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Abstract

Diverse peptide sequences recognizing the � boxB RNA hairpin were previously isolated from a library
encoding the 22-residue � N peptide with random amino acids at positions 13–22 using mRNA display. We
have statistically analyzed amino acid distributions in 65 unique sequences from rounds 11 and 12 of this
selection and evaluated the resulting structural and functional predictions by alanine-scanning mutagenesis
and circular dichroism spectrometry. This artificial sequence family has a consensus structure that continues
the bent � helix of � N up to position 17 when bound to � boxB. A charge pair (E14R15) and hydrophobic
patch (A21L22 or V21L22) have important functional roles in this context. Notably, amino acid covariance
reveals six specific pairs of random region positions with >95% significant linkage and strong overall helical
(i+1, i+3, and i+4) couplings. The covariance analysis suggests that (1) the sequence context of every
residue in each insert has been optimized, (2) selected sequences are local optima on a rugged fitness
landscape, and (3) it is possible to detect more subtle structural features with artificial protein sequence
families than natural homologs. Our results provide a framework for investigating the structures of in vitro
selected proteins by functional minimization, reselection, and covariance analysis.
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The methods available for the in vitro selection of novel
functional proteins from random sequence pools continue to
improve (Roberts 1999). The large library sizes (>1013 se-
quences) attainable with mRNA display have recently en-
abled the selection of peptides and proteins recognizing di-
verse biological molecules (Roberts and Szostak 1997; Cho
et al. 2000). Examples include: (1) ATP-binding proteins
with no detectable homology to known sequences (Keefe
and Szostak 2001), (2) streptavidin-binding polypeptides
containing the known HPQ sequence motif embedded in a
larger unknown functional context (Wilson et al. 2001), and

(3) RNA hairpin-binding peptides derived from the � N
protein with new loop-binding sequences (Barrick et al.
2001b). All of these sequences lack significant homology to
structural databases of known folds and domains. Conse-
quently, very little can be deduced about the molecular de-
tails of their functions short of pursuing a complete atomic
structure by NMR or X-ray crystallography.

In contrast, structural features of novel in vitro selected
nucleic acid sequences are routinely determined using a
rapid combination of sequence analysis and biochemical
experiments. The general procedure for characterizing a
pool of novel RNA sequences begins by finding the largest
deletions that preserve activity in order to identify a mini-
mal functional domain. Different sequences containing
these domains are grouped and aligned to generate artificial
sequence families (Ekland and Bartel 1995). A sequence
family can also be constructed by reselecting new sequences
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from a “doped” library where a small percentage of base
changes are introduced at each position in a single func-
tional sequence. This family forms the basis for secondary
structure prediction by an additive energy model (Zuker
2000). Nucleotide covariation in sequence families of suf-
ficient size is used to refine this model and predict tertiary
contacts (Gutell 1993). Finally, the functional model is ex-
perimentally tested using a variety of biochemical tech-
niques such as: (1) mutations disrupting and restoring pu-
tative base pairs to test secondary structure assignment, (2)
alkaline hydrolysis patterns to identify single-stranded re-
gions, and (3) nucleotide analog interference mapping to
precisely define chemical groups necessary for function
(Strobel and Shetty 1997). The final model from this type of
analysis represents all that is currently known about some
natural functional RNA families such as RNAse P (Frank
and Pace 1998) and the hairpin ribozyme (Fedor 2000). The
characterization of a biotin-binding RNA pseudoknot pro-
vides an unusually complete account of the sequence-di-
rected functional analysis of an in vitro selected RNA (Wil-
son et al. 1998).

We have demonstrated that it is possible to efficiently
isolate peptides and proteins that recognize specific RNA
structures from random sequence pools with mRNA display
(Liu et al. 2000; Barrick et al. 2001a). Previously, we ran-
domized the codons for amino acids 13–22 of the 22-residue
� N peptide and selected a library of 9×1012 sequences for
binding to � boxB or two other RNA hairpins differing by
a single loop base (Barrick et al. 2001b). Fifty-six of the 65
unique sequences we determined from rounds 11 and 12 of
this conserved-stem selection share a consensus arginine at
position 15 not present in wild-type � N. There are only 1.2
identical amino acids on average between two sequences at
the remaining nine randomized positions. Despite the se-
quence variety of the selected solutions, functional screen-
ing of ∼ 20 sequences indicated that every one specifically
binds � boxB. On this basis we hypothesized that all se-
lected peptides adopt a common structure with shared func-
tional contacts to recognize � boxB.

