
A MATHEMATICAL ANALYSIS OF SELEX

Howard A. Levine and
Department of Mathematics, halevine@iastate.edu

Marit Nilsen-Hamilton
Department of Biochemistry, Biophysics and Molecular Biology, marit@iastate.edu, Iowa State
University, Ames, Iowa, 50011, United States of America

Abstract
SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a procedure by which a
mixture of nucleic acids can be separated into pure components with the goal of isolating those with
specific biochemical activities.

The basic idea is to combine the mixture with a specific target molecule and then separate the target-
NA complex from the resulting reaction. The target-NA complex is then separated by mechanical
means (for example by nitrocellulose filtration), the NA is then eluted from the complex, amplified
by PCR (polymerase chain reaction) and the process repeated. After several rounds, one should be
left with a pool of [NA]that consists mostly of the species in the original pool that best binds to the
target. In Irvine et al. (1991) a mathematical analysis of this process was given.

In this paper we revisit Irvine et al. (1991). By rewriting the equations for the SELEX process, we
considerably reduce the labor of computing the round to round distribution of nucleic acid fractions.
We also establish necessary and sufficient conditions for the SELEX process to converge to a pool
consisting solely of the best binding nucleic acid to a fixed target in a manner that maximizes the
percentage of bound target. The assumption is that there is a single nucleic acid binding site on the
target that permits occupation by no more than one nucleic acid. We analyze the case for which there
is no background loss, (no support losses and no free [NA] left on the support.) We then examine
the case in which such there are such losses. The significance of the analysis is that it suggests an
experimental approach for the SELEX process as defined in Irvine et al. (1991) to converge to a pool
consisting of a single best binding nucleic acid without recourse to any a-priori information about
the nature of the binding constants or the distribution of the individual nucleic acid fragments.

1. Introduction
In this paper we present an alternative approach to that used in Irvine et al. (1991) to analyze
mathematically the process of SELEX. Our goal is to simplify the mathematical analysis and
to thereby provide the experimentalist a means of improving upon the success of this process.

First we provide a detailed description of the SELEX process as it is performed in the
laboratory. Then we develop a mathematical framework to describe and analyze this process
by which nucleic acids with new functions can be selected from a large random pool of nucleic
acid sequences.1 The plan of the paper is as follows:
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• Section 2: The SELEX process is introduced and a mathematical overview of the
paper is given.

• Section 3: Here the notation and the equilibrium equations are given. The notion of
the efficiency of the selection process is defined.

• Section 4: The SELEX process is defined mathematically as an iteration scheme.
• Section 5: A necessary and sufficient condition for the convergence of this iteration

scheme is given in the case that there are no losses of products through the support
or binding of free nucleic acid to the support (partitioning). This case is the
mathematical ideal.

• Section 6: Here partitioning is precisely defined as in Irvine et al. (1991).
• Section 7: The two major theorems on the convergence of the SELEX process are

given when there are losses through the support or free nucleic acid binding to the
support are stated. These theorems give necessary and sufficient conditions for the
convergence of the SELEX process. Although they are asymptotic results, in concrete
cases they give practical information as is shown in the simulations.

• Section 8: We give upper and lower bounds on the number of rounds needed to raise
the concentration fraction of the best binding nucleic acid from a very small fraction
of the total pool (as little as one molecule in 1012 for example) to a very large fraction
of the total pool.

• Section 9: In this section, a number of simulations are given based on a very simple
Matlab program that illustrate the theorems and approximations discussed in the
preceding sections.

• Section 10: A discussion of SELEX from a geometric point of view is given.
• Section 11: The proofs of Theorems 1, 2, and 3 are given.
• Section 12: The simple Matlab programs are given. There is one main program and

three small function subprograms.
• Section ??: In this section, mostly out of curiosity, we replace the discrete iteration

scheme by an analogous system of ordinary differential equations. The results
analogous to Theorems 1, 2, and 3 are deduced from the solution of the system of
ordinary differential equations.

