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Abstract

The elucidation of the domain content of a given protein sequence in the absence of determined structure
or significant sequence homology to known domains is an important problem in structural biology. Here we
address how successfully the delineation of continuous domains can be accomplished in the absence of
sequence homology using simple baseline methods, an existing prediction algorithm (Domain Guess by
Size), and a newly developed method (DomSSEA). The study was undertaken with a view to measuring the
usefulness of these prediction methods in terms of their application to fully automatic domain assignment.
Thus, the sensitivity of each domain assignment method was measured by calculating the number of
correctly assigned top scoring predictions. We have implemented a new continuous domain identification
method using the alignment of predicted secondary structures of target sequences against observed second-
ary structures of chains with known domain boundaries as assigned by Class Architecture Topology
Homology (CATH). Taking top predictions only, the success rate of the method in correctly assigning
domain number to the representative chain set is 73.3%. The top prediction for domain number and location
of domain boundaries was correct for 24% of the multidomain set (±20 residues). These results have been
put into context in relation to the results obtained from the other prediction methods assessed.
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Since the first protein structures were solved, it has been
apparent that the polypeptide chain can fold into one or
more distinct regions of structure. Such substructures, or
domains, are considered as the basic units of folding, func-
tion, and evolution and often have similar chain topologies
(Holm and Sander 1994).

The identification of domains within a protein sequence
is an important precursor for several methods. The structural
determination of proteins using X-ray crystallography and
especially Nuclear Magnetic Resonance (NMR) is often
more successful when solving smaller domain units rather
than whole chains. Multiple sequence alignment at the do-

main level can result in the detection of homologous se-
quences that are more difficult to detect using a complete
chain sequence. It is well known that fold recognition meth-
ods perform more reliably if a putative multidomain target
is considered in terms of its constituent domains rather than
as a whole chain (Jones and Hadley 2000).

The delineation of protein domains within a polypeptide
chain can be achieved in several ways. Methods applied by
classification databases such as the Dali Domain Dictionary
(DDD; Dietmann and Holm 2001), CATH (Orengo et al.
1997), and Structural Classification of Proteins (SCOP);
(Murzin et al. 1995) use structural data to locate and assign
domains. However, complete automation of domain assign-
ment even from structural data is not a trivial problem
(Jones et al. 1998).

Identification of domains at the sequence level most often
relies on the detection of global-local sequence alignments
between a given target sequence and domain sequences
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found in databases such as Pfam (Bateman et al. 2000) and
SMART (Schultz et al. 2000).

Difficulties in elucidating the domain content of a given
sequence at the structural and sequence homology level
arise when the target sequence has no experimentally de-
termined structure and searching the target sequence against
sequence domain databases results in a lack of significant
matches. In such situations, an ab initio approach to domain
assignment from sequence is required. Indeed, several at-
tempts have been made, although with limited success, to
describe protein domains from sequence alone, including
those by Busetta and Barrans (1984), Vonderviszt and Si-
mon (1986), and Kikuchi (1988).

Two of the most recently published algorithms that at-
tempt to overcome this difficulty are Domain Guess by Size
(DGS; Wheelan et al. 2000) and SnapDRAGON (George
and Heringa 2002). DGS aims to predict the likelihood of
putative domains within a given sequence based on prob-
ability distributions of chain and domain lengths within a
representative set. SnapDRAGON is a much more compu-
tationally intensive approach that averages several hundred
predictions obtained from ab initio simulations of the three-
dimensional (3D) structure for a given sequence to assign its
domain content. Of the two methods, SnapDRAGON ap-
pears to be the most reliable, although the computational
requirements (i.e., running hundreds of ab initio simulations
for each target sequence) render it impractical for routine
use, especially for any kind of genome-scale analysis.

The approach described here is based on the idea that a
crude fold recognition algorithm based on the mapping of
predicted secondary structures to observed secondary struc-
ture patterns in domains of known 3D structure might be
reliable enough to parse a long target sequence into putative
domains. This is often the way in which a human sequence
analyst will attempt to parse a protein into domains when
homology-based approaches have been unsuccessful. Auto-
matic analysis of secondary structure is, therefore, a very
logical approach. Also, recent improvements in secondary
structure prediction accuracy (Jones 1999) where methods
now routinely achieve three-state prediction accuracies of
77%, have greatly increased the usefulness of predicted sec-
ondary structure in recognizing protein folds.

Although many previous approaches to fold assignment
using secondary structure attempted to align strings of sec-
ondary structure codes, more successful recent approaches
have used scoring scheme based on the alignment of sec-
ondary structure elements (Russell et al. 1996). With the
recent advances in secondary structure prediction accuracy,
secondary structure element alignments methods (SSEA)
have been shown to provide a rapid prediction of the
fold for given sequences with no detectable homology to
any known structure and have also been applied to the
related problem of novel fold detection (McGuffin et al.
2001; McGuffin and Jones 2002). In this study we present
DomSSEA, a modified form of this method that uses pre-
dicted secondary structure to predict continuous domains,

Fig. 1. Domain length distributions as observed in the CATH representative set used in this study. Intervals were calculated with a
width of 20 residues. The domain frequencies were used by DGS-M to calculate the probabilities of predicted domain sizes.