Here we applied sequence-directed functional analysis to
this artificial family of RNA-binding peptides. We exam-
ined trends in the distributions of selected amino acids on all
levels: over the whole randomized region, at each individual
position, and pairwise covariation between positions. To
experimentally evaluate our predictions we conducted ala-
nine-scanning mutagenesis on the winning peptide sequence
and took circular dichroism spectra of selected peptides in
complex with � boxB. On the basis of these results we
propose a consensus model for selected peptide binding and
comment on the observed distribution of solutions in se-
quence space. Functional analysis of artificial sequence
families reselected from perturbed libraries should prove
generally useful because it can detect subtle amino acid
covariance.

Results

We first compared the representation of each amino acid in
the 65 unique selected peptide sequences over the entire
random region to its frequency in the initial random library
(Fig. 1A). The almost complete lack of the two helix break-
ers glycine and proline in selected sequences motivated us
to look for a correlation between the helical propensities of
amino acids and their relative representations (Figs. 1B,
1C). Overrepresented amino acids (RKMQE) are generally
stronger helix formers than underrepresented amino acids
(WFVCGP). Asparagine is the only clear outlier to this
trend. Its unexpected 1.5-fold overrepresentation in the final
pool could be exaggerated by an unusually low frequency in
the initial pool. Although it has exceptional hydrogen bond-
ing potential, asparagine contacts are not especially com-
mon in natural RNA-binding protein structures (Allers and
Shamoo 2001). Surprisingly, alanine and leucine have not
been appreciably enriched by selection despite their high
helical propensities. In general, nonpolar side chains appear
to be slightly underrepresented relative to polar side chains
with similar helical propensities.

Calculating average helical stabilizations for the initial
and selected pools using the intrinsic tendencies of indi-
vidual amino acids to be in helical dihedral angles dramati-

Fig. 1. Overall amino acid representation in selected randomized regions.
(A) The composition in selected sequences (black) compared to the com-
position in the initial random library (gray). Z represents a stop codon. (B)
Percent changes in amino acid representations from the initial pool to the
selected pool. Shadings represent amino acids that are >30% overrepre-
sented (black) or underrepresented (white) in final sequences. (C) Amino
acids ordered by their relative intrinsic energetic costs of adopting helical
dihedral angles (Munoz and Serrano 1995).
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cally demonstrates the helical preference of selected pep-
tides (Munoz and Serrano 1995). The average energetic cost
of putting 10 amino acids with distributions typical of the
initial pool into helical conformations is 11.5 kcal/mol. The
same average cost for a selected peptide’s 10-residue ran-
dom region is only 9.4 kcal/mol. For comparison, the helical
cost for the corresponding residues in � N is 8.5 kcal/mol.
Seven of these 10 amino acids are part of a bent � helix
when � N is bound to � boxB (Legault et al. 1998; Schärpf
et al. 2000). The theoretical ∼ 2 kcal/mol stabilization of the
final pool indicates similar functional helix formation by
selected peptides.

We next looked for consensus amino acids that occur in
>20% of the unique selected sequences at individual posi-
tions (Fig. 2A). As previously noted, there are only a few
direct amino acid similarities among peptide sequences
from rounds 11 and 12 of the conserved stem selection
(Barrick et al. 2001b). Most importantly, arginine is present
at position 15 in 86% of the selected sequences. Leucine is
found in a majority of sequences at position 22, glutamate is
common at position 14, and position 21 is either alanine or
valine in many sequences. This analysis is unable to discern
whether a specific amino acid side chain or a more general
side-chain property is functionally required at a certain
position.

