was set to contain
100 decoys.
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Fig. 6. Contact order (CO)-length distribution for native proteins. The CO is plotted against length for a nonredundant set of proteins
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the three lines present in each plot. The region below the bottom-most line contains 5% of native proteins. The middle line separates
the upper 50% CO bin from the lower 50% bin, whereas the top line delimits the upper 5% CO bin. These defining lines were fit to
the data as described in Materials and Methods.
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