2. The SELEX process and mathematical overview
2.1. The SELEX Process

Antibodies have served medical science extremely well for diagnostics and, in some special
cases, as medications. More recently it has been discovered that certain single-stranded nucleic
acids can adopt similar properties to antibodies in having high affinity and high specificity for
their target molecule. Although they were only discovered in 1990, aptamers are already being
developed as analytical agents (Tombelli et al,, (2005)) and for clinical treatments (Cerchia et
al. (2002)). One aptamer, that recognizes vascular endothelial growth factor, is now in clinical
use to treat macular degeneration (Zhou et al.(2006)). Among the many advantages of aptamers
over antibodies are the stability of aptamers for diagnostics and their lack of immunogenicity
for clinical treatments. Another important characteristic of aptamers is that they can be selected

1The term ”ligand” is sometimes used interchangeably with the term ”nucleic acid” although it is more general than nucleic acid. In a
reaction A + B ⇆C the smaller molecular weight molecule of A and B is generally called the ligand while the larger is called the target.
However, in SELEX, the target is sometimes smaller than the NA. However, throughout this paper we will always use the term ligand
to mean the nucleic acid.
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in vitro by a process called SELEX. Although most frequently depicted in the double helical
structure of chromosomal DNA, nucleic acids (NA) are capable of forming many alternate
structures; to whit the ribosome, transfer RNAs, ribosomes and aptamers. Aptamers are short
single-stranded nucleic acids that behave like antibodies, binding their target molecules with
high affinity and high specificity. However, antibodies and aptamers differ substantially in
their stability and in the means by which they are obtained. Aptamers are prepared synthetically
whereas antibodies still require an animal for their production.

Aptamers are selected by a selection process called SELEX (systematic evolution of ligands
by exponential enrichment) an (Ellington et al. (1990) and Teurk et al. (1990)). This is a
reiterative process of selection and amplification that can be combined with mutagenesis to
expand the pool of possible NA for selection. Here we will deal only with the selection aspects
of this process, which starts with a randomized pool of nucleic acids that has been prepared
synthetically. Each molecule in the pool is of the same length, but varies in an internal sequence
(generally 40–80 bases long) in which positions along the polymer are randomly assigned to
one of the four bases (A, G, C, T/U )2. Although the technology for producing and amplifying
the pool differs depending on whether the molecules in the pool are RNA or DNA, the same
basic steps are performed to isolate aptamers that bind a target (T) with high affinity and
specificity (Figure 1).

The first step in SELEX is to use T attached to a solid support (S) such as a filter or a column
to select molecules with sequences that promote their folding into structures that bind T. The
interaction between T and NA is assumed to be at equilibrium and thus can be represented as
T + NAi ⇆ T:NAi in which NAi is the ith NA in the pool. The equilibrium constant (Kd) for
each NAi is different and characteristic of the NAi sequence. Because the use of S is often
technically necessary to achieve the separation, there is also the possibility that certain NA
sequences will fold to structures that bind S. Thus, another set of equilibria that occurs in every
incubation of T and S with NA is S + NAi ⇆ S:NAi with a variety of Kd’s that are characteristic
of the individual NAi.

In each round of SELEX, the goal is to select for the NAi with the highest affinity (lowest Kd)
for T. Therefore, after incubating T and NA the T:NA complexes are separated from T and
NA, generally with the aid of S. The S:NAi is retained and captured together with the T:NAi.
In some selection protocols, T:NA is then separated from S and S:NA. The bound NA is then
extracted from T and S. When T:NA cannot be first separated from S and S:NA, the extracted
pool contains NA that was bound to T (the desired aptamers) and NA that was bound to S
(undesired background). Thus, part of the SELEX process is to minimize the number of
background molecules and maximize the number of desired aptamer molecules.

