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Abstract

The distance-dependent structure-derived potentials developed so far all employed a reference state that can
be characterized as a residue (atom)-averaged state. Here, we establish a new reference state called the
distance-scaled, finite ideal-gas reference (DFIRE) state. The reference state is used to construct a residue-
specific all-atom potential of mean force from a database of 1011 nonhomologous (less than 30% homology)
protein structures with resolution less than 2 Å. The new all-atom potential recognizes more native proteins
from 32 multiple decoy sets, and raises an average Z-score by 1.4 units more than two previously developed,
residue-specific, all-atom knowledge-based potentials. When only backbone and C� atoms are used in
scoring, the performance of the DFIRE-based potential, although is worse than that of the all-atom version,
is comparable to those of the previously developed potentials on the all-atom level. In addition, the
DFIRE-based all-atom potential provides the most accurate prediction of the stabilities of 895 mutants
among three knowledge-based all-atom potentials. Comparison with several physical-based potentials is
made.
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The solution of the protein folding problem requires an
accurate potential that describes the interactions among dif-
ferent amino acid residues. The potential that would yield a
complete understanding of the folding phenomena should
be derived from the laws of physics. However, the use of
such physical-based potentials (Brooks et al. 1983; Weiner
et al. 1986; Jorgensen et al. 1996; Scott et al.1999) for ab
initio folding studies is limited by available computing
power (Duan and Kollman 1998). Their applications to the
recognition of native structures from nonnative conforma-
tions (Moult 1997; Hao and Scheraga 1998; Lazaridis and
Karplus 2000; Petrey and Honig 2000; Wallqvist et al.

2002), however, yielded results comparable to knowledge-
based statistical potentials that extract interactions directly
from known protein structures (Tanaka and Scheraga 1976).
Knowledge-based statistical potentials are attractive be-
cause they are simple and easy to use. Knowledge-based
potentials can be categorized into distance-independent con-
tact energies (Miyazawa and Jernigan 1985; DeBolt and
Skolnick 1996; Zhang et al. 1997; Skolnick et al. 2000) and
distance-dependent potentials (Hendlich et al. 1990; Sippl
1990; Jones et al. 1992; Samudrala and Moult 1998; Lu and
Skolnick 2001). Both residue level (Miyazawa and Jernigan
1985; Hendlich et al. 1990; Sippl 1990; Jones et al. 1992)
and atomic level (DeBolt and Skolnick 1996; Zhang et al.
1997; Samudrala and Moult 1998; Lu and Skolnick 2001)
potentials were developed and applied to fold recognition
and assessment (Hendlich et al. 1990; Sippl 1990; Casari
and Sippl 1992; Jones et al. 1992; Bryant and Lawrence
1993; Samudrala and Moult 1998; Miyazawa and Jernigan
1999; Lu and Skolnick 2001; Melo et al. 2002), structure
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predictions (Sun 1993; Simons et al. 1997; Skolnick et al.
1997; Lee et al. 1999; Tobi and Elber 2000; Vendruscolo et
al. 2000; Pillardy et al. 2001), and validations (Luthy et al.
1992; Sippl 1993; MacArthur et al. 1994; Rojnuckarin and
Subramaniam 1999), docking and binding (Pellegrini et al.
1995; Wallqvist et al. 1995; Zhang et al. 1997), and muta-
tion-induced changes in stability (Gilis and Rooman 1996,
1997; Zhang et al. 1997).

This work focuses on distance-dependent, residue-spe-
cific, all-atom, knowledge-based potentials. This is because
in protein–structure selections, all-atom–based potentials
perform better than residue-based potentials (Samudrala and
Moult 1998; Lu and Skolnick 2001), and distance-depen-
dent potentials better than distance-independent ones (Melo
et al. 2002). The derivation of a distance-dependent, pair-
wise, statistical potential ū(i,j,r) starts from a common equa-
tion given by

u�i,j,r� = − RT ln
Nobs�i,j,r�

Nexp�i,j,r�
( 1)

where R is the gas constant, T is the temperature, Nobs(i,j,r)
is the observed number of atomic pairs (i,j) within a distance
shell r − �r/2 to r + �r/2 in a database of folded structures,
and Nexp(i,j,r) is the expected number of atomic pairs (i,j) in
the same distance shell if there were no interactions between
atoms (the reference state). Clearly, the method used to
calculate Nexp(i,j,r) is what makes one poten-
tial differ from another because the method to calculate
Nobs(i,j,r) is the same (except minor differences in database
and bin procedures). Samudrala and Moult (1998) used a
conditional probability function

Nexp�i,j,r� =
Nobs�i,j�

Ntotal
Nobs�r�, ( 2)

where Nobs(r) ≡ ∑ i,j Nobs(i,j,r), Nobs(i,j) ≡ ∑ r Nobs(i,j,r) and
Ntotal ≡ ∑ i,j,r Nobs(i,j,r). Lu and Skolnick (2001) employed a
quasi-chemical approximation:

Nexp�i,j,r� = �i�jNobs�r�, ( 3)

where �k is the mole fraction of atom type k. The common
approximation made by the above two potentials is that ∑ i,j

Nexp(i,j,r) ≡ Nobs(r). This approximation has its origin in the
“uniform density” reference state used by Sippl (1990) to
derive the residue-based, distance-dependent potential. In
this approximation, the total number of pairs in any given
distance shell for a reference state is the same as that for
folded proteins. In other words, the distance dependence of
the pair probability distribution of the reference state is an
averaged distribution over all residue or atomic pairs. This
reference state is a noninteracting ideal-gas reference state

only if the average interaction of all residue or atomic pairs
is zero (i.e., attractive and repulsive interactions cancel each
other). However, it is highly unlikely that attractive and
repulsive interactions could cancel each other exactly.
These missing residual interactions may well be important
for an accurate potential.