To discriminate between these possibilities, we catego-
rized the amino acids at each position based on their phys-
icochemical properties into positively charged (KR), nega-
tively charged (DE), hydrophobic (GAVLIMFP), and un-
charged polar (HNQSTCYW) groups and compared the
distributions to those of the initial round zero random pool
(Fig. 2B). Positions 13 and 16–20 have overall distributions
of amino acid types close to the initial pool: 18% positively

charged (+), 5% negatively charged (−), 38% hydrophobic
(H), and 39% uncharged polar (P). Still, there are distinct
preferences at each position for certain types of amino acids.
The best contrast is drawn between the polar and positive
charge proclivities of position 18 (26.2% +; 6.2% −; 20.0%
H; 47.7% P) and hydrophobic predilection of position 19
(15.4% +; 6.2% −; 44.6% H; 33.8% P). At positions 14, 15,
21, and 22 this categorization trivially emphasizes that one
or two amino acids dominate the distribution. If the side
chains appearing in more than 20% of the sequences are
reduced to their unselected levels, then the categorized dis-
tribution becomes close to that of the initial pool at positions
14, 15, and 21. This implies that these positions require a
specific amino acid side chain rather than a more relaxed
category of side chains. At position 22, after deemphasizing
leucine, 80% of the remaining side chains are hydrophobic.
Thus, the requirement here is for a nonpolar side chain,
although leucine is definitely preferred. In fact, only six
of the 65 sequences have polar side chains at position 22,
and four of these are the bulky aromatics tryptophan and
tyrosine.

In highly optimized protein sequences, the identity of an
amino acid at one position can significantly influence what
amino acids have high fitnesses at functionally related po-
sitions. In families of such sequences this coupling can be
detected by looking for covariance in the distributions of
amino acids at two positions. To investigate amino acid
covariance in our selected peptides, we calculated the mu-
tual information of each pair of positions in the random
region and determined the significance of the resulting val-
ues by comparing them to randomized data sets. Selected
peptides have an average pairwise linkage significance of
62.2%. This is elevated from the average 50% significance
within randomly shuffled sequence sets with 99.9% confi-
dence. Therefore, these 65 unique selected sequences ap-
pear to individually optimize a common set of positional
interactions.

The specific pairs of amino acids that are most interde-
pendent offer a higher-resolution statistical perspective on
the peptides’ consensus structure. There are three pairs of
positions with >99.9% significant linkage (Fig. 3A). Posi-
tions 14 and 15 show dramatic charge exclusion. Every
occurrence of negatively charged glutamate and aspartate
side chains at position 14 occurs when position 15 is argi-
nine. Conversely, only one in 56 sequences with Arg15 has
a positively charged side chain at position 14. The amino
acid distribution at position 18 is also highly dependent on
the presence of arginine at position 15. Tryptophan and
tyrosine are found at position 18 in only one of the 56
sequences with Arg15. However, position 18 is one of these
aromatic amino acids in half (4/8) of the sequences without
Arg15. Trp18 stacking by � N on the exposed final base of
the � boxB loop is an important hydrophobic contact in the
wild-type structure (Su et al. 1997). Apparently, Arg15 en-

Fig. 2. Amino acid categorization. (A) Amino acids occurring at a ran-
domized position in at least 20% of the unique sequences. (B) Percentage
of amino acid side chains at each randomized position classified as posi-
tively charged (KR, diagonal lines), negatively charged (DE, gray), hydro-
phobic (GAVLIMFP, white), and polar (HNQSTCYW, black). R0 is the
distribution in the initial (round zero) random pool.
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forces a bound peptide structure where this interaction is not
as favorable. Positions 21 and 22 form a hydrophobic patch.
They contain a remarkable number of AL and VL pairs: 24

compared to the 16.1 expected if there was no covariance.
Unfortunately, it is difficult to draw simple structural con-
clusions from the six other pairs of positions with >90%
significant linkage.