Three general approaches are used to eliminate background in SELEX. The most common
approach is to remove the background NA by incubating with S alone then discarding NA:S
(Conrad, (1994)). Another approach is to associate T to S through a reversible linkage that can
be broken prior to extracting NA from T:NA (Bock et al. (1992)). A third approach, that has
more recently been developed, is to dispense with S by using capillary electrophoresis to
separate T from T:NA (German et al. (1998)). Thus in some cases, one can dispense with S
and, hence, as in Irvine et al. (1991), we will not include equilibrium S+NAi ⇆ S:NAi in our
analysis.

After NA has been extracted from T (and S) this new NA population is amplified by polymerase
chain reaction (PCR) to make more NA of the same sequences. PCR utilizes a heat stable DNA
polymerase and the predefined sequences that are present at the termini of each NA molecule

2When referring to bases in NA sequences, T (thymine) is the base in DNA and U (uracil), is the equivalent base in RNA.
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in the pool. With primers that are complementary to the predefined sequences, and by going
through multiple cycles of annealing, polymerization and melting, the PCR protocol grows the
population to a size that is equal to or larger than the original SELEX population. This amplified
population is then used for a new round of SELEX in which the binding species are again
selected from the population as just described.

Once it is determined that a binding population has evolved (by measuring KD and the bound
fraction [T:NA]/[ NA]) the population is cloned, which produces a sample set of NA from the
population. Each molecule in the sample set is sequenced and all the sequences are aligned in
a search for identities. The presence of identical sequences amongst the sample set of groups
identifies members of the population that have likely been selected through the process. If the
population contained two or more molecules with similar  then two or more sub populations
will be found in the sample set. Putative aptamer sequences identified in this way are chemically
synthesized and tested for their ability to bind the target.

Although it is a matter of luck that the original NA population contains one or more NA
sequences that have a high affinity for T, some aspects of SELEX protocols can be optimized
for successful selection of an aptamer from the pool. Examples of these factors are the
concentrations of T and NA and their ratios. Success in SELEX is also influenced by
background binding NA:S, which should be as low as possible. This paper presents a
mathematical analysis of SELEX with the intent of providing practical guidance for SELEX
experiments in the laboratory.

2.2. Mathematical overview
We show that, under ideal conditions, selection will occur in all cases. The target concentration
also tends to zero with increasing round number in an ideal selection. However, if the selection
conditions are not ideal and some bound target passes through the support, or some unbound
nucleic acid binds to the support (nonspecific binding), the selection will fail if the decrease
in target from round to round is not done within a range of increments that can be defined
mathematically.

The underlying goal of the mathematical analysis is to give a formula for the number of rounds
needed to raise the concentration of a pool of nucleic acids that consists of at least one molecule
per unit volume of the best binding NA to a pool that consists of some specified percentage of
the best binding NA. Such an ideal formula would depend on (1), the desired percentage; (2),
the ratio of target concentration to total pool concentration, and (3), the errors or losses in
passing from round to round, i.e. the fraction of NA molecules that bind to the support and on
the capture fraction by the support of the bound target-nucleic acid complex; (4), the initial
distribution of nucleic acids in the pool and finally (5); the dissociation constants themselves,
which, like the distribution of nucleic acids in the original pool, may not be known, or known
only approximately. (In the latter situation, one may have some idea of the ratio of the largest
to the smallest dissociation constant in the pool.)

Precise conditions for a successful non-ideal SELEX experiment are given in this paper.
Theorems 2 and 3 provide the basis for an experimental SELEX protocol that requires little
prior knowledge of the nature of the binding constants or the numerical distribution of the
concentrations of each nucleic acid component in the pool.