Protein domain assignment

www.proteinscience.org 2815



aimed at the automated annotation of higher level genome
sequence data. We also attempt to evaluate several different
methods ranging in their complexity.

Results

Length distributions

Figures 1 and 2 show the length distributions for the chains
and domains in the nonredundant set as used in our own
implementation of the DGS algorithm. Figure 2 shows an
overlap between the different chain length distributions; the
length distributions of single and multidomain chains are
not discrete, which has implications in domain prediction.
As chain length increases, the likelihood of the chain having
a multidomain conformation also increases. Figure 1 also
shows that the mean length for domains found in both single
and multidomain chains is similar (150 residues).

Secondary structure prediction accuracy

PSIPRED secondary structure predictions had a Q3 accu-
racy of 76.6% and a Sov score of 72.5%.

Domain number prediction

The success rate of each method in predicting the number of
domains for each chain in the nonredundant set can be seen
in Table 1. This was measured as the percentage of one,
two, and three or more domain chains predicted correctly.
Also shown is the success rate for domain number predic-
tion for all the chains in the representative set.

The simplest method, random-weighted, sets the lower
limit of prediction. A domain number was assigned accord-
ing to the frequencies found in the representative set. Here
the overall success rate was 61.4%, with three-quarters of
the single domains correctly assigned, 16.8% of two-do-
main, and 6.3% of three- or more domains. These values
agree with the theoretical values of 76%, 17%, and 7% for
single, two, and three or more domain chains, respectively,
calculated from the sum of squares of the frequencies of the
single and multidomain chains in the nonredundant set.

The comparison of the CATH and DDD assignments set
an upper limit for domain prediction. The PUU algorithm
used by DDD to assign domains is a fully automated
method in contrast to the consensus and manual verification
approach used by CATH. Table 1 shows that agreement
between the domain databases covers ∼ 80% of single do-
main chains, whereas nearly two-thirds of two domain and
three -or more domains are given matching assignments.

The results of the all–against–all alignment of sequences
in the nonredundant set are close to those values generated
by the random method, confirming the lack of discernable
sequence identity in the benchmarking procedure.

The top assignments for both DGS-W and DGS-M were
most often found to predict the target as a single domain
chain. This gives 100% prediction accuracy for single do-
main chains, but few correct predictions for multidomain
chains. Therefore, here the success rate of DGS top hit
domain number prediction reflects the percentage of single
domain chains in the test set only.

Scoring the all–against–all comparison of the nonredun-
dant set in terms of the absolute difference in length gave an
overall success rate of 66.2%. A large percentage of the
single domain chains were predicted correctly, with just

Fig. 2. Frequency of chain lengths of one, two, and three -or more domain chains for a 40-residue length interval. These frequencies
were used by DGS-M to calculate the likelihood of the number of domains for a given chain length.
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more than 20% of the two domain chains and more than
one-third of the multidomain chains.

Of all the methods, DomSSEA achieves the highest ac-
curacy in predicting domain number, especially for two do-
main chains. More than 80% of the single domain chains are
correctly assigned, with just under one-half of the two do-
main chains and two-thirds of three or more domain chains
predicted correctly. The use of predicted secondary struc-
ture over observed does not appear to be overly detrimental
to the outcome of the method.

Table 2 shows the percentage of correct and incorrect
domain number prediction given by DomSSEA (predicted
secondary structure). The majority of false-positive predic-
tions given by DomSSEA tend to be under predictions of
domain number (and, in turn, domain boundary frequen-
cies).

Boundary prediction for two domain chains

As shown, each method tested predicts domain number with
varying levels of success. To provide a more level playing

field and facilitate an easier comparison of domain bound-
ary prediction each method was used to predict the domain
boundary for the 202 two-domain chains in the nonredun-
dant set (rather than predicting both domain number and
boundaries). Therefore, given that the target was known to
be two domain by a given method, how often could the
cutpoint between the domains be correctly predicted?

Table 3 shows the percentage of top hits giving the cor-
rect domain boundary within a window of ±20 residues
around the CATH assignment. The methods are ranked in
order of success.

Figure 3 shows a profile for each method for the percent-
age of correct assignments for windows of ±1–20 residues.

Random boundary assignment provides the baseline in
dividing two-domain chains. This random simulation sets
the baseline of locating the domain boundary in the two-
domain chains, with just under 27% of the linkers correctly
located (±20 residues). Again the alignment of sequences
resulted in a similar level of prediction accuracy.