To explore the missing residual interactions, we establish
a noninteracting reference state without using the above-
mentioned assumption. This is done by using uniformly
distributed noninteracting points in finite spheres. The ref-
erence state coupled with a simple distance scaling method
is employed to derive an all-atom potential of mean force
from 1011 known protein structures (Hobohm et al. 1992).
It is shown that the new atomic potential is slightly more
attractive than other knowledge-based all-atom potentials
(Samudrala and Moult 1998; Lu and Skolnick 2001). This
small residual interaction leads to an improved potential of
mean force for structure selections from single and multiple
decoy sets and for the prediction of the changes in the
stabilities of 895 mutants.

Methods

Fundamental equations of statistical mechanics

The observed number of pairs of atoms i and j, Nobs(i,j,r),
between spatial distances r − �r/2 and r + �r/2 is related to
the pair distribution function gij(r) as follows (Friedman
1985).

Nobs�i,j,r� =
1

V
NiNjgij�r��4�r2�r�, ( 4)

where V is the volume of the system and Ni and Nj are the
number of atoms i and j, respectively. Because the atom–
atom potential of mean force, ū(i,j,r), is equal to −RTln gij(r)
(Friedman 1985), we have

u�i,j,r� = − RT ln
Nobs�i,j,r�V

NiNj�4�r2�r�
( 5)

When the interaction is turned off (ū(i,j,r) � 0), we have

Nexp�i,j,r� = Nobs�i,j,r� = NiNj�4�r2�r�V�. ( 6)

This is a simple expression for an ideal mixture of atoms i
and j that have a uniform number of densities of Ni/V and
Nj/V, respectively.

Finite ideal-gas reference state

The above equations from liquid-state statistical mechanics
cannot be directly applied to proteins. Proteins are finite
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systems, and as a result, Nexp(i,j,r) will not increase in r2 as
in an infinite system (Equation 6). We remedy this problem
by assuming that Nexp(i,j,r) increases in r� with a to-be-
determined constant �. Thus, Equation 6 becomes

Nexp�i,j,r� = NiNj�4�r��r�V�. ( 7)

This leads to (cf. Equation 5)

u�i,j,r� = − RT ln
Nobs�i,j,r�V

NiNj�4�r��r�
. ( 8)

Equation 8 can be further simplified by assuming that
ū(i,j,r) is a short-range interaction with a cutoff distance of
rcut. That is, ū(i,j,r ) � 0 for r � rcut. In this case, Equation
8 can be rewritten in terms of variables at r � rcut as below:

u�i,j,r� = − �RT ln
Nobs�i,j,r�

� r

rcut
�� �r

�rcut
Nobs�i,j,rcut�

. ( 9)

Here, a constant factor � is placed in front of RT to facilitate
a quantitative comparison with mutation-induced changes in
stability. This factor is needed because temperature is a free
parameter in potentials derived from static structures. Equa-
tion 9 implies a new equation for Nexp(i,j,r):

Nexp�i,j,r� = �r�rcut�
���r��rcut�Nobs�i,j,rcut�. ( 10)

Unlike early expressions for Nexp(i,j,r) (Equations 2 and 3),
this equation does not contain any distance-dependent in-
formation from protein structures but is a natural extension
of the ideal-gas reference state (Equation 6) to a finite sys-
tem. We shall call this reference state the Distance-scaled,
Finite Ideal-gas REference (DFIRE) state. A potential gen-
erated from Equation 9 is called the DFIRE-based potential.
DFIRE-A and DFIRE-B denote the residue-specific all-
atom–based and backbone + C� atom-based potentials, re-
spectively.

Structural database

The common approximation used in all structure-derived
potentials is that the structures of different proteins are be-
long to an ensemble of the thermodynamically equilibrated
structures of one system. We employ a structural data-
base of 1011 nonhomologous (less than 30% homology)
proteins with resolution <2 Å that was collected by Hobohm
et al. (1992) (http://chaos.fccc.edu/research/labs/dunbrack/
culledpdb.html). The DFIRE-based potentials are generated
by calculating the total number of observed i,j pairs
Nobs(i,j,r) from all 1011 proteins. Contacting pairs between

the atoms within the same residue are excluded from the
statistics. If Nobs(i,j,r) is found to be zero, the potential of
mean force is set to 10� kcal/mole.

One can also calculate Nobs(i,j,r) and ū(i,j,r) for each
protein and then obtain an ensemble-averaged potential af-
terward. We do not use this approach because the number of
pairs in a single protein is too small to yield accurate sta-
tistical results for individual (Lu and Skolnick 2001).

Atom types, rcut and bin procedure

As in Samudrala and Moult (1998) and Lu and Skolnick
(2001), residue-specific heavy atom types were used. This
results in 167 atom types in DFIRE-A. In DFIRE-B, only
backbone and C� atom types are employed. In this paper,
the cutoff distance rcut is set to 14.5 Å. The bin width � r is
2 Å for r < 2 Å, 0.5 Å for 2 Å < r < 8 Å, and 1 Å for 8
Å < r < 15 Å. The total number of bins is 20. In this work,
no attempt is made to optimize bin width and rcut for better
performance (also see discussion below).

The value of �

The value of � is estimated from uniformly distributed
points in 1011 spheres; each corresponds to a protein. The
radius of each sphere is cRg, and the sphere contains an
evenly distributed nhv points. Here, c is a to-be-determined
constant, Rg and nhv are the radius of gyration and the num-
ber of heavy atoms of the corresponding protein, respec-
tively. Constant c is determined by the number of atomic
pairs in a noninteracting uniform system. The latter can be
calculated from the number of atomic pairs in 1011 protein
structures in the cutoff distance shell of 14–15 Å because at
that distance, we assumed zero interactions between atoms.
There are about 61 million atomic pairs for 1011 proteins. c
is found to be 1.17 by setting the number of atomic pairs in
1011 spheres in the 14–15 Å distance shell to 61 million.

