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Abstract

A method based on neural networks is trained and tested on a nonredundant set of �-barrel membrane
proteins known at atomic resolution with a jackknife procedure. The method predicts the topography of
transmembrane � strands with residue accuracy as high as 78% when evolutionary information is used as
input to the network. Of the transmembrane �-strands included in the training set, 93% are correctly
assigned. The predictor includes an algorithm of model optimization, based on dynamic programming, that
correctly models eight out of the 11 proteins present in the training/testing set. In addition, protein topology
is assigned on the basis of the location of the longest loops in the models. We propose this as a general
method to fill the gap of the prediction of �-barrel membrane proteins.

Keywords: Neural networks; secondary structure predictions; multiple sequence alignment; pattern recog-
nition; membrane � strands; prediction of membrane porins

At present, two types of membrane proteins have been char-
acterized: The first includes all the proteins that to a differ-
ent extent interact with the lipid bilayer of the cytosplamic
membrane of all cells (White and Wimley 1999); the second
group includes those proteins that during the last ∼10 yr
have been discovered in the outer membrane of bacteria,
chloroplasts, and mitochondria (Schulz 2000). A major dis-
tinguishing feature of membrane proteins of the first type is
that they span the cytoplasmic membrane with �-helixes,
whereas those of the second type interact with the outer
membrane with antiparallel �-strands forming barrels, ex-
isting as monomers and oligomers (Cowan and Rosenbusch
1994). These chains, referred to as �-barrel membrane pro-
teins (Gouaux 1998; Schulz 2000), comprise the archetypal

trimeric porins of Gram-negative bacteria consisting of wa-
ter-filled channels that nonspecifically mediate the passive
transport of ions and small hydrophilic molecules (<6 kD)
or select for certain molecules such as malto-oligosaccha-
rides (Schulz 1996). In addition, more recently, other �-bar-
rel membrane proteins have been characterized, and their
functions are quite diverse from that of archetypal porins.
After the recent atomic resolution of some proteins from
enteric bacteria (FepA, Buchanan et al. 1999; and Fuha,
Ferguson et al. 1998), it became evident that high-affinity
outer membrane receptors that actively translocate large nu-
trient molecules like iron-siderophore complexes and vita-
min B12 span the outer membrane with a �-barrel structure.
This architecture is also the outer membrane’s interacting
part of export protein systems for small antibacterial drugs
and large protein toxins (TolC in Escherichia coli; Koro-
nakis et al. 2000) and that part of the enzyme phospholipase
A (OmplA; Snijder et al. 1999) participating in secretion of
colicins in E. coli and implied in virulence in Helicobacter
pylori. The structure of Staphyloccal �-hemolysin high-
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lights the fact that the lytic outer transmembrane domain
comprises the lower half of a 14-strand antiparallel barrel
containing seven homoprotomers (Song et al. 1996). In ad-
dition, membrane �-barrels also have been found in OmpA
(Pautsch and Schulz 1998) and OmpX (Vogt and Schulz
1999) from E. coli, proteins that participate in bacterial
conjugation, function as receptors for bacteriophages and
colicins, and mediate virulence and pathogenicity. Finally,
in eukaryotes, �-barrels are thought to be the functional
structure of voltage-dependent anion channels present in the
outer membrane of chloroplasts and mitochondria (for re-
view, see Mannella 1998). It seems, therefore, that the
�-barrel structure is associated with functions that are more
and more relevant to the entire cell metabolism and that are
as diverse as active ion transport, passive nutrient intake,
membrane anchors, membrane-bound enzymes, and defense
against attack proteins. In addition, it is now evident that the
different functions are associated with different barrel sizes
(ranging from small eight-stranded to large 22-stranded
�-barrels) and with different topologies and aggregation
number (Schulz 2000).

Although after a decade of analysis the construction prin-
ciples of �-barrel membrane proteins are known (Sansom
and Kerr 1995; Schulz 2000), it is almost impossible to
derive three-dimensional models for proteins of the outer
membrane. This is because of the fact that unless they be-
long to the same family, �-barrel membrane proteins share
little sequence identity within each other even in the trans-
membrane spanning regions. It is well documented that in
this case, methods based on homology building and thread-
ing cannot be successful (Sternberg et al. 1999). It is there-
fore necessary to be able to locate correctly the transmem-
brane regions in a sequence to assign the correct barrel
topology and eventually build a three-dimensional model on
the basis of the existing templates.