The most successful method, and upper benchmark, is the
PUU algorithm used by DDD. The common set of chains
found in CATH and DDD gave an 81.8% agreement in the
domain boundary assignments at ±20 residues.

Interestingly the results from the two implementations of
DGS differ somewhat. The results given generated by
DGS-W achieved correct assignments in ∼ 37.1% of the two
domain chains, whereas the DGS-M, using probabilities
generated from our own dataset, predicted a higher percent-
age of 46% correct boundary assignments at this cutoff (±20
residues). The success rate of absolute difference in length
decreases between DGS-W and DGS-M (±20 residues).

Alignment of predicted secondary structure elements by
DomSSEA produced some improvement over the DGS-M,
with slightly more than 49% of the predicted two-domain
boundaries being correctly assigned (±20 residues).

Clearly, the division of two-domain chains into equal
fragments is a useful procedure. Just under one-third of the
chains were assigned a correct domain cut. This reflects the

Table 1. Prediction of one, two, or three or more
domain chains

Prediction of number of domains

% Correctly assigned

All
1

domain
2

domains
3 or more
domains

PUU 79.0 81.0 66.0 65.0
DomSSEA observed secondary

structure 75.4 83.9 47.5 38.1
DomSSEA predicted secondary

structure 73.3 82.3 46.0 36.5
DGS-M 76.7 99.8 1.0 0.0
DGS-W 76.7 100.0 0.0 0.0
Absolute difference in length 66.2 78.4 22.3 38.1
Fasta 60.9 74.9 17.3 7.9
Random (weighted) 61.4 75.8 16.8 6.3
Random (basic) 37.9 45.0 16.8 7.9
Sum of squares 62.0 76.0 17.0 7.0

The percentage of chains given a correctly assigned domain number (top
prediction), for single, two, and three or more domain chains, as well as for
all chains in the representative set.

Table 2. Domain number prediction accuracy

Predicted (DomSSEA)

Real (CATH assignment)

1 2 3 or more

1 82.3 43.1 15.9
2 14.7 46.0 47.6
3 or more 3.0 10.9 36.5

Predicted number of domain boundaries by DomSSEA (predicted second-
ary structure) vs. real number of domains (assigned by CATH). DomSSEA
false positives tend to under-predict domain number.

Table 3. Prediction of domain boundaries, given a
representative set of two domain protein chains (±20 residues)

Methods
% Correctly

assigned boundaries

PUU 81.8
Consensus 52.5
L/(N-1) 49.5
DomSSEA observed secondary structure 49.5
DomSSEA predicted secondary structure 49.0
DGS-M 46.0
Absolute difference in length 44.6
DGS-W 37.1
FASTA 30.0
Random (weighted) 26.8
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degree to which the domain assignment in CATH partitions
two-domain chains into equally sized units.

Finally, the method that assigned the most cuts correctly
in the absence of 3D structure was the consensus method
with ∼ 52% of the chains assigned a correct cut (±20 resi-
dues).

Overall prediction of domain number and
domain boundaries

A useful domain identification method must predict domain
number and any corresponding domain boundaries with a
reasonable degree of reliability. In terms of a fully auto-
mated protocol, one must consider the methods as an overall
procedure, and the prediction is taken as the top hit assign-
ment. The overall sensitivity of top hit predictions for do-
main number and boundaries for multidomain chains can be
seen in Figure 4.

Table 4 demonstrates the effectiveness of each method in
giving correct assignments for all chains in the representa-
tive set, at ±20 residues as well as for solely multidomain
predictions.

The use of DomSSEA to both predict domain number and
boundaries using predicted secondary structure gives cor-
rect assignments for just under 25% of the multidomain
chains, at ±20 residues (four times better than the next best
method, difference in length). The simple procedure of di-
viding the chains into equal length, given the domain num-

ber was predicted by DomSSEA, results in a similar success
rate to boundary assignments by secondary structure ele-
ment alignment. Using DomSSEA to predict domain num-
ber and the consensus method to locate the corresponding
domain boundaries proved to assign the greatest number of
correct domain boundaries for the multidomain chains over
the window cutoffs of ±1–20 residues (Fig. 4).

In addition to these predictions including a high number
of correct assignments for two-domain chains, several cor-
rect assignments were made for chains containing three or
more domains with just over one-third of domains correctly
assigned as three or more domains being given at least one
correct domain boundary prediction ±20 residues.

In an attempt to guide the top prediction given by DGS-
M, the mean domain length in the representative set (150
residues) was used to predict the number of domains. For
example, chain lengths �150 residues were predicted as
single domain, between 150 and 450 residues as two -do-
main, and >450 residues (three times the average domain
length) as three -or more domains. DGS-M was then used to
predict domain boundaries. This achieved a correct domain
number and cut prediction for only 3% of the 265 multido-
main chains. Another method, the average domain length,
was used to predict domain boundaries, for example, a chain
length of 320 residues divided at 150 residues from the
amino -terminus. However, this resulted in fewer correct
predictions than using DGS-M to locate domain boundaries.