In Irvine et al. (1991), the authors resort to solving a large nonlinear system of equations
numerically to illustrate the mathematical underpinnings of the SELEX method. We show that
one needs only to solve a single nonlinear equation in the free target for its sole positive root.
Once this is known, it is a simple matter to calculate the bound target from the total target and
to then to track how the concentration ratios [NAi]/[NA1] vary from round to round where
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[NAi] denotes the concentration of the ith nucleic acid species. The assumption here is that the
first species binds better to the target than all the other species in the pool. We also give some
upper and lower bounds for the round number needed to reach a specified pool fraction of the
best binding nucleic acid.

Other modeling approaches have been made to the SELEX problem, (Djordjevic et al.
(2006), Levitan (1997) and Sun et al.(1994)), but we believe our theoretical and computational
approaches offer the advantages of simplicity and ease of applicability for the practitioner as
it rests on mass action considerations (i.e. the law of large numbers) rather than individual
probabilistic considerations. One approach, based on probability arguments is given in (Sun
et al. (1994)) in the case in which there is no loss through the support of captured target and
no nonselective retention of nucleic acids. If the optimal nucleic acid is very rare in the first
round of SELEX, one may miss it entirely. Thus there is a very real need for a probabilistic
model that goes beyond that of Sun et al. (1994)). In this paper, the assumption is that we are
operating in the range of the law of large numbers so that we may use the Law of Mass Action
with impunity.

We believe however, that our results provide a practical algorithm for carrying out the SELEX
process in the laboratory. This is especially important because the individual binding constants
are generally not known, although free energy considerations were used to estimate them in
some special cases in (Sun et al. (1994)) for example.

Finally we remark that the SELEX process is, in some ways, mathematically analogous to to
multicomponent distillation processes. See McCAbe et al. (2001).

3. Chemistry
Here we establish the following equivalence: Selection will be approached at maximum target
efficiency if and only if the overall dissociation constant converges to the smallest dissociation
constant and the concentration of the total target converges to zero. This equivalence is
established near the end of this section in subsection 3.2. In order to do this, we need to define
our terms and our problem carefully. (For example, allowing the total target to approach zero
in the continuum sense is not a physical notion any more than the terminology ”infinite dilution”
is.)

3.1. Notation and Mathematical overview
The notation is given in Table 1.

Here we frame the underlying chemistry of a single SELEX round in terms of chemical
equilibria. Following Irvine et al. (1991), we exclude the possibility of nucleic acid binding to
the support S. We envisage an initial pool of N nucleic acids, NAi, for i = 1, 2, … N. Here
NA stands for nucleic acid which could be DNA or RNA. These are called nucleic acid ligands.
They bind to a target molecule T via the dissociation-association:

(3.1)

assumed to be in equilibrium. The dissociation constant for each of the N nucleic acids is given
by:

(3.2)
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where

(3.3)

Thus, solving for the bound target:

(3.4)

where we have set

the fraction of the ith nucleic acid. It is assumed that the dissociation constants are ordered: 0
< Kd1 < Kd2 ··· < KdN. Otherwise, they are to be regarded as unknown. Ordering them is done
simply for mathematical convenience. Any set of N distinct numbers can be ordered.

In addition there is the overall dissociation constant given by

(3.5)

where

(3.6)

denote the total NA, the total free NA and the total bound target respectively. The total bound
target can be determined under the stoichiometric assumption that there is only one NA bound
to a target molecule, an assumption made here and in Irvine et al. (1991). In a given round of
the SELEX process, one begins with a pool of nucleic acids for which one knows the initial
total concentration of nucleic acids, the initial concentration of binding target, and the overall
dissociation constant. Thus

(3.7)

Thus, using (3.5), (3.6) and (3.7)

(3.8)

Thus

(3.9)
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where  is defined by the left hand side and where F⃗ = (F1, F2,…, FN ). Thus the overall
constant Kd depends only on the free target, the individual dissociation constants, and the

fractions of each nucleic acid in the pool. Note also that . Because

 it follows that

(3.10)

i. e., the overall dissociation constant must lie between the largest and smallest such constants.