The number of pairs as a function of spatial separation,
N(r), can be obtained from the evenly distributed points in
the 1011 spheres. We further define the reduced distance-
dependent function f(r) (�N(r)/r�) and the relative fluctua-
tion, � of f(r).

� = �1

n�r�f�r� − f �2�f

where f � ∑ r f(r)/n, and n is the total number of distance
shells. The relative fluctuation � as a function of � and f(r)
as function of r are shown in Figures 1A and 1B, respec-
tively. The minimum of � corresponds to � � 1.57
(1.57 ≈ �/2 by coincidence). Because there is no distinction
between different atoms in the ideal-gas limit, the value of

Zhou and Zhou

2716 Protein Science, vol. 11



1.57 is applied to any atomic pair. We also assess the new
potential at � � 1.45 and 1.70 to ensure that � � 1.57
gives the best performance. The positive outcome (see be-
low) validates the overall approach used to obtain �.

One approximation made in this derivation is that the
contributions of backbone entropy and the structure of de-
natured state to stability are not included. These terms are
difficult to evaluate, and are not included in other distance-
dependent knowledge-based potentials as well.

Structure selections from decoys and
stability prediction

In structure selections from decoy sets, the total atom–atom
potential of mean force, G, is calculated for each decoy

G =
1

2 �
i,j,r

u�i,j,r� ( 11)

where the summation is over atomic pairs that are not in the
same residue. The native state is correctly identified if its
structure has the lowest value of G. Z-score is defined as
(< G > −Gnative/ √ < G2 > − < G >2, where 〈 〉 denotes the
average over all decoy structures of a given native protein,
and Gnative is the total atom–atom potential of mean force of
the native structure. Z-score is a quantitative measure of the
free-energy bias against nonnative conformations.

The predicted free energy change due to mutation is cal-
culated by Gmutant − Gnative assuming no structural relax-
ation after mutations. Only those mutations that have a de-
creased number of atoms are used in prediction. This is to
avoid the possible strains associated with small-to-large mu-
tations (Liu et al. 2000) and the uncertainty about the place-
ment of extra atoms.

The RAPDF and atomic KBP potentials

To compare the DFIRE-based potentials with the RAPDF
(Samudrala and Moult 1998) and atomic KBP (Lu and Skol-
nick 2001) potentials, we regenerate the two potentials us-
ing the procedures described below. For RAPDF
(Samudrala and Moult 1998), the first bin covers 0–3.0 Å,
the distance between 3.0–20 Å is binned every 1 Å. The
total number of bins is 18. All 18 bins with a cutoff distance
of 20 Å are used for scoring. For atomic KBP (Lu and
Skolnick 2001), the distance between 1.5 to 14.5 Å, is
binned every 1 Å and the last bin is from 14.5 Å to infinite.
The total number of bins is 14. The first and second se-
quence neighbors are excluded while backbone atoms are
included in counting contacts. When used in scoring, only
the bins covering 3.5–6.5 Å are used. In all cases, contacts
between atoms within a single residue are excluded from the
counts and scoring. In case of zero pairs, both potentials are
set to be 2� kcal/mole. The structural database is the 1011
structures described above for the DFIRE-based potentials
rather than 265 proteins used in RAPDF and 1291 proteins
used in atomic KBP in respective original publications. As
we discussed below, the change of the database has little
effect on the overall accuracy of the RAPDF and atomic
KBP potentials.

Results

Single decoy sets

In this paper, both single and multiple decoy sets are used to
assess DFIRE-based potentials. We did not exclude the ho-
mologous proteins to the test decoy sets from the 1011
training database because the exclusion has very little effect

Fig. 1. Scaling behavior of uniformly distributed heavy atoms in 1011
spheres. Number of pairs was counted in every 1 Å shell, and r is the
middle point of the shell. (a) Relative fluctuation �, and (b) reduced dis-
tance-dependent function f(r) � N(r)/r�.
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on the results. For example, 1ctf is in the training database
and also in many of the decoy sets to test the potential; the
results for 1ctf with a database that includes or excludes 1ctf
are essentially the same. The large database of 1011 proteins
makes the contribution of a single protein to the number of
pairs observed too small to have any bias toward the protein.

The single decoy sets are obtained from the PROSTAR
website, http://prostar.carb.nist.gov/. Results are compiled
in Table 1. For decoy sets misfold (Holm and Sander 1992),
asilomar (Mosimann et al. 1995), pdberr & sgpa (Avbelj et
al. 1990), all three potentials (RAPDF, Atomic KBP, and
DFIRE-A) achieved 100% correct identifications.

The worst performance for all three potentials is in the ifu
decoy set (Pedersen and Moult 1997). DFIRE-A is slightly
better than RAPDF and KBP. It identified 34 out of 44,
compared to 31 for RAPDF and 33 for atomic KBP. The
results of RAPDF and atomic KBP shown here are identical
to the performance of the original RAPDF and atomic KBP
potentials derived from different structural databases (Lu
and Skolnick 2001). The relatively poor performance made
by the knowledge-based potentials in the ifu decoy set is
perhaps because the “independent folding units” are peptide
fragments (between 10–20 residues) that may not be fold-
able when isolated (Samudrala and Moult 1998).