However, covariance does provide further evidence for
helicity that is independent of individual amino acid ten-
dencies. Plotting the strength of interactions with different
periodicities clearly shows that i+1, i+3, and i+4 interac-
tions are greatly overrepresented (Fig. 3B). These side
chains are in close proximity in an � helix: within a turn for
i+1 and between adjacent turns of the helix for i+3 and i+4.
Other periodicities, such as i+2 interactions of an extended
� strand configuration, appear at roughly the frequencies
expected by chance. If we assume that a completely helical
consensus has 100% significances for all i+3 and i+4 pairs
and that random 50% significances correspond to no helic-
ity, then we interpolate 4.2 and 5.3 helical residues for
selected random regions from i+3 and i+4 pairs, respec-
tively. This calculation does not take into account possible
biases in sequence sampling, the distribution of signifi-
cances across the random region, or the incompleteness of
measured helical covariances due to flanking constant re-
gions. Despite these simplifications, the average value of
4.7 helical residues agrees well with the value of 4.9 ob-
tained from a similar ad hoc interpolation based on the
average helical stabilization of the selected pool. For this
calculation, zero helicity corresponds to the helical stabili-
zation of the initial pool. The lower energy of putting resi-
dues 13–22 in helical dihedral angles for wild-type � N is
equated to seven helical residues based on its structure in
complex with � boxB (Legault et al. 1998; Schärpf et al.
2000).

The location of these ∼ 5 helical residues can be predicted
from several sequence characteristics. First, examining he-
lical stabilization at each position separately shows that po-
sitions 19–21 have significantly less stabilization than the
rest of the random region (Fig. 3C). This location agrees
with the simpler observation that helix-breaking glycine and
proline residues are confined to positions 19–22 except in a
single peptide. Prediction of helix location based on i+3 and
i+4 coupling strengths is limited by the inability to calculate
covariances with constant amino acids on the periphery of
the random region. Still, it is notable that position 17 has
very weak helical couplings to positions 20 and 21 that are
indicative of an amino acid in the final turn of a helix (Fig.
3A). Position 18 has weak helical linkages in both direc-
tions, and the i+1 covariance between positions 17 and 18 is
the least significant in the entire random region. This evi-
dence strongly suggests that on average the bent � helix of
the constant � N stem continues up to position 17 in selected
peptides.

The first 13 codons of the � N encoding DNA library
sequence accumulated mutations from the PCR and reverse-
transcription steps of selection because primers did not

Fig. 3. Pairwise amino acid covariance. (A) Pairwise covariance between
randomized positions. Connectors are labeled with the overall covariance
significance between the two positions. (B) Pairwise covariance periodic-
ity. The sum of significance scores for all amino acid pairs separated by a
certain distance across the whole random region (gray circles) is compared
to the average linkage in random sequences (black squares) and the maxi-
mum possible values (black line). (C) Average amino acid helical propen-
sities at each position. The three positions with the least favorable amino
acid distributions are shaded black. The line represents the average pro-
pensity of the initial pool distribution.
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overlap this region. Favorable mutations outside the random
region could potentially cause a population bottleneck and
decrease the effective pool complexity. Most observed mu-
tations are silent changes in the third, wobble base of a
codon. Most notably, the Ala3 GCC codon has T substituted
for the final C in 68% of the selected sequences, and the
AGG codon of Arg7 has its final G changed to A in 38%
of the sequences. The library used the same codons for
Ala12 and Arg11, but there is only one sequence with the
corresponding C to T transition and not a single sequence
has the G to A change. This pattern of silent mutations
could result from unintended selection for increased in vitro
translation or reverse-transcription efficiency if they alter
the secondary structure of the mRNA. Only one DNA se-
quence mutation causing a change in the encoded amino
acid sequence occurs in more than two sequences. Eleven
of the 87 total sequences have the initial G of the GAC
codon of Asp2 changed to A so that they instead encode
asparagines. This is a very conservative amino acid change
that is actually present in the sequence of the N peptide
from phage P22 (Tan et al. 1993). It is unlikely that the
incompletely penetrant substitutions in our selected se-
quences significantly affected the sequence composition
of the pool.