The overall constant Kd is also a function of the total target, the total nucleic acid and the free
target in the given pool:

(3.11)

Thus, one can eliminate Kd between (3.9), (3.11) to obtain a single nonlinear equation for the
free target. This is easily found as follows: From the second equation in (3.7) and the far right
hand expression for the bound target as a sum in equation (3.8) one finds

(3.12)

The extreme ends of this equation give a single nonlinear equation for the free target. The
bound target concentration is then

the maximum concentration of nucleic acid available for amplification by PCR.

Turning to the individual fractions, new concentration fractions of nucleic acids are related to
the old via

(3.13)

From a mathematical point of view, one only has to follow the ratios Fi/F1, i.e.

The beauty of PCR from the chemist’s point of view is that the ratios [{T:N Ai}]/[{T:NA}] do
not change under PCR. Therefore we can adjust (at least in principle) the concentration of the
new pool to be the same as the concentration of the original pool without changing the ratio

. Thus the concentration of [NA] can be regarded as constant from round to round.

Because the dissociation constants increase in i the ratio in [Tf] is smaller than unity and is a
minimum at [Tf] = 0. This formula needs to be modified when there is nonselective binding of
nucleic acids by the support, or losses of bound target (Irvine et. al., 1991). We revisit it in
Section 6.
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Unlike the procedure followed in Irvine et al. (1991), we adopt a different approach. Equation
(3.12) is a single nonlinear equation of the form F([Tf], [NA]) = [T]. If the pool concentration
[NA] is given, the fractional distributions of the nucleic acids and the values of the dissociation
constants are known (or at least estimable) then, given the target concentration [T], it is a simple
matter to use Newton’s method (for example) to calculate [Tf]. Once this is found, all the new
ratios are easily computed. (Notice that

so that if one knows F1, …, FN and , then one knows all the fractions at the
next round.)

In the laboratory, one usually fixes [NA] and takes [T] → 0 as the round number increases.
What justifies such a protocol? The ratios

represent the fraction of bound NAj to total bound NA. (These can also be viewed as the relative
likelihood of binding one NA type to the binding of any type.) One sees that when j = 1, this
ratio will be a maximum at [Tf] = 0 because

is strictly positive unless we are at selection. Hence R1 is decreasing in [Tf] and has its maximum
at [Tf] = 0. Likewise, if we compute d[RN]/d[Tf] we see that this ratio is strictly increasing in
[Tf] and hence has its maximum when Tf] = [T] = + ∞.3 This justifies the protocol. It also says
that maximum probability for binding the best binder occurs when the free target is small while
the probability of binding the poorest binder will be at a minimum when the free target is small.
(The concept is closely related to the concept of maximum bound target efficiency as defined
below.)

The argument above does NOT say that R1 > RN. To take an extreme example, if we have only
one target molecule, a pool consisting of two species of nucleic acids, one that bind with an
affinity of only 1/100 that of the the other but the concentration of the poorer binder is 106

times that of the better binder, the interaction of the pool with the target is going to lead to the
target bound to the poorer binder far more often than to the to the target bound to the better
binder. (For the example, R1 = 10−4 and R2 ≈ 0.999998 when Tf ≈ 0. The reader should keep
in mind that we are talking about equilibrium thermodynamics here and not kinetics.)

In theory as one decreases the target from round to round, the fraction of best binding molecules
in the pool should increase relative to the others because of the greater likelihood that they will
be bound to the target than those of lower affinity. But, as the above example shows, one might

3The values of the free target for which the other ratios are maximized can be found, if they exist, by solving the nonlinear equations

for j = 2,…, N − 1.
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miss the the best binder altogether as one lowers the target. Another manifestation of this can
be seen in Figure 8. We see that as the initial target is decreased, the round number to achieve
a fixed level of selection first decreases and then increases. The decreasing of the round number
reflects the the improved opportunity given to the best binder while the increasing of the round
number as the initial target level continues to fall reflects the fact that R1 is much smaller than
RN (at zero free target) and more rounds are needed to change this inequality.