The least accurate method is shown to be random predic-
tion, closely followed by sequence alignment.

Fig. 3. Success rate for the top hit domain boundary assignment for two-domain chains, for window cutoffs between ±1 and 20
residues.
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Discontinuous domain assignment

The analysis and implementation of the methods has so far
only focused on the assignment of continuous domains. To
gauge the possibility of using DomSSEA to delineate dis-
continuous domain boundaries, a representative set contain-
ing two-domain continuous and discontinuous chains were
aligned all–against–all using DomSSEA. Two random base-
line measurements were also implemented. Baseline 1

(Table 5) shows the results for predicting discontinuous
domain boundaries by equally partitioning the target protein
into three equal fragments, thus predicting two linker re-
gions (the most common number of linker regions in two-
domain discontinuous chains). Baseline 2 (Table 5) shows
the results for randomly predicting the position of two link-
ers regions.

The percentage of the two-domain discontinuous do-
mains with all linkers correctly predicted was 13% (±20
residues). These chains tended to be those consisting of two
or three spanning linkers between domains. The higher
complexity of linker arrangement between discontinuous
domains makes per protein assignment measurements more
restricted. Therefore, linker assignment accuracy was also
calculated on a linker basis, that is, the number of linkers in
the two-domain discontinuous test set correctly identified.
Such prediction accuracy can be measured in two ways: (1)
sensitivity, the number of linkers correctly predicted di-
vided by the total number of linkers to predict; and (2)
selectivity, the number of correct predictions divided by the
total number of predictions made.

Table 5 shows both sensitivity and selectivity values for
boundary cutoffs of ±10 and ±20 residues for DomSSEA
and two baseline methods. Baseline 1 gives a sensitivity of
11% followed by Baseline 2 with 13.4% at ±10 residues.
DomSSEA gives a slightly higher success rate if 16.4% of
the discontinuous linkers are assigned correctly at the same
cutoff. The selectivity measurements give higher values for
the two baseline methods as well as DomSSEA, reflecting
its tendency to underpredict discontinuous domain linkers.

Table 4. Overall prediction of domain number and boundary,
for single and multidomain chains (±20 residues)

Methods

% Correctly assigned

All
chains

Multidomain
chains

DomSSEA observed secondary structure 70.2 24.7
DomSSEA predicted & consensus 68.6 24.0
DomSSEA predicted & L/(N-1) 68.0 24.0
DomSSEA predicted secondary structure 68.7 23.6
Absolute difference in length 62.0 8.4
Average domain length & DGS-M 66.6 6.1
FASTA alignment 57.9 2.3
Random (weighted) 58.3 1.1
DGS-M 76.6 0.0
DGS-W 76.6 0.0

DGS achieves the highest overall correct assignments (for all chains) as it
most often predicts single domain as its top hit. Using the average domain
length to predict domain number also achieves a high overall success rate
as any chain less than 300 residues in length (two times the domain aver-
age) is predicted as single domain.

Fig. 4. Overall predictions for multidomain chains, for window cutoffs between ±1 and 20 residues. Correct predictions required both
correct domain number and boundary assignments. Success was measured in terms of top hit assignments.
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Discussion

In this study we have implemented a domain identification
method using the alignment of predicted secondary struc-
tures of target sequences against observed secondary struc-
tures of chains with known domain boundaries. Although
mutations at the sequence level can obscure the similarity
between homologs, their secondary structure patterns re-
main more conserved because changes at the structural level
are less tolerated. The secondary structure alignment meth-
ods used here aim to exploit these conserved features to
locate domain regions within secondary structure strings.
The increase in accuracy in secondary structure prediction
methods in recent years has also made such attempts worth-
while. The overall aim was to evaluate how well domain
number and boundaries can be assigned to a given sequence
using simple methods, when homology searching to se-
quences with known domain assignments has been ex-
hausted.

The similarity of the sequence alignment methods to the
random methods confirmed that sequence homology was
eliminated from the representative set by the PSI-BLAST
filter.

In terms of distinguishing between one, two, and three -or
more domain chains, DomSSEA is shown to be the most
reliable method. Analysis of the two-domain chains as a
simple means to measure boundary prediction showed some
improvement of DomSSEA over the next best method,
DGS, in predicting domain boundaries. However, this is
true only when it is used as an overall method that the
improvement in accuracy can be seen. It achieves the high-
est number of correct domain number and boundary assign-
ments for 25% of the multidomain chains (±20 residues; see
Fig. 4).