We used alanine-scanning mutagenesis of the most com-
mon selected peptide to verify the amino acid side-chain
requirements deduced from sequence analysis (Fig. 4).
Clone 11–36 was one of ten sequences coding for the ran-
dom region MERATLPQVL. We extended mutagenesis of
11–36 (1–29) into the C-terminal region past position 22 to
determine whether selected peptides utilized contacts to the
constant amino acids coded by the reverse transcription
primer (QLRNSCA) during selection and included the
R11A substitution as a control known to decrease affinity
by >50-fold (Su et al. 1997). The one native alanine residue
was mutated to glycine. Because alanine is the strongest
helix former and contains only a side-chain methyl group, a
decrease in mutant peptide binding must be due to removing

side-chain interactions rather than inhibiting helix forma-
tion. On the other hand, an increase in affinity could be due
to the extra stabilization of a helix by alanine outweighing
any stabilization the side chain contributes.

Every point mutation except P19A decreases the amount
of peptide binding to � boxB. As expected, the greatest
losses of binding from alanine substitutions in the random
region occur at positions with an amino acid consensus:
E14, R15, V21, and L22. The ubiquitous R15 side chain
makes the strongest contribution to binding of any random
region residue. Apparently, some amino acids in the con-
stant region participate in binding as much as random region
side chains. Still, compared to R11 the roughly 1.5- to
8-fold stabilization provided by any side chain at positions
13–26 is marginal. The single sequence closely related to
11–36 has a random region of MERAMLPRVL. Interest-
ingly, this less-abundant relative has fairly conservative
T17M and Q20R changes at the two positions where alanine
substitutions decrease binding least. The pairwise covari-
ance between positions 17 and 20 is also one of the least
significant couplings.

A threefold decrease in binding for the helix-destabilizing
A16G substitution shows that helix formation is important
for binding. The helix-destabilizing P19A substitution
causes an opposite almost twofold increase in binding. Why
wasn’t the P19A 11–36 mutant isolated during selection
when it binds more tightly than 11–36? The selection in-
corporated 10-fold higher concentrations of nonspecific
competitor tRNA compared to the assay used here, so a
decrease in specificity could be confused with an increase in
affinity. We believe the distinctive proline of 11–36 de-
creases its affinity for � boxB but grants much greater speci-
ficity against binding noncognate RNAs. In fact, the 11–36
(1–22) peptide discriminates against binding the other two
RNA hairpins used during selection better than all of the
other selected peptides we have tested, although it does
not have the highest affinity for � boxB (Barrick et al.
2001b). Sensing changes in helical propensities from resi-
dues outside the predicted � helix is not surprising in a
short peptide where flanking residues can greatly aid helix
formation.

We experimentally tested our prediction that the random
region adopts an � helical secondary strutcture when bound
to � boxB using circular dichroism spectometry on trun-
cated 22 residue versions of several selected peptides (Fig.
5). � N peptide is unstructured in solution. Upon binding �
boxB RNA, it folds into an � helix whose length can be
calculated from the induced ellipticity (Su et al. 1997). We
used the same procedure to calculate the number of helical
amino acids in selected peptides bound to � boxB (Table 1).
Each selected peptide exhibits <15% helicity when free in
solution. Our calculation of 16 total helical amino acids for
bound � N (1-22) agrees with the NMR structure that shows
a bent � helix extending from Q4 to K19 (Legault et al.

Fig. 4. Alanine-scanning mutagenesis of 11–36. White bars represent na-
tive 11–36 binding with and without immobilized target. Black bars indi-
cate that the mutated residue was encoded by the C-terminal primer region
kept constant during selection. (Two measurements for native 11–36 bind-
ings and one measurement for all mutants).
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1998; Schärpf et al. 2000). If we assume that positions 1–12
contribute the same 9 helical amino acids to the total signal
in selected peptides, as they do in wild-type � N, then the
five peptides tested have 4–6 helical residues within posi-
tions 13–22. The average value of 4.6 agrees surprisingly
well with our prediction of ∼ 5 helical residues. Peptide trun-
cation to position 22 would destabilize helical structure in
the C terminal residues of the random region. Thus, the
observed helicity must also reside at the beginning of the
random region. Apparently the end of the � N stem initiated
� helix always extends at least one residue past the con-
served arginine to position 16 and can continue as far as
position 18 in individual selected peptides. The heterogene-
ity of helix lengths hints that there are several idiosyncratic
ways to extend the � N stem mode of binding.

