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Abstract

The heterotrimeric GTP binding proteins, G proteins, consist of three distinct subunsandy. There

are 12 known mammaliaf subunit genes whose products are the smallest and most variable of the G
protein subunits. Sequencing of the bovine brgigprotein by electrospray mass spectrometry revealed that

it differs from the human protein by an Ala to Val substitution near the N-terminus. Comparisgn of
isoform subunit sequences indicated that they vary substantially more at the N-terminus than at other parts
of the protein. Thus, species variation of this region might reflect the lack of conservation of a functionally
unimportant part of the protein. Analysis of 38ubunit sequences from four different species shows that

the N-terminus of a given subunit isoform is as conserved between different species as any other part of
the protein, including highly conserved regions. These data suggest that the N-termynsiadinctionally
important part of the protein exhibiting substantial isoform-specific variation.
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The heterotrimeric G proteins that mediate signal transducwhich are predicted to be post-translationally modified by
tion across the plasma membrane are a family of GTP bindprenylation at the C-terminus of the mature proteins. This
ing proteins composed of three different subunits, and  modification involves three sequential events: prenylation
v (Kuhn 1980; Bokoch et al. 1984; Hildebrandt et al. 1984).0of the cysteine four residues from the C-terminus, proteo-
Seven transmembrane receptors activate G proteins by progic removal of the three C-terminal amino acids, and car-
moting the binding of GTP, which induces dissociation intoboxymethylation of the new C-terminal prenylated cysteine
an« subunit and 8y dimer. These activated components (Clarke 1992). The type of prenyl group attached to the
independently regulate intracellular target proteins (Gilmarprotein is determined by the C-terminal residue. If the C-
1987; Iniguez-Lluhi et al. 1993). There are multiple iso- terminal residue is Leu, the protein is geranylgeranylated
forms of each of the three G protein subunits. These isof20-carbon group); however, if the C-terminal residue is
forms allow a large number of possible heterotrimer com-Cys, Ser, Ala, Met, or GIn, the protein is farnesylated (15-
binations, which are likely to be important in the role of G carbon group) (Cox 1995). This modification is essential to
proteins in signal integration in cells (Hildebrandt 1997). the function of the G protein. Without prenylation, the re-

G proteiny subunits are relatively small proteins of about sultant3y dimer does not associate with membranes, fails to
8 kD. Twelve subunit isoforms have been identified, all of permit coupling to receptors, and does not interact with
downstream effector proteins such as adenyl cyclase (In
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v subunits are the least similar of the G protein subunitsyariants ofys, which differ in their pattern of modification
with <30% identity among some isoforms, in contrast to theat the C-terminus (Cook et al. 1998). One technique used to
B subunits, which have >90% identity for four of the five characterize these proteins, acid hydrolysis, took advantage
known isoforms (Hurowitz et al. 2000). Based upon theseof the presence of a single acid-sensitive Asp—Pro bond in
differences, it might have been predicted thatyreibunits  all known y subunit isoforms excepy,, (Cook et al. in
would encode any specificity associated wijily dimers.  press). Acid hydrolysis of this bond produces N-terminal
Nevertheless, thg subunit is best characterized as a deter{[b kD) and C-terminal[(2.5 kD) fragments characteristic
minant of downstream effector specificity (Yan and Gautamof eachvy subunit isoform. During further analysis of the
1996, 1997; Mclntire et al. 2001), and only tBesubunit  potentialy subunits found in bovine brain extracts, many of
interacts witha in crystals of intact heterotrimers (Wall et them could be shown to produce Asp—Pro fragments typical
al. 1995; Lambright et al. 1996). The subunit has been of v subunit isoforms (data not shown). In fact, when HPLC
shown to be a determinant of receptor specificity (Kleuss efractions from the separation gf subunits in purified bo-
al. 1993; Kisselev and Gautam 1993), but this may in partvine brain G proteins were analyzed by MALDI MS after
be due to the C-terminal modifications of thesubunits  acid treatment, only one prominent protein in theubunit
(Yasuda et al. 1996). One important strategy for determinfange, aim/z7134.9 + 0.7n = 11 (average [M+H]) was
ing the role of the specificity of G proteip subunits would insensitive to acid treatment (data not shown). This protein
be to identify the structurally important elements of the was a likely candidate for the bovine brain, subunit,
subunits that might be required for their specific functions.which lacks an Asp—Pro bond, but the predicted mass of the
Here, we isolated and sequenced the bowigesubunit  [M+H]™ ion of the humany,, protein is 7106.3 Daltons
isoform from the brain and show that its sequence differdRay et al. 1995) and not 7134.9 Daltons.
near the N-terminus from that of the cloned human protein The above results could be explained by species differ-
(Ray et al. 1995). This finding led us to determine howences in the protein sequence of thg subunit isoforms
conserved regions of the subunit isoforms are between found in cows versus humans. To test this possibility, HPLC
different species. These comparisons showed that the Nractions containing the suspected,isoform, as well as,
terminus ofy is hypervariable among different subunit iso- andvy; (Fig. 1), were analyzed on a Finnigan LCQ (ESl-ion
forms, but that these differences are highly conserved berap) mass spectrometer (Fig 2). This instrument provides
tween different species. This identifies the N-terminug of more accurate protein molecular weight estimates than
as a likely site for isoform-specific functions of thesub-  MALDI-MS, and can be used to determine the sequence of