The comparison of the methods evaluated in this study to
DGS was not trivial. Taking only the top assignment from
each prediction exposes the limitations of DGS in providing
a reliable top guess. We tried to address this issue in two
main ways; (1) evaluating the ability of each method to

predict the domain boundary for a set of two-domain pro-
teins, thus making a fairer comparison, and (2) using aver-
age domain length (calculated from the representative set)
to guide the DGS-M domain number prediction and there-
fore, top predictions. If it is intended that methods are to be
used automatically, DGS is less useful than DomSSEA.
DGS is more useful as a guide to human experts, as it
produces a selection of likely possibilities from which a
decision can be made. Fully automatic methods would have
to decide on a single answer without human intervention.

A clear observation from this analysis is the frequency
with which multidomain chains contain domains of similar
length. Figure 3 shows that at a cutoff of ±10 residues
around the CATH cut, 33% of the representative two-do-
main chains contained a domain boundary at the midpoint
of the sequence. To verify that this equal partitioning of
chains was not just a feature of the CATH assignment al-
gorithm, the CATH nonredundant set of chains was com-
pared to a common set of chains found in DDD, and another
common set of chains was found in SCOP. These common
sets were searched for the chains assigned with two equally
sized domains by CATH, ±10 residues. Of these chains
found in DDD, 88% were also assigned as two domain with
a boundary midpoint in sequence, whereas 97% of these
chains found in SCOP had similar assignments, ±10 resi-
dues. Furthermore, of all the chains assigned as continuous
two domain in the DDD common set, and all those assigned
as continuous two domain in the SCOP common set, 33%
and 34% were given domain cuts midpoint in the sequence,
respectively. Therefore, the tendency to partition chains into
equal fragments does not appear to be solely a feature of
CATH. Although domain number and boundary assign-
ments differ to varying degrees, depending on which two
classifications are compared, all three classifications assign
>30% of their two-domain proteins with a boundary mid-
way between the carboxyl and amino termini of the se-
quence.

Indeed, as shown, the equal division of multidomain
chains is a successful method in determining domain bound-
aries given that the correct domain number is known. This
is in agreement with the study by Wheelan et al. (2000)
showing that domains appear to follow length constraints,
and made more salient by observations of protein structural
duplication events at the gene level (Heringa and Taylor
1997).

Although DomSSEA (using predicted secondary struc-
ture) and the equal partition method predicted domain
boundaries with a similar success rate, to what extent do
their predictions overlap? If the top two predictions given
by DomSSEA are evaluated, 28% of the multidomain
chains are given correct domain number and boundary as-
signments (±10 residues). If the top prediction by DomS-
SEA is taken, but a second prediction is taken as the number
of domains predicted by DomSSEA (second guess) but with

Table 5. Prediction of domain boundaries for a representative
set of two domain discontinuous chains for boundary windows
of ±10 and ±20 residues

Sensitivity Selectivity

±10 ±20 ±10 ±20

DomSSEA 16.4 33.1 24.6 49.7
Baseline 2 13.4 24.4 17.7 32.3
Baseline 1 11.0 24.1 14.6 31.9

Baseline 1 predicts discontinuous linkers by assigning two linkers by
equally dividing the chain into three fragments. Baseline 2 also assigns two
linkers, but randomly. The sensitivity vs. selectivity measurements show
DomSSEA tends to underpredict discontinuous domain linkers.

Marsden et al.
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the domain boundary predicted by the equal division
method, 34% of the multidomain chains are given correctly
assigned boundaries (±10 residues). This increase demon-
strates fewer overlapping predictions between DomSSEA
and the equal division method. (A similar procedure for the
partition of two-domain chains gives 41% correct hits for
the top two DomSSEA predictions, and 53% if both DomS-
SEA and the equal division predictions are considered.)
Although these boundary prediction methods overlap to
some extent, the secondary structure element alignment pro-
cedure is able to predict more complex domain arrange-
ments than the simple subdivision method. Such a combi-
nation of methods is worthy of consideration.

The assessment of the top 10 assignments given by a
prediction method has advantages, allowing correct predic-
tions further down the list to be taken into account. In terms
of predicting domain number, however, benchmarking such
a top set of assignments could be a rather meaningless mea-
sure; in cases where several different domain number pre-
dictions are given, it is likely one is going to be correct.

Perhaps more valuable is a top set of predictions for cases
where a multidomain chain has been predicted. Here differ-
ent boundary assignments could be checked and used ac-
cordingly. This would most likely be a manual procedure
and would be difficult to integrate into an automated anno-
tation method. For example, for a given Critical Assessment
of techniques for protein Structure Prediction (CASP) target
with no detectable sequence homology to a known structure
or domain sequence, one could take the domain number
prediction given by DomSSEA. If the target was predicted
as two domain, the top three two-domain predictions could
be considered. This would give six putative domains to be
threaded. For the two-domain chains in the representative
set (±20 residues), one of the top three predictions by
DomSSEA gave a correct boundary assignment for >60% of
the targets. Nevertheless, care would have to be taken
benchmarking such a list of hits as the more domain cuts
considered, the higher the likelihood of a correct assign-
ment, especially for shorter chains. This, however, would be
at the expense of an explosion in the combinatorial number
of domains that would need to be tested by threading meth-
ods.