This task, however, appears to be more difficult than
predicting the topography and topology of all-helical mem-
brane proteins, whose transmembrane domains can be well
detected (Jones et al. 1994; Rost et al. 1995, 1996).

When only the archetypal porins were known, it was
suggested that strands along the protein sequence could be
located using the evaluation of the chemico-physical prop-
erties, such as the hydrophobic moment, associated with the
transmembrane region (Paul and Rosenbusch 1985; Welte
et al. 1991). However, these methods were successful only
if used in combination with experimental information
(Schirmer and Cowan 1993). Moreover, amphipathicity of
�-membrane strands is generally more complex than simple
alternating patterns of hydrophobic and hydrophilic residues
(Schulz 2000).

Gibbs sampling provides some hints on the alignment of
local regions partially overlapping with transmembrane
strands (Neuwald et al. 1995), and Hidden Markov models
of different porin families can be used to produce align-

ments that are useful for structure prediction, provided that
a given sequence fit the alignment and that a crystallized
counterpart is present in the family (Bateman et al. 1999).

An alternative to alignment methods is predictors of
�-membrane spanning regions specific for outer-membrane
proteins. A rule-based approach for identifying transmem-
brane �-strands was described and successfully applied to
predict a limited number of archetypal porins (Gromiha et
al. 1997). More recently, a neural network predictor became
available for locating residues along the Z-axis of the pores
(Diederichs et al. 1998).

In this article, we will use prototypes of the �-barrel
membrane proteins crystallized so far for training and test-
ing a neural network-based predictor to locate strands along
the protein sequence. The method with a jackknife proce-
dure, using evolutionary information as input, reaches an
overall accuracy per residue as high as 78%. In addition,
with a model optimization method using a dynamic pro-
gramming algorithm, eight topological models out of the 11
proteins included in the testing set are correctly predicted.
We analyze the results in terms of the network’s capability
of extracting characteristic features common to the different
�-barrel membrane proteins representative of the different
barrel architectures (and functions) and propose models for
outer membrane proteins not yet solved at atomic level.

Results and Discussion

The database of �-barrel proteins

We use a database including 11 �-barrel membrane pro-
teins. They were selected from the PDB database (after
clustering the porins and porin-like proteins into homolo-
gous families). From each group, we considered one solved
structure with a sequence identity <23% to all the other
structures in the different families and with the highest crys-
tal resolution within the group. In this way, the database
includes 11 proteins. Among these, five porins are active as
canonical homotrimers of �-barrels: the integral membrane
protein porin from Rhodobacter capsulatus (2por; Weiss
and Schulz 1992), its counterpart from Rhodopseudomonas
blastica (1prn; Kreusch and Schulz 1994), the matrix Ompf
porin (2omf; Cowan et al. 1995), maltoporin from Salmo-
nella typhimurium (2mpr; Meyer et al. 1997), and the su-
crose-specific porin ScrY from the same bacterium (1a0s;
Forst et al. 1998). The first three porins contain 16 �-strands
in the barrel, the second two contain 18 strands. The re-
maining six proteins of the database act as monomers with
one barrel: The outer membrane transporters FepA (1fep;
Buchanan et al. 1999) and FhuA (1fcp; Ferguson et al.
1998) from E. coli (both with 22 �-strands in the barrel); the
integral outer membrane protein X from E. coli (OmpX;
1qj8; Vogt and Shulz 1999) and the transmembrane region
of the outer membrane protein A from E. coli (OmpA;
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1bxw; Pautsch and Schultz 1998; both with 8 �-strands in
the barrel); the integral membrane phospholipase from E.
coli (1qd5; Snijder et al. 1999; with 12 �-strands in the
barrel); and one subunit of the heptameric transmembrane
pore of Staphyloccal �-hemolysin (7ahl; Song et al. 1996;
assembling two �-strands to the barrel).

The database, therefore, contains prototypes of all the
�-barrel membrane proteins known so far with atomic reso-
lution (Schulz 2000), and in this, it differs from smaller sets
of porins used in previous studies (Diederichs et al. 1998).
The number of total residues is 3773, 1909 of which are
included in 158 �-strands. Figure 1A shows the length dis-
tribution of the �-strands of the database and also the dif-
ferent length distribution of the inner and outer loops of the
�-barrels in the selected database. It is evident that the
length of the transmembrane �-strands ranges from a mini-
mum of six residues to a maximum of 22 residues, with the
highest frequency of occurrence centered at 12 residues.