Multiple decoy sets

The Park and Levitt 4state_reduced decoy set contains
seven proteins and each has 600 to 700 decoys. The set was
built using a 4-state off-lattice model (Park and Levitt
1996). RAPDF and atomic KBP correctly identified all
seven proteins (Table 2, A). DFIRE-A identified six out
seven proteins. Although the native state of 3icb was ranked
as the fourth lowest energy by DFIRE-A, three lower energy
decoys all have rmsd within 1.7 Å from the 3icb native

structure that has a 2.3 Å resolution. Moreover, the native
structure 4icb, a higher resolution version (1.6 Å) of the
same protein (Svensson et al. 1992), is correctly identified
as the lowest energy by DFIRE-A. In term of the bias
against nonnative structures, DFIRE-A has the highest Z-
score (3.49), followed by atomic KBP (3.24), and RAPDF
(3.01).

DFIRE-A, atomic KBP, and RAPDF are tested using 25
additional multiple decoy sets listed on the website http://
dd.stanford.edu/. It includes fisa (Simons et al. 1997),
fisa_casp3 (Simons et al. 1997), lmds, and lattice_ssfit (Xia
et al. 2000). The fisa (Simons et al. 1997), fisa_casp3 (Si-

mons et al. 1997), and lmds decoy sets are more challenging
than the 4state_reduced and lattice_ssfit decoy sets (Table
2, B–E). The relative performance of RAPDF to that of
atomic KBP is different for different decoy sets. Atomic
KBP performs better in the 4state_reduced and lmds decoy
sets, while RAPDF is better in the fisa, fisa_casp3, and
lattice_ssfit sets. Thus, many decoy sets are needed to be
certain about the overall quality of a potential. DFIRE-A is
consistently the best based on the average Z-core and the
number of correctly identified native structures. In sum-
mary, DFIRE-A significantly improves over the previous
potentials in the multiple decoy sets (Table 2). The most
significant improvement is in the average Z-score. The av-
erage Z-score is 4.27 for DFIRE-A, compared to 2.83 for
RAPDF and 2.87 for atomic KBP. Further, it correctly iden-
tified 27 native conformations out of 32 decoy sets. The
corresponding number is 22 for RAPDF and 18 for atomic
KBP, respectively. Only five proteins were missed by
DFIRE-A. They are 3icb in 4state_reduced, 1fc2 in fisa,
1b0n-B, 1bba, and 1fc2 in lmds. The failure to identify 3icb
is not really a failure, as discussed above. The other four
proteins were missed by all three potentials. For example,
1bba and 1fc2 were all ranked as either the 500th or the

Table 1. Number of correctly identified decoys from single decoy sets by
different potentials

RAPDFa Atomic KBPb DFIRE-Ac DFIRE-A1.45
d DFIRE-A1.70

e DFIRE-Bf

Misfold 25/25g 25/25 25/25 25/25 25/25 23/25
Asilomarh 33/33 33/33 33/33 33/33 33/33 32/33
Pdberr & sgpa 5/5 5/5 5/5 5/5 5/5 5/5
Ifu 31/44 33/44 34/44 32/44 34/44 18/44

a All atom potential from Samudrala and Moult (1998).
b All atom potential from Lu and Skolnick (2001).
c All-atom DFIRE-based potential (� � 1.57).
d DFIRE-based potential (� � 1.45)
e DFIRE-based potential (� � 1.70)
f DFIRE-based potential (� � 1.57) for backbone and C� atoms.
g The first number and the second number in each cell are the number of correctly identified decoys and
the total number of decoys, respectively.
h As in (Petrey and Honig, 2000), the native structure of protein NDK is replaced by the structure of PDB
code 1nue; the following eight decoys were excluded from the original set because of mismatched
sequences: crabpi_vriend, edn_biosym, edn_weber, mchpr_vihinen, ndk_abagyan, ndk_vihenen,
p450_abagyan, p450_weber.
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501st lowest energy. All residue-based statistical potentials
also failed to recognize these four proteins (Tobi and Elber
2000). The reason for this massive failure is not entirely
clear. Perhaps, this is because 1bba is an atypical small
protein without a significant hydrophobic core while the

other three proteins have many missing coordinates (�15
residues) in their native structures, and the number of resi-
dues with coordinates is less than 45.

Another multiple decoy set is loops (Moult and James
1986; Fidelis et al. 1994) from http://prostar.carb.nist.gov/.

Table 2. Native rank and Z-score of different potentials using multiple decoy sets

RAPDF Atomic KBP DFIRE-A DFIRE-A1.45 DFIRE-A1.70 DFIRE-B

(A) 4state-reduceda

1ctf 1/3.26b 1/3.53 1/3.86 1/3.33 1/4.01 1/3.03
1r69 1/3.49 1/3.76 1/4.23 1/3.76 1/4.10 1/2.95
1sn3 1/3.26 1/3.50 1/3.79 1/3.83 1/3.13 1/3.40
2cro 1/2.93 1/2.91 1/3.29 1/2.97 1/3.24 2/2.74
3icb 1/2.22 1/2.41 4/2.28c 1/2.15 4/2.29 24/1.68
4pti 1/3.12 1/3.47 1/3.62 1/3.54 1/3.16 1/3.15
4rxn 1/2.79 1/3.12 1/3.33 1/2.78 1/3.42 19/1.88
Z̄d 3.01 3.24 3.49 3.19 3.34 2.69

(B) fisae

1fc2 497/−2.74 413/−1.05 254/0.23 406/−0.91 60/1.05 1/2.76
1hdd-C 17/2.00 25/1.78 1/4.50 1/3.77 1/4.45 1/6.76
2cro 14/1.93 24/1.64 1/6.33 1/5.47 1/6.08 1/7.84
4icb 1/3.89 6/2.46 1/6.91 1/6.34 1/6.96 1/8.47
Z̄d 1.27 1.21 4.49 3.67 4.64 6.46