Discussion

Our sequence-directed biochemical analysis has provided a
rough structural model for how the R15 peptide family rec-
ognizes the � boxB RNA hairpin. On average, the bent �
helix of the wild-type � N peptide stem continues halfway
through the random region to position 17 in selected pep-
tides. Arg15 is within this helix in every individual se-
quence we tested and clearly makes the most important
RNA contact of any random region side chain. It probably
recognizes a specific pocket between negatively charged
phosphates of the � boxB RNA loop backbone, as do Arg8
and Arg11 of the � N stem (Legault et al. 1998; Schärpf et
al. 2000). The adjacent negatively charged Glu14 side chain
probably prevents nonspecific binding by patterning the
electrostatic surface of the peptide rather than directly par-
ticipating in RNA recognition. The hydrophobic AL or VL
pair at positions 21 and 22 may directly pack against ex-
posed bases in the RNA loop or cooperate with the func-
tional side chains in the C-terminal constant region.

We previously demonstrated that adding high concentra-
tions of tRNA during binding to � boxB effectively com-
petes away peptide sequences that have nonspecific RNA
affinity (Barrick et al. 2001a). These conditions dramati-
cally increase the enrichment of specific RNA-binding pep-
tides during a round of selection, presumably because they
make the fitness landscape more rugged by increasing the
steepness of its optima. Many of our new observations sup-
port this conclusion. (1) Site-directed mutagenesis shows
that every single alanine mutant in the random region of
11–36 changes the amount of peptide binding by at least
1.5-fold. A smooth fitness landscape would have neutral
mutations. (2) Our initial library encoded almost all of the
1013 possible 10-amino acid sequences, but there was only
a single pair of unique random regions that shared >50%
identity out of 87 total sequences. If the landscape were
smooth, we would expect to isolate considerably more re-
lated sequences relative to unique optimal sequences. (3)
Strong pairwise covariance scores between random region

Table 1. Helicity of selected peptides bound to � boxB RNAa

Peptide sequence −[�]222 #AA

� N MDAQTRRRERRAEKQAQWKAAN 25,800 16.0
11–10 ––––––––––––ALRNEKFWVV 21,100 13.1
11–36 ––––––––––––MERATLPQVL 20,600 12.8
12–39 ––––––––––––LQRSRARHAL 24,100 14.9
12–47 ––––––––––––LERTKLEKAL 21,000 13.0
12–50 ––––––––––––NMRMYRSLVI 22,700 14.1

a The first 12 amino acids are identical in all peptides. [�]222 is the molar
ellipticity per amino acid residue in deg cm2 dmol−1 from the bound pep-
tide difference spectrum. #AA is the number of helical amino acids
calculated from [�]222. We estimate a <5% error in the measurement of
[�]222. There may be as high as a 15% error in #AA for � N, 11–10, and
12–50 due to aromatic side chain contributions to [�]222.

Fig. 5. Circular dichroism spectra of wild-type � N and 11–36 peptides
bound to � boxB RNA. Free peptide (thick black line), free boxB RNA
(thin black line), and peptide-RNA complex (thin gray line) spectra are
shown. The difference spectrum of bound peptide (thick gray line) is the
peptide-RNA complex spectrum minus the free boxB RNA and free pep-
tide spectra. The positive peak in the bound peptide spectrum around 280
nm is induced RNA structure (Su et al. 1997). [�] is the molar ellipticity per
amino acid residue in the peptide for all spectra, including free RNA.
Bound peptide spectra of 11–10, 12–39, 12–47, and 12–50 have the same
shape as � N and 11–36 (data not shown).
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positions indicate that the function of a selected amino acid
is highly dependent on its sequence context. Simulations of
NK fitness landscape models have established that greater
interdependence between individual amino acid contribu-
tions to fitness creates a more rugged landscape (Kauffman
1993).