Also, it is noticeable that the longest loops in the different
barrels are exposed to the external medium (Fig. 1B). These
characteristics are taken into account when implementing
the predictor (see below).

The predictor at work

A neural network is trained and tested on the selected da-
tabase with a jackknife procedure. In this way, each protein
at the time is tested while the remaining 10 are used to train
the network (the level of identity among the different pro-
teins used ranges from 4% to 22% at the most). It is evident
(Table 1) that the network performance is significantly im-
proved when the evolutionary profile is used as input, as
compared to single sequence. This is particularly true when
a nonredundant database of sequences is used to perform the
alignment. Sequence profiles are derived using the HSSP
files (Dodge et al. 1998) or a program implemented in-

Fig. 1. Characteristic feature of the �-barrels of the outer membrane proteins of the training set. (A) Bar plot of the length distribution
of the � strands contained in the barrels. (B) Bar plot of the length distribution of the inner (black bars) and outer (gray bars) loops
of the barrels.
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house that computes profiles directly from the alignments
performed by PSI-BLAST on a nonredundant database in-
cluding a number of sequences greater (∼500,000) than
Swiss-Prot (90,000). For the sake of comparison, the accu-
racy of the best-performing neural network–based predic-
tors available on the web (PHD and PSIpred) and those
using PSI-BLAST is also shown. As described by the au-
thors at their Web sites, PHD and PSIpred were trained on
training sets containing a subset of our selected �-barrel
membrane proteins. For this reason, we list their perfor-
mance under “Training” in Table 1. It appears that in spite
of this, the three-output predictors are performing with ef-
ficiency lower than that of the predictor specific for � barrel
membrane proteins, both in training and in testing.

If we consider that our selected database contains ∼50%
of the residues with �-strand structures, we can estimate that
random prediction would give an average accuracy equal to
50%. It is evident from the data shown in Table 1 that even
using single sequence as input to the network, the accuracy
is 19 points better than random. This value further improves
of another 9 points when evolutionary information is ex-
tracted from the nonredundant database (for a total of 28
points better than random). The observation that the predic-
tive performance improves when using a large database to
extract profiles is in agreement with what was recently ob-
served on the prediction of secondary structure of proteins
(Cuff and Barton 2000).

If the base line to score predictive performance is the
accuracy of the random predictor, the performance that we
obtain in predicting transmembrane �-strands is similar to
that of other predictors based on neural networks and de-
veloped for the prediction of transmembrane all-helical re-

gions (Rost et al. 1995; Casadio et al. 1996). The rate of
false positives (equal to ∼1−P[�]) is in the range of 20% and
is somewhat higher than that noticed before for the all-
helical transmembrane domains (16%; Rost et al. 1995),
suggesting that transmembrane �-strands are endowed with
less representative patterns that the all-helical transmem-
brane domains.

This finding prompted us to develop an algorithm based
on dynamic programming (Needleman and Wunsch 1970)
and implementing constraints derived from the models of
the transmembrane �-barrel proteins known at atomic reso-
lution (Fig. 1A,B). Network outputs are used to evaluate the
score relating the compatibility of a given sequence with a
given architectural model of transmembrane �-barrels. For
computing this, we rely on a model optimization approach
(see Materials and Methods).

This method should, in principle, correct for all the false
positives that fall in regions along the protein sequence that
do not meet the constraints used to describe �-barrel models
present in the database. In Figure 2, two examples of pre-
dictions are shown: one is that of the porin chain from
Rhodopesudomonas blastica (1prn; Fig. 2A), and the other
is that of OmpA from E. coli (1bxw; Fig. 2B). Network
outputs obtained in testing (the protein is not included in the
database used for training) are plotted along the protein
sequence together with the expected transmembrane
�-strands (segments in black), and the results are computed
after regularizing outputs with the algorithm based on
model optimization (segments in gray). It is evident that
both the 16 and 8 �-strands of 1prn and 1bxw are correctly
located (see, also, Table 2). This last protein, whose crystal
structure became available only recently (Pautsch and
Schulz 1998) was predicted with 16 �-strands with other
methods mainly relying on comparative modeling (Stathopou-
los 1996) and also by a neural network previously described
and trained on a set of transmembrane �-barrel proteins
smaller than that described in this article (Diederichs et al.
1998). This last predictor was trained using single sequence
and provides only network outputs, without minimizing
false positives (http://strucbio.biologie.uni-konstanz.de/
∼kay).