(C) fisa_caspf

1bg8-A 1/4.39 2/2.84 1/5.35 1/5.13 1/4.92 1/3.82
1bl0 1/3.19 215/0.76 1/4.50 1/4.01 1/4.32 3/2.27
1jwe 1/4.69 4/2.64 1/6.26 1/5.96 1/5.94 1/4.81
Z̄d 4.09 2.08 5.37 5.03 5.06 3.63

(D) lmds
1b0n-B 359/−0.45 74/1.03 430/−1.17 398/−0.82 438/−1.33 261/0.03
1bba 501/−11.11 500/−3.51 501/−16.28 501/−18.34 501/−11.78 501/−21.38
1fc2 501/−7.75 501/−8.86 501/−5.72 501/−6.32 501/−4.19 441/−1.22
1ctf 1/2.84 1/3.45 1/3.54 1/3.56 1/3.42 1/2.77
1dtk 116/−0.08 31/1.16 1/2.62 62/0.56 1/3.69 5/2.46
1igd 1/4.21 1/4.16 1/5.16 1/5.54 1/4.26 1/4.69
1shf-A 1/5.15 2/2.83 1/6.68 1/6.01 1/6.29 1/5.44
2cro 416/−0.96 175/0.40 1/4.70 109/0.85 1/6.51 1/4.50
2ovo 4/2.76 1/2.86 1/3.21 1/3.27 1/2.92 27/1.48
4pti 157/0.20 13/1.75 1/3.96 5/2.18 1/4.72 1/3.47
Z̄d −0.52 0.53 0.67 −0.35 1.45 0.22

(E) lattice_ssfitg

lbco 1/9.79 1/9.47 1/12.09 1/10.80 1/7.36 1/7.95
1ctf 1/6.99 1/7.20 1/10.05 1/7.26 1/8.13 1/6.89
1dkt-A 1/6.78 1/6.78 1/6.87 1/6.38 1/4.50 1/4.92
lfca 1/5.57 1/3.36 1/7.18 1/6.13 1/5.26 1/5.30
1nkl 1/8.33 1/8.16 1/9.29 1/7.15 1/7.15 1/5.83
1pgb 1/8.42 1/6.86 1/11.87 1/8.60 1/9.18 1/9.64
1trl-A 1/4.84 1/5.58 1/6.32 1/4.81 1/5.00 1/3.73
4icb 1/6.68 1/5.65 1/7.81 1/6.12 1/7.06 1/4.25
Z̄d 7.18 6.61 8.94 7.16 6.70 6.06

Summary
# Correct/Total 22/32 18/32 27/32 25/32 27/32 23/32
Z̄h 2.83 2.87 4.27 3.31 3.91 3.32

a Park and Levitt, 1996.
b The first number in each cell is rank and the second number is the Z-score.
c See text for discussion.
d The average Z-score for the decoy set.
e Simons et al., 1997.
f Simons et al., 1997.
g Xia et al., 2000.
h The average Z-score for all 32 decoy sets.
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They consist of conformations of short (four or five resi-
dues) loops in protein structures. The challenge is to locate
the low rmsd structure from a large database of a few hun-
dred to 70 thousand possible conformations. Results are
compiled in Table 3. For DFIRE-A, the rmsds of the lowest
energy structure are all within 1Å from the lowest rmsd of
the decoy. This is better than either RAPDF or atomic KBP.
For example, the rmsd of the lowest energy structure of 3dfr
for the residue range from 64 to 67 is 2.32 Å (2.61 Å) for
RAPDF (atomic KBP), compared to 1.24 Å for DFIRE-A.
Significant improvement of DFIRE-A over RAPDF and
atomic KBP is also observed for selecting the loop structure
in protein 2fbj.

The correlation between the scores and rmsd values of the
decoys is another way to assess knowledge-based poten-
tials. Of all the multiple decoy sets tested here, we found
that only the 4state_reduced and loops sets have significant
correlations between scores and rmsd values. This is be-
cause the secondary structures in these two decoy sets are
mostly unchanged and rmsd values are small while most
decoys in the other sets have large rmsd values. The corre-
lation coefficients between the scores and rmsd values ob-
tained from the RAPDF, atomic KBP, and DFIRE-A poten-
tials are given in Tables 4 and 5 for the 4state_reduced and
loops sets, respectively. The three potentials yield compa-
rable correlations for the 4state_reduced set. The average

correlation coefficients are 0.67, 0.65, and 0.63 for the
RAPDF, atomic KBP, and DFIRE-A potentials, respec-
tively. For the loops decoy set, the DFIRE-A potential
yields the most significant correlation among the three po-
tentials. The average correlation coefficients are 0.51, 0.41,
and 0.74 for the RAPDF, atomic KBP, DFIRE-A potentials,
respectively. Thus, DFIRE-A is potentially useful for loop
modeling and structural refinement.

Dependence on �

For single decoy sets, the performance of DFIRE-A at
� � 1.70 is the same as that of DFIRE-A (at � � 1.57),
while DFIRE-A at � � 1.45 identified 32 out of 44 in the
ifu decoy set (Table 1). For multiple decoy sets, other
choices of � will lead to a reduction of the average Z-score
at both � � 1.45 and � � 1.70 (Table 2). Thus, indeed,
� � 1.57 produces the most accurate potential.