The fundamental issue remains. How do we choose the target from round to round? The
theorems we develop here tell us that in the absence of information about the dissociation
constants, there is, at least in principle, a way to reduce the target concentration from round to
round, fixing the total pool size, in such a way as to insure that selection occurs. This is the
subject of Section 5 and Section 7.

We sometimes suppress the argument F⃗ in Kd(F⃗, [Tf]) and in [Tf](F⃗, [T]) in the interest of
readability.

3.2. Efficiency and selection
Operating under the assumption that at most one nucleic acid binds to a single target, the
SELEX process can be monitored by following either the relative concentration of bound NA
or the overall dissociation constant and the free NA. To see this define the fraction of bound
target as [{T:NA}]/[T] = ([T] − [Tf])/[T]. Then

(3.14)

We can write:

(3.15)

Equation (3.15) tells us that if we monitor [T], [T]b, we can monitor the overall dissociation

constant. From (3.14) we see that  and thus [Tf] →
0 if and only if [T] → 0 when [NA] is fixed.

Consequently

equality holding at one side or the other according as F⃗ = (1, 0, …, 0, 0) or F⃗ = (0, 0, …, 0, 1).

From (3.14), because the ratio on the right is increasing in  and  is decreasing in [Tf], the
ratio is a maximum when [Tf] = 0. Whatever the value of [Tf], the maximum value of the
relative concentration must occur at F⃗ = (1, 0, …, 0). Thus

(3.16)

while
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(3.17)

We call  the maximum bound target efficiency.

Thus, we approach selection at maximum bound target efficiency (i. e. at the maximum value
of the bound fraction) if and only if Kd → Kd1 and [Tf] → 0 (or [T] → 0).

4. The selection process as an iterative scheme
The sequential process, selection, PCR, selection …, can be written an iterative scheme. To
do this, we introduce notation that suitably represents this process. For the initial step, we have

NA fractions, , with  and a starting concentration of target
[T]1. After the initial pool is exposed to the target (in the presence or absence of a support), we

obtain as output, new NA fractions,  and some free target that is then
discarded. (The free target can be viewed as output from the first round. However, it is
notationally simpler to call it [Tf]1.) We then select a new target [T]2. More generally, we are
given a fixed sequence of target fractions  with [T]1 ≤ [NA]. We make any assumptions
on this sequence that can be realized in the laboratory. At the rth step we have NA fractions,

, with . We obtain a new pool, 
defined as follows: First we compute the free target left over from the reaction at the rth step
by solving

(4.1)

for [Tf]r in terms of [T]r. This value is then used to compute the fractions in the new pool from
those in the old pool by evaluating the right hand sides of

(4.2)

for i = 1, …, N. This is much simpler than the procedure described in (Irvine et al. 1991).

5. Convergence of the selection process in the case of no background
interference

The proof of Theorem 1 is given in Appendix B (Section 11).

Theorem 1

Assume that there is no loss through the support, that   and [T]1 ≥ [T]r for r ≥ 2. Then
the iterative scheme will converge to a pool consisting only of the best binding nucleic acid
and

(5.1)

The two conclusions above are equivalent. The convergence to selection, when it occurs, will
be at maximum target efficiency if and only if [Tf]r → 0. (See subsection 3.2).
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Remark 1
From the proof of Theorem 1 one sees that the convergence to selection is very rapid. Indeed,
from equation (11.7) in Appendix 11 one has for N ≥ i ≥ 2

where Q = ln(Kd2 + [Tf]1)/(Kd1 + [Tf]1). Thus the decay to zero of the mole fractions of all

except the best binding aptamer is at least exponentially fast. This will be the case if   is
close to Kd1 and [Tf]r is small. Thus it is important to monitor Kd approach selection at
maximum bound target efficiency.