All the models predicted with our procedure (outlined
above) are presented in Table 2 and compared to the ex-
pected structures. Of the �-strands, 93% are correctly lo-
cated, and eight out of 11 models are also correctly assigned
(73%). Evidently, in some cases the model optimization
algorithm is not sufficient to cancel out false positives (the
presence of a �-strand in a wrong position in the sequence),
or alternatively, network outputs are not enough strong to
originate a transmembrane segment (the absence of a
�-strand in the correct position). Our predictor fails in cor-
rectly locating one transmembrane strand in 1fcpA, 2mprA
and 2por. In all the remaining proteins of the testing set,
transmembrane �-strands are correctly located, although

Table 1. Statistical analysis of the predictive performance

Q2 Q(�) Q(c) P(�) P(c) C(�) Sov(�)

Traininga

Single sequence 0.95 0.94 0.95 0.95 0.94 0.89 0.97
HSSP 0.85 0.86 0.82 0.83 0.85 0.69 0.87
PSI-BLAST 0.89 0.84 0.93 0.92 0.85 0.77 0.91

PHD on �-barrel
TM proteinsb 0.71 0.55 0.88 0.82 0.65 0.45 0.61

PSIpred on �-barrel
TM proteinsb 0.77 0.73 0.83 0.81 0.75 0.56 0.72

Testinga

Single sequence 0.69 0.74 0.64 0.68 0.71 0.38 0.71
HSSP 0.73 0.76 0.70 0.72 0.74 0.46 0.75
PSI-BLAST 0.78 0.74 0.82 0.81 0.76 0.56 0.79

a Training and testing of the predictor described in this paper; � �
�-strands; c � non �-strands. For the definition of the different statistical
indexes, see Materials and Methods.
b PHD (cubic.bioc.columbia.edu/predictprotein) and PSIpred (insulin.
brunel.ac.uk/psipred) contain respectively 5 and 6 �-barrel TM proteins
homologous to those of our selected set in their training sets.
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with not a perfect overlapping with the observed corre-
sponding regions.

After selecting the optimal model, the predictor gives
also the protein topology. In the case of membrane proteins,
topology refers to the protein organization with respect to
the membrane phase. On the basis of the observation that in
bacterial porins the longest loops are facing the extracellular

space, topology is assigned after computing which side of
the barrel is endowed with the longest loops. In this way,
and considering the predicted models listed in Table 2, the
topology of all the 11 proteins of the database is also cor-
rectly assigned. It should be noticed, however, that this rule
might not hold for �-barrel membrane proteins of mitochon-
dria and chloroplasts, for which data are not yet available.

Fig. 2. The predictor at work. Outputs of the neural network predictor are plotted along the protein sequence and originate a pattern
whose peaks correspond to regions of high propensity for the membrane � strand structure. A model optimization algorithm based on
dynamic programming (see Materials and Methods) selects the optimal model for a given sequence (gray segments) using constraints
derived from the actual model of the � barrel membrane proteins in the training set. The optimal model is compared to the observed
model (black segments). (A) Porin from Rhodobacter capsulatus (1prn). (B) Outer membrane protein A (OMPA) from Escherichia coli
(1bxw).
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Predicting other �-barrel transmembrane proteins

While this work was in progress, the crystal of TolC became
available (Koronakis et al. 2000). The complex has a chan-
nel–tunnel structure spanning the region from the outer
membrane up to the inner membrane and is assembled as a
trimer of 428-residue identical protomers. Spanning the
outer membrane, the protomers form a transmembrane
�-barrel of 12 �-strands. We tested one protomer in the

transmembrane region, and the results are listed in Table 3.
It is evident that our predictor correctly locates the four
transmembrane �-strands of the protomer.

The second prediction that we show is that of Omp32, an
anion selective porin from Comamonas acidovorans, whose
crystal structure is announced for June 2001 (Zeth et al.
2000) and was already a target (target 70) during the last
CASP3 competition (Orengo et al. 1999). The sequence
shows a 23% level of identity with ompf_ecoli, and as soon

Table 2. Observed and predicted transmembrane �-strands for the selected data base of �-barrel
transmembrane proteins

* TMS � Transmembrane �-strands.
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as it will be available, it can be included in the database. At
present, we tested our results by comparing them with the
model that scored the less root mean square deviation
(RSMD � 0.35 nm; http://predictioncenter.llnl.gov/casp3/
results) to the crystal structure (Venclovas et al. 1999). As
shown in Table 3, our predictor indicates a putative 16-
stranded transmembrane �-barrel, with the location of 14
out of 16 strands in agreement with the computed model.
These results confirm that the predictor is endowed with a
generalization capability sufficient to predict with good ac-
curacy transmembrane segments even in proteins distantly
related to those of the training set.