Dependence on atomic detail

For single decoy sets, the performance of the DFIRE-B
potential based on backbone and C� atoms is significantly

Table 3. The rmsd (Å) of the lowest energy conformation from the loops decoy set (Moult and James 1986; Fidelis et al. 1994)

PDB ID Residue range rmsd range RAPDF Atomic KBP DFIRE-A DFIRE-A1.45 DFIRE-A1.70 DFIRE-B

3dfr 20–23 0.75–4.58 0.88 0.88 0.75 1.63 0.75 4.17
3dfr 27–30 0.81–3.47 0.87 1.69 1.69 1.69 1.10 1.27
3dfr 64–67 0.89–4.19 2.32 2.61 1.24 2.41 1.14 1.82
3dfr 120–124 0.57–2.91 0.75 1.28 1.18 0.62 1.18 1.25
3dfr 136–139 1.39–2.15 1.57 1.71 1.54 1.54 1.67 1.66
2sga 35–39 1.20–3.17 1.32 1.22 1.28 1.28 1.28 1.23
2sga 97–101 0.60–3.34 0.79 3.34 0.63 0.63 0.61 1.08
2sga 116–119 0.47–4.91 0.99 1.09 0.99 0.99 1.05 4.28
2sga 132–136 0.97–2.58 1.29 1.56 1.62 1.62 1.42 1.53
2fbj 265–269 0.96–3.90 3.90 3.67 1.03 2.15 1.03 2.15
2hfl 264–268 1.11–2.81 1.46 1.50 1.50 1.50 1.50 1.58

Table 4. The correlation coefficients between the scores and
the rmsd values for the 4state_reduced set

PDB ID RAPDF Atomic KBP DFIRE-A

1ctf 0.73 0.67 0.70
1r69 0.72 0.70 0.68
1sn3 0.47 0.49 0.32
2cro 0.76 0.73 0.75
3icb 0.86 0.83 0.83
4pti 0.52 0.53 0.45
4rxn 0.61 0.59 0.66
Ave. 0.67 0.65 0.63

Table 5. The correlation coefficients between scores and rmsd
values for the loops decoy set

PDB ID
Residue

range rmsd range RAPDF
Atomic

KBP DFIRE-A

3dfr 20–23 0.75–4.58 0.83 0.60 0.91
3dfr 27–30 0.81–3.47 0.60 0.56 0.71
3dfr 64–67 0.89–4.19 0.48 0.20 0.76
3dfr 120–124 0.57–2.91 0.93 0.84 0.93
3dfr 136–139 1.39–2.15 0.61 0.14 0.66
2sga 35–39 1.20–3.17 0.61 0.72 0.79
2sga 97–101 0.60–3.34 0.83 0.44 0.93
2sga 116–119 0.47–4.91 0.82 0.82 0.75
2sga 132–136 0.97–2.58 0.30 0.08 0.26
2fbj 265–269 0.96–3.90 −0.84 −0.10 0.82
2hfl 264–268 1.11–2.81 0.45 0.23 0.61
Ave. 0.51 0.41 0.74
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worse than that of the RAPDF and atomic KBP potentials.
The former did not achieve 100% correct in structure se-
lections in misfold and asilomar decoy sets, similar to other
residue-based potentials (Samudrala and Moult 1998; Lu
and Skolnick 2001). However, the DFIRE-B potential, per-
forms slightly better for 32 more-challenging multiple de-
coys sets. The average Z-score of the 32 decoy sets is 3.32
for DFIRE-B, compared to 2.83 for RAPDF and 2.87 for
atomic KBP. Thus, the accuracy of the DFIRE-B potential
(with a reduced representation) is comparable to the
RAPDF and atomic KBP potentials with full atomic detail.

Mutation-induced change in stability

Mutation-induced change in stability can be predicted as
described in the Methods section assuming that there is no
structural relaxation after mutation. We use a database of
895 large-to-small mutations defined by a decreased num-
ber of heavy atoms upon mutation (a list is provided in
http://www.smbs.buffalo.edu/phys_bio/paper.html). The
measured changes in stability are compared with predicted
ones in Figure 2. In generating Figures 2a, 2b, and 2c,
different scaling factors are used so that the regression slope
is equal to 1. At T � 300 K, � � 0.025 for RAPDF, 0.026
for atomic KBP, and 0.017 for DFIRE-A. The scaling factor
for DFIRE-A is close to 0.015, the inverse of the coordina-
tion number at r � rcut (the number of pairs per atom),
which was the physical quantity used to scale the structure-
derived atomic contact energy (Zhang et al. 1997). The
correlation coefficient between experimental measured and
theoretical predicted changes in stability is 0.67 for
DFIRE-A (Fig. 2c). The corresponding coefficients are 0.52
for RAPDF (Fig. 2a) and 0.55 for atomic KBP (Fig. 2b),
respectively. The root-mean-squared deviation between the
experimental data and theoretical predictions is 1.52 kcal/
mole for DFIRE-A, compared to 1.89 kcal/mole for
RAPDF, and 2.11 kcal/mole for atomic KBP. Thus,
DFIRE-A provides the most accurate prediction. One obvi-
ous improvement of the DFIRE-A potential over the other
two potentials is in predicting the strongly stabilizing mu-
tations (�G << 0). RAPDF predicts that no mutation can
produce more than 2 kcal/mole improvement in stability.
Atomic KBP and DFIRE-A raised this limit to 5 and 6
kcal/mole, respectively. Experimentally, the largest increase
in stability is about 8 kcal/mole.

Distance dependence of potentials

To reveal the difference among three knowledge-based all-
atom potentials, we plot the potentials as a function of dis-
tance for several atomic pairs. In Figure 3, all three poten-
tials between the polar backbone atoms of N in Cys and O
in Trp show very rich distance dependence. They all have a
stable minimum around 3 Å and another weaker minimum

around 7 Å. The potentials between atom C� in Ile and atom
C�2 in Leu are simpler with one minimum near 6 Å. The
results of RAPDF in this figure are essentially the same as
those given in Figure 8 of Samudrala and Moult (1998).
Samudrala and Moult used a structural database of 265 pro-
teins, and we regenerated their potential using 1011 protein
structures. This suggests that increasing the size of the struc-
tural database has little effect on the distance dependence. In
Figures 3a and 3b, the value of the DFIRE-A potential is
somewhat in between the values of the RAPDF and atomic
KBP potentials.