Predicting all the domain boundaries correctly within
chains of three -or more domains has been found to be a
difficult problem for all the methods analyzed. The most
successful method was dividing the chains into equal do-
main lengths. This reflected the observed frequency of those
multidomain chains having similar sized domains. How-
ever, there are many more multidomain chains having dis-
similar sized domain combinations.

A two-domain protein test set containing continuous and
discontinuous domains was used to gauge the potential of
DomSSEA in predicting discontinuous domain boundaries.
Although such an all–against–all alignment of two-domain

chains does not give an indication of how introducing dis-
continuous domains into the DomSSEA library alters do-
main number prediction and overall assignment accuracy, it
does give an insight into boundary prediction given that the
correct domain number has been predicted.

With just >13% of the two-domain discontinuous chains
given correct assignments for all domain linkers (±20 resi-
dues), the boundary prediction accuracy is not high. The
calculation of boundary assignment on a per linker basis
showed some increase in assignment accuracy of Dom-
SSEA over the baseline random methods.

The selectivity measure of ∼ 50% of linkers correctly pre-
dicted (±20 residues) appears encouraging, but must be tem-
pered by the fact that this value is partially attributable to
the observation that DomSSEA tends to underpredict
discontinuous domain linkers. This is due in part to the
false-positive alignment of chains composed of continuous
domains against target chains containing discontinuous do-
mains. How useful a partial knowledge of where discon-
tinuous domain cuts are located within an amino acid se-
quence is open to question. Only when all the linkers be-
tween adjacent domains are located can discontinuous
domains be confidently assigned.

Interestingly, although the equal division of continuous
chains gave a similar percentage of correct domain assign-
ments to DomSSEA, the same is not so for baseline 1,
where the success rate was much lower. This seems to re-
flect that discontinuous domains are less easily predictable.

Although the addition of discontinuous domains to the
DomSSEA library would make discontinuous domain as-
signment possible to some degree, it would also have a
detrimental effect on the reliability of continuous domain
assignment, introducing a greater number of false-positive
boundary predictions. One would have to weigh up the ad-
vantage of assignment of discontinuous domains, with the
trade off in reducing continuous assignment accuracy.

If methods such as DomSSEA are to be applied to ge-
nomes of higher organisms, as is intended, one must take
into account the modularity of higher eukaryotic gene
products, especially for larger proteins. A large frequency
of multiple domain proteins in higher eukaryotes are
made up of continuous domain units, a result of gene du-
plications and fusion events making proteins containing
continuous modular regions of structure the predominant
class.

Furthermore, the usefulness of discontinuous domain as-
signment must also be considered in terms of structure pre-
diction. At present, the ability to predict the structure of
such domains using fold recognition, given that fold librar-
ies consist of continuous domains is extremely limited.

Recently, the SnapDRAGON method developed by
George and Heringa (2002) has been published, which uses
ab initio folding simulations to predict the domain bound-
aries within a given amino acid sequence. Direct compari-
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son of success rates between SnapDRAGON and Dom-
SSEA is not easy due to the different philosophies used in
measuring the accuracy of the methods. However, the suc-
cess in assignment of domain number appears to be similar,
with DomSSEA (using predicted secondary structure) giv-
ing correct predictions for 73.3% of protein chains com-
pared to 72.4% by SnapDRAGON. One of the measure-
ments used to assess correct boundary prediction given by
SnapDRAGON was by calculating the percentage of all
boundary predictions that landed within predicted bound-
aries, termed the positive prediction value or selectivity.
This was shown to be 39.1% for continuous chains in the
SnapDRAGON study. A similar calculation for linkers pre-
dicted in this analysis by DomSSEA (using predicted sec-
ondary structure) reveals a positive prediction value or se-
lectivity of 31.6%. However, the computationally intensive
aspect of SnapDRAGON leads to a trade-off between the
increase in accuracy of SnapDRAGON versus DomSSEA,
and the far greater time required to obtain a SnapDRAGON
prediction compared to DomSSEA.

Conclusions

This study has attempted to show what can presently be
achieved by using relatively simple methods to predict pro-
tein domains from sequence in the absence of homology.
Our results have shown that the alignment of secondary
structure elements is the most reliable of the methods ana-
lyzed for domain number assignment and overall domain
number and boundary prediction.

It must be emphasized that although prediction of domain
number and domain boundaries can be treated as separate
issues, it is the stringent measurement of overall prediction
accuracy that is most important, especially when the manual
assessment of predictions is difficult. A given method may
perform well at predicting domain number or domain
boundary, but it is when accuracy in both is combined that
the best results are achieved, as DomSSEA has demon-
strated.