Remark 2
Given a sequence of input targets, {[T]r} with [T]r < [T]1 for r ≥ 2, the corresponding sequence
of overall dissociation rate constants will converge to the dissociation constant of the best
binding nucleic acid and the concentrations of the nucleic acid pool will approach that of a
pool consisting solely of the best binding nucleic acid. However, the approach will be optimal
(at maximum target efficiency) if and only if [T]r → 0.

6. Partitioning
In practice, there are experimental losses. When the sample is passed through a support, some
free NA will be bound to the support. Also, some of the product will be lost through the support.
Following (Irvine et al. 1991), we say that the NA pool has been partitioned. Again following
(Irvine et al. 1991), we express the individual NA relative concentrations in the form:

(6.1)

where, in the author’s notation, cp is the percent of captured target caught by the ith NA species
that is eluted from the support and bg is the percent of background free NAi that is used for
PCR by being nonselectively trapped by the support. In principle cp and bg should be species
dependent. However, at the outset, following (Irvine et al. 1991), we assume they are not
because it is difficult to measure them individually. Then summing (6.1) over all species, we
have

(6.2)

In order to compute the percent of NAi available for PCR we now define δ = bg/(cp − bg) and
ε = δ/(1+δ) = bg/cp:

(6.3)

where again  and set (suppressing the arguments
in [T f](F⃗, [T]) and in Kd(F⃗, [T f]) on the right hand side)

(6.4)
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Notice that the last term consists of the product of two factors, the first is always less than unity
(when 0< ε < 1 and [T f] > 0) while the second is always larger than unity for this range of ε.
Notice that 1 < Ei([T f], δ) < Ei([T f], 0) if and only if Kdi < Kd. Thus, it is better to use

(6.5)

When δ > 0 we see that as [T f] → 0 or as [T f] → +∞, the ratio Ei/E1 →1. Thus the extreme
values of Ei/E1 must occur for nonzero values of the free target. It is an easy exercise in calculus
to show that each ratio has unique minimum value of

which occurs at .

7. Convergence of the selection process in the case of NA partitioning
There are, as when ε= 0, zero, a number of fixed points for the scheme, each having the form

 with Kd = Kdj for j = 1, 2, … N. (Here δij = 1 or δij = 0 according as i = j or i ≠ j.) The
goal is to determine necessary and sufficient conditions for the convergence of the iterative
sequence to converge to the fixed point corresponding to the case j = 1.

We establish two theorems. In the first theorem, we assume that [T]1 ≥ [T]r ≥ [T]0 > 0 with
round number. In the second, it is assumed that [T]r → 0 with round number.

Theorem 2
Suppose, in the selection process we define input target concentrations [T]r recursively by the

rule  . Suppose also that [T]r → [T]0 > 0. That is, the

series Σr sr is convergent. Suppose also that  . Then the iterative scheme will converge
to a pool consisting only of the best binding nucleic acid and

(7.1)

The two conclusions are equivalent. The convergence to selection, when it occurs, will fail to
be at maximum bound target efficiency because {[T f]r} is bounded below by a positive
constant.

Theorem 3
Suppose, in the selection process we define input target concentrations [T]r recursively by the

rule . Suppose also that [T]r → 0 with round number.
(Equivalently, Σr sr is a divergent series.) Then a necessary and sufficient condition for the
SELEX method to converge to the best binding nucleic acid is that the series

(7.2)
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is divergent. Moreover, if the series is divergent: The convergence of the iterative scheme to
a pool consisting only of the best binding nucleic acid and

(7.3)

are equivalent statements. The convergence to selection, when it occurs, will be approach
maximum bound target efficiency because [T f]r → 0. (See subsection 3.2.)

A useful corollary is the following:

Corollary 1

If   satisfies

with

then

satisfies the conditions of Theorem 3. Conversely, if  is a sequence such that this theorem
holds, then the sequence given by recursively by z0 = 1, zr+1 = sr+1zr satisfies the above
conditions.