Is the predictor of transmembrane �-barrel
proteins necessary?

At present, the accuracy of secondary structure prediction is
quite high (Cuff and Barton 1999). So one may wonder to
which extent neural networks are capable of capturing and
generalizing the characteristic features of transmembrane
�-strands as compared to those of globular ones.

We trained and tested by cross validation a two-output
network for discriminating globular �-strands from coil
structure in all-� globular proteins. The overall accuracy of
the network reaches 74% with a correlation coefficient
equal to 0.49. When, with this network, the transmembrane
�-strands are predicted, the accuracy is 69%, compared with
that of 78% obtained when the specific network is used on
the same testing set (Table 4). This tells us that the predictor

trained on �-barrel transmembrane proteins captures distin-
guished features of transmembrane �-strands that are not
included in the same structural type of globular proteins.

In addition, we may ask whether different functions are
requiring distinct features. We divided our testing (and
training set) in two subsets containing, respectively, trimeric
porins and monomeric �-barrel ones, performing different
functions (see above). Each subset was used to train a net-
work, and the other was predicted. The results (Table 5)

Table 4. Efficiency of different predictors on transmembrane
and globular �-strands

Q2 Q(�) Q(c) P(�) P(c) C(�) Sov(�)

Trained on �-barrel
TM proteins 0.78 0.74 0.82 0.81 0.76 0.56 0.79

Tested on �-barrel
TM proteins

Trained on all-�
proteins 0.74 0.71 0.78 0.78 0.71 0.49 0.78

Tested on all-�
proteins

Trained on �-barrel
TM proteins 0.63 0.50 0.76 0.68 0.59 0.27 0.68

Tested on all-�
proteins

Trained on all-�
proteins 0.69 0.59 0.79 0.74 0.65 0.38 0.65

Tested on �-barrel
TM proteins

The all-� set (�-strand > 45%, �-helix < 5%; Zhang and Chou 1992)
contains 59 proteins extracted from the PDB_select, release June 1998.

Table 3. Prediction of �-barrel transmembrane �-regions of
TolC and OMP32

Protein Observed TMS Predicted TMS

lek9 41–52 41–51
tolc ecoli 61–74 64–74

247–262 247–255
280–289 282–289

OMP32a 2–16 2–9
om32 comac — 12–29

36–46 —
52–62 49–63
73–83 72–78
86–92 81–93

137–145 133–140
148–155 148–155
171–180 167–177
183–193 182–195
202–212 199–213
218–227 216–232
237–248 237–250
254–264 253–262
269–281 275–292
286–295 —

— 295–312
323–331 322–331

a Observed structure of OMP32 refers to the model T0070TS108 1 sub-
mitted to the CASP3 competition by Fidelis’ group (Venclovas et al. 1999).

Table 5. Predicting �-barrel transmembrane proteins with
different functions

Q2 Q(�) Q(c) P(�) P(c) C(�) Sov(�)

Trained on porins 0.79 0.79 0.79 0.82 0.76 0.58 0.79
Tested on porins

Trained on other
�-barrel TM
proteins 0.76 0.70 0.81 0.77 0.75 0.52 0.72

Tested on other
�-barrel TM
proteins

Trained on porins 0.77 0.80 0.75 0.75 0.80 0.55 0.82
Tested on other

�-barrel TM
proteins

Trained on other
�-barrel TM
proteins 0.80 0.78 0.82 0.83 0.76 0.60 0.78

Tested on porins

Porins: 1a0sP, 1prn, 2omf, 2mprA, 2por.
Other �-barrel TM proteins: 1bxwA, 1fcpA, 1fep, 1qd5A, 1qj8A, 7ahlA.
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indicate that the predictive efficiency is rather similar in
both cases, suggesting that �-barrel architectures are en-
dowed with the same characteristic patterns independent of
the function. This adds to the network capability of extract-
ing general features common to all the �-barrel transmem-
brane proteins.

Conclusions

We propose the use of the predictor described in this work
to locate putative transmembrane �-strands in �-barrel-con-
taining membrane proteins. This method may help to build
the three-dimensional model of �-barrel membrane proteins
by threading on templates of similar architecture.