The methods in this study were tested on a nonredundant
set of chains taken from the CATH structural database.
Although this is not a full set of genomic sequences, it
enables a reliable insight into the effectiveness of these
methods in comparison to one another. A future stage will
be applying DomSSEA to such genomic data to gauge its
usefulness in larger scale genome annotation applications.

Although it must be conceded that methods such as
DomSSEA are still somewhat limited in their overall reli-
ability, there is certainly room for such fast procedures to
act as a prefiltering stage in automatic genome annotation
and threading methods, where domain boundaries cannot be
located purely from comparative sequence analysis.

Materials and methods

Dataset

A set of 1314 nonredundant protein chains with X-ray crystal-
lographic resolutions �2.5 Å was selected from CATH (version
2.3) (http://www.biochem.ucl.ac.uk/bsm/cath_new/index.html). The
set contained no more than 30% pair-wise sequence identity. The
representative set used in this study consisted of 1137 chains con-
taining only continuous domains. A further set of 123 discontinu-
ous two-domain chains and 203 continuous two-domain chains,
taken from the nonredundant set, were also used to analyze the
ability of DomSSEA to locate discontinuous domain boundaries.

All domain predictions for a given chain were compared to
assignments given in CATH. Domain number assignments were
defined as single, two domain, or three -or more domains. Domain
boundary predictions were then made accordingly and compared
to boundaries defined by CATH.

Random prediction

Prediction of domain number

As a baseline measure of domain number prediction, the domain
number was randomly assigned to each chain in the representative.
The random assignments were weighted in terms of the frequen-
cies of single and multidomain proteins in the nonredundant set.
The shortest length permissible for a domain was 40 residues,
because >99% of the domains in CATH are greater than or equal
to this length. In turn, the shortest length considered for a two-
domain assignment was 80 residues (i.e., an equal division yields
two 40 residue domains). Similarly, the shortest length for predic-
tions of three -or more domains is 120 residues.

Prediction of domain boundaries

For a sequence predicted as multidomain, random assignments
were made for domain boundaries. For example, in the case of a
two-domain protein, a window within the sequence was considered
whereby 40 residues at the carboxy-terminal and amino-terminal
extremes of the sequence were masked off. A random cut was then
made in this window. In cases where the sequence length was
exactly 80 residues, an equal partition was made. Similarly, when
three -or more domains were predicted, random cuts were made to
ensure that no domain was less than 40 residues in length.

Trivial boundary assignment procedure

Given that the number of domains for the target sequence has been
predicted, one of the simplest ways to partition the sequence into
domains is to divide it into equal fragments. Therefore, given a
sequence length L and the predicted number of domains N, each
domain length can be considered as L/(N − 1).

For all the random methods, random simulations were carried
out 100 times, and the average success rate calculated.

Sequence alignment

An all–against–all alignment of sequences in the nonredundant set
was carried out to predict both domain number and domain bound-
aries. FASTA (Pearson and Lipman 1988) was used to align each
target sequence against all other sequences in the representative
chain set. The sequence with the most significant alignment score
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was used to determine domain number. In cases where the top
scoring hit was multidomain, the cutpoints were determined by
mapping the known cutpoints of the template chain onto the target
chain.

Absolute difference in length

The similarity of chain pairs was scored according to their absolute
difference in sequence length, normalized by the maximum length.
Domain number and boundaries were taken from the top scoring
hit.

Domain Guess by Size (DGS)

The original DGS algorithm was implemented using the probabil-
ity distributions as outlined by Wheelan et al. (2000) (here, defined
as DGS-W). We also implemented the algorithm using probabili-
ties generated from our own nonredundant dataset (here, defined as
DGS-M). The cross-validation procedure outlined by Wheelan et
al. (2000) was followed in both cases.

Secondary structure alignment (DomSSEA)

An all–against–all alignment of the secondary structure elements
for each chain in the nonredundant set was carried out using a
modified version of the dynamic programming algorithm previ-
ously developed by McGuffin et al. (2001) with a scoring scheme
adapted from Przytycka et al. (1999). The use of both observed and
predicted secondary structure was assessed. Top hits were taken as
the pair with the highest alignment score. Domain boundaries were
taken from the position to which the template domain boundary
aligned to the target. Assignments were weighted to coil regions of
chain, as previous studies revealed domain-linking regions are
most commonly found in unstructured regions of chain (R.
Marsden and D. Jones, unpubl. results).

Observed secondary structures for all chains were taken from
DSSP assignments (Kabsch and Sander 1983). The eight structural
states were simplified to three: E and B assignments were consid-
ered as strand, H and G assignments as helix, and the remaining
states as coil.

Secondary structure predictions were made using PSIPRED
(Jones 1999). Five sets of neural network weights were used to
train the network, and in cases where a sequence was found to have
homology to one of the sets of weights, the corresponding weight
set was excluded. Q3 and Sov (Zemla et al. 1999) scores were
calculated to measure the prediction accuracy.