The potentials between nonpolar atom C� in Leu and
atom C� in Ile show two stable minima at about 6 and 10 Å,
respectively (Fig. 4A). Similar results are found for the
potentials between atom C� in Leu and atom C� in Asp.
However, because Asp is a hydrophilic residue and Leu is a
hydrophobic residue, the interaction between Leu-C� and
Asp-C� is weaker and significantly shorter ranged than that
between Leu-C� and Ile-C�. The results of atomic KBP in
Figures 4A and 4B are essentially the same as those given
in Figure 2 of Lu and Skolnick (2001) except near the core
and the tail portions. The value of the DFIRE-A potential is
no longer between those of the atomic KBP and the RAPDF
potentials, but can be either closer to that of the atomic KBP
potential (Fig. 4A) or closer to that of the RAPDF potential
(Fig. 4B). Thus, the effect of different reference states on
the distance dependence is different for different atomic
pairs. However, in general, the distance dependences of the
three potentials are qualitatively similar. Thus, the approxi-
mation that the average interaction is zero is a reasonable
approximation. This explains in part the success of atomic
KBP and RAPDF potentials.

To further understand what makes the DFIRE-A potential
quantitatively different from the atomic KBP and the
RAPDF potentials, we calculate the ratio of the number of
expected pairs at a given distance, Nexp(r) (�∑ i,j Nexp(i,j,r))
of the RAPDF and atomic KBP to that of the DFIRE-A
potential. For the RAPDF and atomic KBP, Nexp

RAPDF/KBP(r) �
Nobs(r). For the DFIRE-A potential, Nexp

DFIRE-A(r) �
(r/rcut)

�(�r/�rcut)Nobs(rcut). Figure 5 shows that in the dis-
tance range of 4–12 Å, both RAPDF and atomic KBP over-
estimate the expected number of pairs by about a constant
value of 10% more than the DFIRE-A potential. This means
that RAPDF and atomic KBP underestimate attractive in-
teractions among atoms. This constant value explains the
qualitatively similar distance dependence observed in Fig-
ures 3 and 4. It is noted that the ratio significantly differs
from 1 in the range of 0–4 Å as well. This difference,
however, is not as important as the difference in the distance
range of 4–12 Å because the number of pairs in the former
is negligibly smaller than that in the latter.

To verify whether the 10% difference in the range of
4–12 Å is the source for the different performance between
the RAPDF/KBP and DFIRE-A, we assume that the num-
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ber of expected pairs of atomic types i and j, Nexp(i,j,r), is
uniformly overcounted by 10% for RAPDF or KBP in the
distance range of 4–12 Å. In other words, the RAPDF or
KBP potential can be improved by subtracting −� RTln(1/
1.1) ≈ 0.1� RT in this range. Indeed, such a modified
RAPDF increases the average Z-score from 2.83 to 4.11 and
the number of correctly identified proteins from 22 to 27.
Both results are close to or the same as those from the
DFIRE-A potential (4.27 and 27, respectively). The im-
provement of the atomic KBP is also visible, although it is
not as significant. The average Z-score increases from 2.87
to 3.14 and the number of correctly identified proteins from

Fig. 2. The experimentally measured changes in stability versus theoreti-
cally predicted ones in a database of 895 large-to-small mutations. (a)
RAPDF, (b) atomic KBP, (c) DFIRE-A. Lines represent the results from
linear regression fit. The correlation coefficients are 0.52, 0.55, and 0.67
for RAPDF, atomic KBP and DFIRE-A, respectively.

Fig. 3. The distance dependence of three knowledge-based potentials (a)
between atom N of residue Cys and atom O of residue Trp, and (b) between
atom C� of residue Ile and atom C�2 of residue Leu.
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18 to 20. Because the atomic KBP only uses the 3.5–6.5 Å
window to calculate scores, we also make a double shift of
0.2� RT to account for the 6.5–12Å window. The atomic
KBP is further improved with an average Z-score of 3.32
and 24 identified proteins. Thus, a slightly more attractive
potential in the region of 4–12 Å leads to the superior per-
formance of the DFIRE-A potential.

Discussion

Comparison with other knowledge-based potentials

In this paper, we used a finite ideal-gas reference state to
derive knowledge-based potentials. Early methods due to

Sippl (1990), Samudrala and Moult (1998), and Lu and
Skolnick (2001) are all based on a reference state that can be
better characterized as a residue (atom)-averaged state. A
residue (atom)-averaged state can be approximated as a
noninteracting ideal-gas state, assuming that all interactions
cancel each other during average. Here we employed an
ideal-gas state directly. The new potentials are tested by
using decoys and mutation database. The results show that
the DFIRE-based all-atom potential consistently performs
better than previous all-atom knowledge-based potentials.
The latter’s performance is comparable to that of the
DFIRE-B potential based on backbone and C� atoms only.
The most significant improvement is in the average Z-score
of 32 multiple decoy sets. A larger Z-score indicates a stron-
ger bias against decoys. A large Z-score is a necessary con-
dition for a potential to be useful in structure prediction (Lu
and Skolnick 2001).