Our predictor implements an algorithm based on model
optimization, which selects network predictions on the basis
of the transmembrane �-barrel architectures presently
known at atomic resolution. For this and for using evolu-
tionary information, it is presently the only one that is
implemented and based on neural network that is capable of
correctly assigning 93% of the transmembrane �-strands
known at atomic resolution. In addition, our analysis high-
lights that a neural network is capable of capturing features
that are characteristic of transmembrane �-strands, as com-
pared to globular ones, and that these features are shared by
the transmembrane �-barrels performing different func-
tions. It is therefore feasible that when new examples will be
known at atomic resolution, this method will be potentiated.

The predictor is presently available on request at http://
www.biocomp.unibo.it.

Materials and methods

The neural network–based predictor

A feed-forward neural network is implemented and trained with
the back-propagation algorithm (Rumelhart et al. 1986) to dis-
criminate membrane �-strands from extra membrane regions in the
�-barrel membrane proteins of the database. The network archi-
tecture basically consists of perceptrons with one hidden layer
containing five hidden nodes and an input window spanning nine
residues. Two output nodes are considered (“�” and “not �”). The
architecture of the predictor is extended to include a second cas-
caded network to filter out spurious assignments. Other network
architectures (a smaller or greater number of neurons in the hidden
layer) and lengths of the input window (from five to 15) were also
tried, and the one described above was found to give the best
predictive performance.

Evolutionary information is given as input in the form of se-
quence profiles after multiple sequence alignments. Sequence
alignments were derived from the HSSP database (Dodge et al.
1998) in which alignments were constructed using BLAST
(Altschul et al. 1990) to search the sequence database and
MAXHOM (Sander and Schneider 1991) to align the sequences.
Moreover, we used PSI-BLAST (Altschul et al. 1997; one round
with threshold equal to 0.001) to search a nonredundant database
(available at http://www.ncbi.nlm.nih.gov/BLAST). We generated

sequence profiles from its outputs by means of a newly imple-
mented program. This is based on the notion that the PSI-BLAST
complete outputs contain the local pairwise alignments of the
query sequence with all the extracted sequences. From this, it is
possible to compute a profile by merging each local pairwise align-
ment.

�-barrel membrane proteins taken from the PDB database were
clustered into different homology groups using CLUSTALW
(Thompson et al. 1994).

Selecting the model

An algorithm based on dynamic programming uses the network
outputs to locate the transmembrane �-strands along the protein
sequence by model optimization. A similar algorithm was previ-
ously used to locate transmembrane �-helices (Jones et al. 1994).
The one we implement takes advantage of the notion that trans-
membrane �-strands in the prototypes of �-barrel membrane pro-
teins are even in number and range from two to 22 in the sequence
(Fig. 1). A recursive algorithm generates a scoring matrix for each
predicted sequence by evaluating the total sum of the output dif-
ferences along a segment of fixed length. Minimal and maximal
lengths are derived from the database of selected proteins (Fig.
1A). A model is selected by evaluating the optimal score among
those satisfying the observed constraints in the crystals.

For a given sequence position j and for a given model i (i is the
number of �-strands), the scoring matrix S is computed as

Si
j = max

l = �min → �max
�sl

j + max
k = j + l + L → n

�Si− 1
k�� ( 1)

where L and n are the minimum length of a loop segment and the
protein length, respectively; sl

j is the score associated with a trans-
membrane strand of length l at position j in the sequence.

Topology is then predicted by simply comparing the length of
the loops of the two sides of the barrel and labeling as extra-
cellular the barrel side with the longest loops.

Scoring the prediction

The efficiency of the predictors is scored using the statistical in-
dexes defined in the following.

The network accuracy is

Q2 = P�N ( 2)

where P is the total number of correct membrane �-strand pre-
dictions and N is the total number of possible predictions.

The correlation coefficient C is defined as

C��� = �p���*n��� − u���*o�������p��� + u�����p��� + o�����n���
+ u�����n��� + o�����1�2 ( 3)

where, for each class �, p(�), and n(�) are, respectively, the total
number of correct predictions and correctly rejected assignments,
whereas u(�) and o(�) are the numbers of under and over predic-
tions.

The accuracy for each discriminated structure s is evaluated as

Q��� = p�����p��� + u���� ( 4)

where p(�) and u(�) are the same as in Equation (3).
The probability of correct predictions P(�) is computed as
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P��� = p�����p��� + o���� ( 5)

where p(�) and o(�) are the same as in Equation 3.
The segment-based measure (Sov) of the assessment of trans-

membrane �-strands is computed as previously described (Zemla
et al. 1999).
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