PUU / DDD

The DDD (http://www.embl-ebi.ac.uk/dali/) was used as an upper
control for benchmarking the methods. The algorithm used by the
DDD to assign domains from structural data is PUU (Holm and
Sander 1994). PUU bases its assignments on the theory that do-
main regions contain more internal structural contacts than exter-
nal contacts. A common set of chains found both in the represen-
tative set and in DDD was compiled, and the domain number and
boundary definitions given in DDD were compared to the CATH
assignments.

Homology filter

All top hit assignments for alignment methods were filtered further
for any possible remaining homology detected by PSI-BLAST
(Altschul et al. 1997) within the nonredundant set of chains. PSI-
BLAST is one of the most successful methods for detecting remote
sequence similarities when used in conjunction with a large nonre-
dundant sequence database (Salamov et al. 1999). The use of sen-
sitive sequence comparison tools is often one of the first steps in
locating putative domains in a target sequence with no known
structure. In this study it was important to establish a starting point
when benchmarking the methods, in which all sequence homology
was eradicated so as to simulate cases where sequence searching
had been exhausted. It was important that correct assignments
were not attributable to matches at the sequence level.

PSI-BLAST was run with default parameters for five iterations,
or until convergence. A large nonredundant sequence database was
used (containing sequences from PDB, SWISSPROT, and
TREMBL, Bairoch and Apweiler 2000; PIR, Barker et al. 2001;
ENSEMBL, Birney et al. 2001; WORMPEP, http://www.sanger.
ac.uk/Projects/C_elegans/wormpep/; GENPEPT, ftp://ftp.ncifcrf.
gov/pub/genpept/; as well as including the set of representative
CATH chains used in this study). Each chain in the representative
set was scanned against the sequence database and all significant
pair-wise matches (E-value �0.01) found within the CATH rep-
resentative set were recorded. This list was used to filter the top
hits generated by each method. The same procedure was followed
for the chimera set of chains.

Sensitivity measure

This study was undertaken with the aim of measuring the useful-
ness of prediction methods in terms of their application in auto-
matic assignment algorithms. In terms of a typical Critical Assess-
ment of Fully Automated Structure Prediction (CAFASP) (Fischer
et al. 2001) assessment where automatic methods for fold recog-
nition are assessed, the fold template with the highest score or top
hit is taken to be the fold of a given target. In this study, we wanted
to take a similar approach in assessing the domain assignment
methods, basing the measurements on the presumption that they
will be used to automatically analyze whole proteomes. Thus, the
sensitivity of each domain assignment method was measured by
calculating the number of correctly assigned top hits.

Sensitivity of domain number prediction

Measuring the success of a method at assigning the correct number
of domains to a target chain was simply a question of how often
the predicted number of domains matched the actual number of
domains as assigned by CATH. In cases where two or more hits
were found to have the same assignment score for a given target,
the success rate was calculated to reflect this. For example, if a
target was assigned three hits with identical scores, and two were
correct predictions and one incorrect, the overall prediction for that
particular target was given a sensitivity score of 2⁄3.

Sensitivity of domain boundary prediction

In terms of measuring domain boundary prediction accuracy, a
correct assignment was given if the predicted cut fell within a
given cutoff window around the boundary defined by CATH. A
sliding scale of ±1–20 residues, either side of the CATH cut, was
used to assess the accuracy of the boundary prediction. In cases
where the target contained multiple boundaries, the correct number
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of boundaries had to be given with the assignments falling within
the CATH boundaries for a prediction to be regarded as correct
(for a given window cutoff). In cases where more than one hit
shared the highest score, a random selection was made from the
predictions. This was carried out 100 times to obtain an average of
this randomization.

Consensus domain boundary prediction method

A consensus boundary prediction method was used to take into
account predictions made by several methods used in the study,
including DGS, DomSSEA (predicted secondary structure), differ-
ence in length, and the equal division procedure. Predicted cut
points were grouped in terms of neighboring predictions and the
average of the most populated group taken. Where no consensus
could be reached, the assignment made by DomSSEA was used.

Comparison of the different methods

The comparison of the prediction methods was categorized into
three main areas:

1. Correct prediction of the number of domains in a chain.

2. Correct prediction of domain boundaries. It is difficult to com-
pare the overall top prediction given by DGS with the other
methods and easily draw decisive conclusions from the results.
To analyze the success rate of domain boundary delineation,
each algorithm was assessed for its ability to predict the domain
boundary for all the two-domain proteins in the nonredundant
set (where each method was provided with the knowledge that
the target chain was two domain). This procedure was neces-
sary to provide a more level playing field for comparison of the
methods in terms of boundary prediction accuracy. To achieve
this for the alignment methods, a pair-wise comparison of the
two-domain chains was undertaken.

3. Assessment of overall prediction accuracy. For a correct pre-
diction, both domain number and domain boundaries (for a
given cutoff) had to match the CATH assignments.
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