Perhaps, more significantly, the DFIRE-A potential can
provide a reasonably accurate prediction of mutation-in-
duced change in folding stability. Both stabilizing and de-
stabilizing mutations are predicted reasonably well (Fig. 2).
This indicates that it is possible to use knowledge-based
potentials to interpret and predict mutation-induced change
in stability as has been demonstrated previously (Gilis and
Rooman 1996, 1997; Zhang et al. 1997). In particular, Gilis
and Rooman (1996, 1997) found that a distance-dependent
potential is less accurate in predicting the change in stability
due to the mutation of solvent exposed residues. Similar
results are found for RAPDF, KBP, and DFIRE-A poten-
tials. The correlation coefficients between experimentally
measured and theoretical predicted changes in stability upon
the mutations of solvent exposed residues are 0.14, 0.22,
and 0.44 for RAPDF, KBP, and DFIRE-A, respectively.

Fig. 5. The distance dependence of Nexp
RAPDF/KBP(r)/Nexp

DFIRE-A(r).

Fig. 4. The distance dependence of three knowledge-based potentials (a)
between C� atoms of Leu and Ile residues, and (b) between C� atoms of
Leu and Asp residues.
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These values are significantly smaller than the correspond-
ing values of 0.53, 0.56, and 0.68 for the mutations of buried
residues. Here, a solvent-exposed residue is defined as a
residue that has more than 40% of its accessible surface area
exposed. There are 293 mutants used in calculations. Re-
cently, Guerois et al. (2002) used a training database of 339
mutants to optimize the parameters and weighting factors
for a given functional form of interaction potentials. The
correlation coefficient between predicted and experimental
measured changes in stability is 0.73.

Comparison with physical based potentials

The single and multiple decoy sets have also been used to
assess several physical-based potentials. In the misfold de-
coy set, the success rates for the CHARMM 19 vacuum
parameter set (Neria et al. 1996), CHARMM 19 with the
effective energy function (CHARMM 19-EEF1) (Lazaridis
and Karplus 1999), vacuum OPLS all-atom force field
(OPLS-AA) (Jorgensen et al. 1996), and OPLS-AA surface
generalized Born solvation model (OPLS-AA/SGB) (Ghosh
et al. 1998; Zhang et al. 2001) are 19/22 (Lazaridis and
Karplus 1998), 21/22 (Lazaridis and Karplus 1998), 24/25
(Wallqvist et al. 2002), and 25/25 (Wallqvist et al. 2002),
respectively. These success rates are comparable to the
success rate of 25/25 for the DFIRE-A potential. In the
4state_reduced multiple decoy set, the success rates are 6/6
for CHARMM 19-EEF1, 4/7 for a simplified PEEF (Petrey
and Honig 2000), 4/7 for vacuum OPLS-AA, 7/7 for OPLS-
AA/SGB (Wallqvist et al. 2002), and 7/7 for CHARMM-
GB (Dominy and Brooks 2002), respectively. OPLS-AA/
SGB, CHARMM-GB, and CHARMM19-EEF1 have an av-
erage Z-score of 3.66 for 7 proteins (Wallqvist et al. 2002),
3.38 for 7 proteins (Dominy and Brooks 2002), and 3.27 for
6 proteins (Lazaridis and Karplus 1998), respectively.
RAPDF, atomic KBP, and DFIRE-A have comparable av-
erage Z-scores ranging from 3.01 to 3.49. For the lmds
decoy set, the Z-scores for 1bba, 1fc2, 1ctf, 1igd, 1shf-A,
2cro, 2ovo, and 4pti from OPLS-AA/SGB are −3.29, −0.68,
2.63, 4.06, 3.32, 2.85, and 14.42, respectively (Felts et al.
2002). The corresponding values from DFIRE-A are
−16.28, −5.72, 3.54, 5.16, 4.70, 3.21, and 3.96, respectively.
These two sets of results are comparable. It should be noted
that in physical-based potentials, Z-scores were calculated
from minimized structures. On the other hand, no minimi-
zations were performed for knowledge-based potentials be-
cause of their discretization.

Cutoff and long-range interactions

One approximation used in DFIRE-based potentials is one
cutoff distance for all atomic pair potentials of mean force.
Potential of mean force, unlike pair interaction potential, is
long-ranged potential due to presence of solvent (Friedman

1985). Here, we choose rcut � 14.5 Å because f(r) starts to
systematically deviate from a constant for r > 15 Å. The
occurrence of the deviation is perhaps because the average
radius of gyration of 1011 proteins is about 20 Å. (That is,
the final finite-size effect occurs before the edge of a protein
is reached). It is not clear if a database of large proteins
would allow us to use a longer cutoff distance and whether
or not a longer cutoff would improve the performance of the
DFIRE-based potential, a subject that requires further stud-
ies.

The cutoff problem in potential of mean force has been
investigated by a number of other researchers. Samudrala
and Moult (1998) found that a long cutoff of 20 Å improves
the performance of their potential. A 30-Å cutoff is pro-
posed by Melo et al. (2002) for residue-based potentials. In
contrast, Lu and Skolnick (2001) showed that a short cutoff
(6.5 Å) yields the best performance of their potential.
Thomas and Dill (1996) pointed out that a potential derived
from the Sippl approximation would produce an anomalous
behavior of long-range repulsion between hydrophobic resi-
dues as a result of hydrophobic/polar partitioning. Simons et
al. (1997) corrected this effect by incorporating the envi-
ronmental effect of residue pairs. The RAPDF potential
seems to have the problem of a long-range repulsive tail
between hydrophobic residues (Figs. 3 and 4 ). On the other
hand, the atomic KBP appears to have a long-range attrac-
tive tail. The extent of the problem in our potential is not
clear as a result of cutoff. Incorporating the environmental
effect (Simons et al. 1997) into DFIRE-based potentials did
not yield any improvement in the performance of the
DFIRE-based potential. This is done by further dividing
residues into surface and core residues (40 residue types).
The result suggests that hydrophobic/polar partitioning does
not produce any major error in the DFIRE-based potential.
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