units. the protein. MS/MS data of intagt, ((M+6H]°* selected at
m/z1190.0) contained two series of y ioNS {W14 Y15 Y16
Results Y17 @Nd Va4 Yas Yae Yar Yas Yae Yso Ys1) compatible with

) ) o ) ) the known sequence of,, with the predicted C-terminal
Isolation, identification, and sequencing of the bovine  renviation pattern. However, the series of b ions in the
Y10 SUbUNIt spectra (Bo, D31, bsp, B3z and byg, Dy7, bag, Dag, Bso, bsy)
Previously, we isolated and completely sequengeffom  indicated a mass increase ranging from 27 to 29.6 Daltons
bovine brain (Wilcox et al. 1995), as well as two different greater than that predicted from the human sequence (aver-
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Fig. 1. MALDI mass spectrum of a representative HPLC fraction contaifing-y,, andvy,. This spectrum was internally calibrated
with insulin and cytochrome and is the average of 111 scans.
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age increase= 27.9 + 0.16 Daltons) compatible with the bovine sequence (Morishita et al. 1995), and these, too,
mass difference observed between the human and bovineere found dispersed throughout the protein sequence.
Y10 Proteins. These data localized the difference in mass t¢These conclusions about the humarsubunit sequences
the first 13 residues of,,. have also been reached by others independently [Ong et al.

To determine what is responsible for this mass increase ih997; Hurowitz et al. 2000] while our work was in prog-
the bovine protein, tryptic peptides of the putative bovineress.) These data suggest that the amino acid differences in
v10 Were analyzed. The HPLC fraction containigng, was  a singley subunit between different species are random, and
digested with trypsin, and peptides generated from this diare not localized to any particular region of the protein.
gest were analyzed. The sample was separated by HPLC on
a C-18 column in line with a Finnigan LCQ-lon trap mass Analysis of the conservation of G protejn
spectrometer, allowing collection of MS and MS/MS data .

. : ) : subunit sequences

for each eluting peptide. A mass compatible with an acety-
lated (minus methionine) N-terminal peptide (residues 2—1Because we were interested in determining which regions of
atm/z1104.5) 28 Daltons higher in mass than that predictedhe y subunits vary between isoforms, or between species,
from the human sequence was identified. To determine theve sought to compare all availabjesubunit sequences. We
position of the increased mass in the N-terminal peptideused the sequence for the bovipg protein described here,
this fragment was sequenced by MS/MS analysis (Fig. 3)and retrieved 37 partial or full G proteiy subunit se-
The by—bs ions and y—y; ions are identical to those pre- quences from Genbank and the mouse genome database.
dicted for the humary,, isoform assuming the N-terminus The relationship of the nucleotide coding region sequences
is acetylated after removal of methionine, as would be preef thesery subunits is shown in Figure 5, indicating five
dicted for this protein. However, theHh, o ions and y-y,,  major subfamilies.
ions are all 28 mass units higher than what is predicted from The observed species variation in the sequence,gf
the humany,,sequence. The change in mass occurred at theocused our attention on the differences at the N-termini for
sixth (seventh in protein sequence) amino acid, which is Alahese proteins. Comparison of all 38subunit sequences
in the human sequence. The increase in 28 mass units at tldemonstrated that overall thesubunits have 62% identi-
position would be explained by a Val residue. Thus, theties, but that the N-terminus of thesubunit isoforms dif-
7134.9 mass represents the bovine equivalent gfwhich  fers substantially more than other parts of the protein (Fig.
is acetylated at the amino terminus, as predicted, with &, solid black line). The N-terminus gfis the most variable
substitution of Val7 for Ala7. part of the protein. The degree of variability is striking
compared to the rest of the protein, as indicated in Figure 6.