Serial selection is a stringent optimization method: A
sequence with only 1.5-fold better performance than an-
other will be represented ∼ 130 times as often in the pool
after 12 rounds of selection. With the known ruggedness of
the fitness landscape, we therefore expect almost every pep-
tide remaining in the selected pool to be a local optimum in
sequence space. The dearth of close sequence relatives in
the selected pool and decrease in binding accompanying all
alanine substitutions in 11–36 (except P19A for the reasons
discussed) agree with this hypothesis. Selected R15 pep-
tides are clustered in sequence space by shared side chains
at four positions. Within these general constraints, they ap-
pear to reach their individual fitness peaks by optimizing
idiosyncratic coupled “weak interactions”. The apparent
similarity of the absolute fitness at each local optimum is
exaggerated: Selection conditions were not stringent enough
to efficiently separate peptides past a certain specificity/
affinity threshold. After further rounds of selection with
increased magnesium concentration and decreased � boxB
concentration, a rarer sequence consensus without R15
grows to dominate the pool (J. Barrick and R. Roberts,
in prep.).

The methods detailed here provide a general framework
for a sequence-directed approach to investigating the struc-
ture and function of novel proteins. The common binding
mode of the selected peptides and enforced alignment of
their short random regions by conserved flanking sequences
made our final RNA-binding peptide pool a suitable se-
quence family for immediate analysis. Generally, functional
minimization followed by reselection from a “doped” li-
brary based on a single selected sequence would be used
to generate an artificial sequence family. This is precisely
the nucleic acid paradigm (Ellington and Szostak 1990;
Bartel et al. 1991). The greater conformational flexibility
and chemical diversity of amino acids did not hopelessly
complicate an analogous prediction and experimental evalu-
ation of model structures for our peptides. However, de
novo and similarity-based structure prediction algorithms
for longer protein sequences are not as reliable or straight-
forward as those available for nucleic acids. Consequently,
information from amino acid covariance in the artificial
sequence family is critical for creating an initial structural
model.

Covariance analysis has been applied to independently
folded proteins in several contexts. Nonadditivity in ther-
modynamic mutant cycles constructed by site-directed mu-
tagenesis has been used to determine pairs of interacting
residues at protein-protein interfaces in the Shaker K+ chan-

nel/scorpion toxin (Hidalgo and MacKinnon 1995) and bar-
nase/barstar complexes (Schreiber and Fersht 1995). Co-
variance has been examined in a number of natural protein
families. Originally, it was used to assess functional linkage
in the highly variable V3 loop of the HIV-1 envelope pro-
tein (Korber et al. 1993). It was subsequently applied to
protein families with known structures, revealing salt
bridges and coupled amino acids involved in DNA binding
in homeodomains (Clarke 1995), clusters of coupled resi-
dues in the hydrophobic core of RNA recognition motifs
(Crowder et al. 2001), and long-range energetic coupling
through the core of a PDZ domain family (Lockless and
Ranganathan 1999). The predictive power of covariance in
these data sets is limited by the number of sequences that
can be constructed by site-directed mutagenesis or the qual-
ity of alignment and structural conservation within an evo-
lutionarily related sequence family.

An optimal randomized library for detecting covariance
will maximize its information content by introducing as
many mutations as possible while ensuring that its se-
quences remain functionally equivalent. One strategy, se-
lection of functional sequences from alanine-doped librar-
ies, has already proven useful for combinatorial alanine-
scanning mutagenesis (Weiss et al. 2000). Although these
perturbed libraries have been used primarily to determine
the statistical energies of many single alanine mutants si-
multaneously, energetic nonadditivity in pairs of mutations
indicating functional linkage has been noted in selected se-
quences (Gregoret and Sauer 1993). Because artificial se-
quence families are unambiguously aligned and structurally
homogeneous by construction, there is much less statistical
noise in their covariance scores compared to natural se-
quence families. Our observation of secondary structure
linkages for the first time hints at the more subtle features
they can detect. Theoretically, the predictive power of co-
variance analysis in reselected sequence families is only
limited by the initial library complexity and number of
clones that can be reasonably sequenced. Covariance analy-
sis cannot replace the wealth of information generated by a
full structure determination, but it can provide a rapid way
of garnering some structural information that can be vali-
dated by simpler experimental techniques. Artificial protein
sequence families may additionally prove useful for cheaply
improving the coverage of sequence-to-structure databases
and investigating the evolutionary relationships of protein
folds.