We also addressed the question of whether the differ-
ences in the N-terminus of the protein might be functionally
significant by evaluating how conserved these differences
Because the human and bovipg isoforms had a sequence are between species. Lack of sequence conservation at the
difference at the N-terminus, we wanted to determine if thisN-terminus ofy isoforms from different species could im-
was also true of othey subunit isoforms. To augment hu- ply that this part of the protein is relatively unimportant to
man data available to us at the time of these experimentsts function. Conversely, conservation of isoform differ-
and to answer this question, we screened the human dbEEhces between species could indicate that this is a primary
(Expressed Sequence Tag) database for previously unreite in the protein for determining the specific functional
ported human sequences homologous ®ubunits cloned role for they subunit isoforms. To evaluate these ideas we
from other species. From these analyses we found two posnalyzed all 12 differeny subunit isoforms cloned from as
sible sequences: one homologous to bovine (dbEST  many as four mammalian species. We examined the con-
clone ID no. 270914, accession number; AF365871) (Mor-servation of different regions of the protein for a single
ishita et al. 1995), and another homologous to bowge isoform in several species. The results, shown in Figure 6
(dbEST clone ID no. 190321, accession number:(protein indicated by broken gray lines, and nucleotide cod-
AF365870) (Fig. 4) (Ong et al. 1995). Clones for theseing region indicated by solid gray lines), indicate that the
cDNAs were obtained from ATCC (American Type Culture protein and DNA sequences are highly conserved for a
Collection) and resequenced to verify the dbEST sequencesingle isoform across species. This is just as true of the
The humanyy sequence contained 10 amino acid differ- N-terminus of the protein even though it varies greatly
ences from the published bovine sequence (Ong et al. 19953mongy isoforms; and to a much greater extent than other
Most importantly, these differences appeared to be ranregions of the protein. For example, the sequence of a given
domly dispersed throughout the protein whersubunits v subunit (e.g.;y,) will be very conserved over the entire
from different species were compared. The humanse-  length of the protein whef, subunits from several species
guence had four amino acid differences from the publishe@re compared. However, when tipesubunit is compared to

Sequencing of clones from an Expressed Sequence
Tag database
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A vy
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bovine M A Q|E|L S E K|E}L LKMEVEQLKK EVKN|IPIRIAL|IS K|T|G KE I K|D]JY V
human M A Q|D|L S E K|DJL LKMEVEQLKK EVKNITIRII PJI S KJAJGKE I KJEJY V
50 60
bovine E AJE{AGNDPJL{L KGIPEDKNPF KEKGGC|I|ITIS
human E A|JQJAGNDP|FJL K GIPEDKNPF KEKGGC|L|JI S
B y12
10 20 30 40
bovine MSSKTASTNN IAQARRTVQQ LRIMEASIERI KVSKASADLM
human M S SKTASTNN TAQARRTVQQ LRJLIEASTIERTI KVSKASADLM
50 60 70
bovine SYCEEHARIN|ID PLLIMGIPTSE NPFKDKKTCT} IL
human S YCEEHAR|SID PLLJIIIGIPTSE NPFKDKKTC|I TL

Fig. 4. Sequence of humay, (A) and humary,, (B) derived from an EST databasé) (Sequence of humay, obtained from dbEST

clone ID no. 190321 (accession no. AF365870) sequenced with T7 primer. The coding region for the published sequgnce of
(accession no. U20085) was used to search The Institute for Genomic Research (TIGR) Human cDNA Databas8)S€)efice

of humany, , obtained from dbEST clone ID no. 270914 (accession no. AF365871). The coding region for the published sequence of
v12 (accession no. U37561) was used to search The Institute for Genomic Research (TIGR) Human cDNA Database (HCD).

other y subunits, the variation in sequence will be much This high degree of variability at the N-terminus, obvious
greater at the N-terminus of the protein. Thus, this variatiorwhen different isoforms were compared, was not evident
of sequence at the N-terminus for each isoform suggests thathen the sequences of a singlasoform were compared
this region of the protein might be important for the specializedrom different species. In fact, when comparing the maxi-
function of that isoform. The N-terminus is as important asmum percent identities for a singleisoform from different
other parts of the protein that are more conserved, such apecies, the N-terminus of the protein is just as conserved as
regions that are involved in interactions with fBesubunit. the rest of the protein at both the protein and the nucleotide
(coding region) level (Fig. 6). The variation of the N-ter-
minus for singley isoforms could mean that this region is
important for the specialized function of differeftsub-
The data presented here describe the variation in the Ninits. From this, it can be hypothesized that the N-terminus
terminus of the bovine and humag, proteins. The bovine of thery subunits may have an important function in the cell.
brain protein has a single amino acid difference of Ala toSome G proteiny subunits have known isoform-specific
Val at position 7, compared to that of the human clonggl ~ functions or localization. For examplgs, which has been
isoform (Ray et al. 1995). This single amino acid changefound in focal adhesions (Hansen et al. 1996), may be regu-
can account for the increase in mass seen for boyige lated differently than othey isoforms, possibly by unique
compared to the human protein. In the DNA sequence of théteractions of the N-terminus 6f with other proteins. The
genes for these proteins, this is a single base difference of §,, isoform has previously been shown to be phosphory-
to T, indicating that the sequence of this isoform is rela-lated at a serine residue in the N-terminus by protein kinase
tively conserved. Although this conclusion is compatibleC. This phosphorylation increases tfg dimer’s affinity
with our data, we cannot be certain that the Val-to-Alafor a subunits, but not effectors, because the unphosphory-
substitution at position 7 is the only difference between thdated and phosphorylate8ty,, dimer interacts with effec-
human and bovine proteins. We were also able to obtaitors to the same extent (Morishita et al. 1995). This implies
MS/MS sequencing data on the sixth trypsin fragment corthat they subunit may play a role in interacting witt
responding to residues 46—60 of the protein. No differencesubunits.