Materials and methods

Basic sequence analysis

Of 87 individual sequenced clones from the round 11 and 12 pools
of the selection, 65 unique sequences with different amino acids in
at least three of the 10 randomized positions were chosen to cal-
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culate all statistics. Only one sequence (clone 12–136) with a
unique random region was excluded by this procedure. The initial
pool had NNS codons (N � A, T, C, G; S � C, G) for the 10
randomized amino acids (13–22). The empirical distribution of
bases at N and S positions was determined by sequencing 14
members of the initial pool. We extrapolated the representation of
each amino acid in the initial pool from NNS codons with these
distributions (N � 17.9% A, 30.0% T, 23.6% C, 28.6% G;
S � 40.7% C, 59.3% G) and the standard mammalian genetic
code. The intrinsic helical propensities of the amino acids tabu-
lated by Munoz and Serrano (1995) were used to evaluate helical
trends within selected sequences. Secondary structure prediction
algorithms such as GORIV (Garnier et al. 1996) were not useful
for investigating the bound conformation of selected peptides as
they typically predict the entire random region to be helical.

Pairwise covariance analysis

Covariance between pairs of positions in the randomized region of
the 65 unique selected peptide sequences was calculated according
to the standard definition of mutual information (Korber et al.
1993). It quantifies interdependence between two positions as a
log-odds score relating the number of times an amino acid pair is
actually observed at two positions to the number of times it would
be expected to randomly appear if the amino acid distributions at
each position were independent. To determine the significance of
the resulting values, scores were also calculated for 100,000 ran-
dom sets of 65 sequences generated by shuffling amino acids
between sequences while preserving their position within the ran-
dom region. The significance of a linkage score was determined
from its rank order in these lists of random scores.

Alanine-scanning mutagenesis of 11–36

Mutant peptides were synthesized through standard PCR, in vitro
transcription with T7 RNA polymerase, and in vitro translation in
rabbit reticulocyte lysate (Barrick et al. 2001a). To construct site-
directed mutants, the 3� primer 21.108 was replaced with a primer
encoding the four codons before the substituted amino acid, the
mutated codon (GCC for alanine and GGC glycine), and the entire
C-terminal peptide sequence. Quantitation of affinity-precipitated
peptides was as previously described for library 3 peptides using
biotinylated � boxB (Barrick et al. 2001b). Here we used 6 �L of
crude in vitro translation and included 5 × 500 �L washes with N
binding buffer.

Circular dichroism spectrometry

� boxB RNA (5�- GCCCUGAAAAAGGGCC) was prepared by
T7 transcription. Fmoc or Boc chemistry was used to chemically
synthesize truncated selected peptides (aa 1–22) with free acid and
amine termini. Peptides were purified to a single peak by reversed-
phase HPLC, and their identities were confirmed by mass spec-
trometry. Circular dichroism spectra were recorded with an Aviv
62 DS CD spectrophotometer at 25°C. Free peptide (10 �M–20
�M), free RNA (5 �M–7 �M), and RNA-peptide complex spectra
(5�M–7 �M RNA with 1.2× peptide) were taken in 10 mM po-
tassium phosphate buffer (pH 7.8). A bound peptide’s difference
spectrum was determined by subtracting the spectra of an equiva-
lent amount of free RNA and free peptide from the spectrum of the
RNA-peptide complex (Su et al. 1997). The fractional helicities of
free and bound peptides were calculated from measurements of
their ellipticity at 222 nm (Chakrabartty et al. 1994). Following
this treatment, we used [�]222 values of 0 and −35,500 deg cm2

dmol−1 per amino acid residue for 0% and 100% helicity. Aro-
matic Phe, Tyr and Trp residues make additional contributions to
[�]222 when they are in � helical model peptides (Chakrabartty
et al. 1993). We did not correct our calculations of the number of
helical amino acids for this effect because we are unsure of its
magnitude in the context of � N and selected peptides. Attempting
to correct for Trp and Tyr by assuming a linear relation between a
peptide’s induced aromatic signal and fractional helicity (Chakrab-
artty et al. 1994) did not change the calculated average extent of
helicity into the random region (data not shown).

Electronic supplemental material

Supplemental material includes tables of the 87 clone sequences
analyzed and covariance significance scores for every amino acid
pair in the random region.
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