were evident from the analysis of this peptide. We cannot The N-terminus of they subunit has not yet been shown
rule out the possibility that there may be other substitutions ifo have a specific function. It has been implicated in inter-
the proteins involving lle and Leu, or Lys and GIn, becauseactions witha subunits and protectsfrom tryptic digestion
these amino acid pairs have equivalent nominal masses arffRahmatullah et al. 1995). Thesubunit also lies near one
would not be differentiated by MS/MS sequencing. of the regions of thgd subunits that interact with the effec-

Discussion
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Fig. 5. G Proteiny subunit nucleotide coding region alignment. Accession
numbers for nucleotide sequences are as folloyysbovine K02436,y,
human S62027;y, mouse AK020863,y, bovine M37183,y, human
AAB868346, vy, mouse NM_010315,y; bovine M58349,y; human
AF092129, y; rat frg AF022088,y; mouse NM_010316;y, rat frg
AF022089,y, mouse NM_010317y, human U31382ys rat M95780,y5
mouse BC002316;y5; bovine M95779,vys human AF038955,y, rat
L23219,v, mouse frg U38499y-, bovine M99393;y;, human AB010414,
vg rat L35921,yg mouse AF188180yg human AF188179yggqne)0Vine
U20085,Y9(gconeiNUMan AF365870yq(coneymouse AK010554y, 4 rat frg
AF022090,vy,, mouse NM_025277y,, human HSU31383y,, human
HSU31384,y,, mouse NM_025331y,, rat frg AF022091,y,, mouse
NM_025278, v,, bovine U37561,y,, human AF365871;y,; human
AB030207 andy,; mouse AB030194. The coding regions for humgn

and humany, , are those for the EST clones we resequenced. (frg) Partial

sequences.

tors (Wall et al. 1995; Lambright et al. 1996; Sondek et al.

1996), thea-helical N-terminal domain of th@ subunit.
Therefore, they subunit may influence interactions with

tion of the N-terminal sequence amofgsubunits may be
an important determinant of their isoform-specific func-
tions.

Materials and methods

Isolation of G proteins and separation 9fsubunits

Bovine brain G proteins were isolated as previously described
(Dingus et al. 1994). Theg subunit isoforms were separated from
each other and from their associate@nd 3 subunits in purified

G protein heterotrimer by reverse-phase HPLC over a 220 x 4.6-
mm Aquapore 7wm phenyl column (Brownlee) eluted in line with

a Finnigan LCQ (ESI-lon Trap) mass spectrometer (Cook et al.
1998; Cook et al. in press). The flow was split postcolumn so that
a small part of the eluent was sent to the ESI source while the
remainder was collected as fractions and stored at —20°C until
further analysis. Electrospray mass spectra (MS) and MS/MS mass
spectra were obtained during the run.

MALDI and aspartate—proline bond cleavage

MALDI MS and acid hydrolysis of the D-P bond was performed
as described previously on a PerSeptive Biosystems Voyager-DE
MS instrument (Cook et al. 1998; Cook et al. in press).

Nanospray

Nanospray (ESI-MS/MS) was performed as described (Cook et al.
in press).

120
Variation among species for a single isoform Protein
100 “---:-.:‘-__'7-'—'-&“;::_‘:_‘;-;-,.;—:.‘_;'_‘“'-2:—'
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8 40+
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Fig. 6. Percent identity of a given G protem subunit isoform among

species (amino acids and DNA among species) and amongslbunit

isoforms at the protein level (amino acids among isoforms). See Materials

those effectors binding at this region but not with 0th(_:‘rsand Methods section for details on how this figure was generated. The

that bind to a different site on thigsubunit. In addition, the

shaded area about the line for variation in protein sequence among iso-
forms represents the 95% confidence interval for the average percent iden-

N-terminus may be involved in uncharacterized interactionsies when data for each species are analyzed separately and then averaged

of the heterotrimer of+y dimer with other proteins. Varia-
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