Thus it is relatively easy to generate sequences for which one can satisfy the conditions of the
theorem.

For example, if zr = 1/(r + 1), then sr = 1/(r + 1), (the harmonic sequence) then Σr sr = Σr 1/
(r + 1) is a divergent series. Furthermore, the series in (11.11) reduces to this same series and
hence selection will take place. The harmonic sequence {1/(r + 1)} is not the only one with
this property. For example, zr = 1/(r+1) ln(r+2)) will give a sequence with sr = 1 − r ln r/(r+1)
ln(r+1)) ≈ 1/r for large r also satisfies the conditions of the theorem. Thus, in the absence of
any information about the dissociation constants, the harmonic sequence is a good choice for
target reduction in each round in SELEX.

However, if the input target is reduced by a fixed fraction 1 − c at each step, then the series in
(11.11) is a convergent geometric series and selection is not possible. (That is, it is not possible
in the mathematical sense although clearly, the more slowly the (11.11) converges, i.e., the
closer c is to unity, the more likely we are to get something approaching perfect selection.

In Section 9 we illustrate these results with numerical simulations.

8. Partial selection - Likelihood of success
Here we want to consider how many rounds will be needed to achieve a concentration of the
best binding NA that is a large multiple σ of the other nucleic acid concentrations in pool. Our
approach to this problem is somewhat different than that of (Irvine et al. 1991). We can write
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(8.1)

where Pi,r denotes the indicated product.

Notice that the products Pi,r satisfy

Because  it follows that

(8.2)

where we have set

(8.3)

Thus

(8.4)

We want good upper bounds for P2,r (in order to get good lower bounds for ) and good
lower bounds for PN,r.

To get a good upper bound on P2,r note that

when we assume that Kd2 ≫ [T f]k ≫ εKd1. If , this inequality will hold if
 and Kd > εKd1. The latter inequality is always true since Kd > Kd1. The former

will be true if , a claim that will always hold if the background is small enough.
On the other hand, it may take a number of preliminary rounds in order to get to the level for
which Kd2 ≫ [T f]k ≫ εKd1.

In this case, P2,r ≤ (1 − ⋀2)(r).

To get a good lower bound on PN,r we note that for any value of [T f]r

where
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(8.5)

Therefore

(8.6)

or

(8.7)

Suppose that 0 < σ < 1. Then we can be sure that  if

(8.8)

Whereas  provided

(8.9)

Thus we define the interval of uncertainty as the interval (of integers) (rL, rU) where the value

of the round number must belong in order for  to achieve the value σ. It is important to keep
in mind that (8.8) holds only under the hypothesis that Kd2 ≫ [T f]k ≫ εKd1. Consequently,

the number rU may understate the number of rounds needed for  . That is, we must
allow for a certain number K of rounds say to take place before we can assert that Kd2 ≫ [T
f]k ≫ εKd1. Thus, the interval of uncertainty is (rL, rU + K).

Notice that as ε → 0+,

which ratio is unity when N = 2. Thus at least one of the two numbers rU, rL cannot give the

required minimum number of rounds needed for  to achieve the value σ unless there are
only two nucleic acids present in the initial pool and ε = 0.

Now suppose in our initial pool we have M molecules per unit volume of [NA]. We are going
to look at some distribution scenarios. We compute the interval of uncertainty with data from
(Irvine et al. 1991).4 First, suppose also that all but 1 of them are of the poorest binding type

while the sole exception is of the best binding type. That is  and
 while none of the intermediate binders are present. Then Θ = M − 1.

4The values of the dissociation constants above were reported in (Irvine et al. 1991) based on ”the observed correlation between nucleic
acid information content and free energy of binding”. The authors refer to Berg et al. (1986), Stormo et al. (1991), and von Hippel et al.
(1986) for details.
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The number nucleotides, with distinct binding constants is taken as N = 5. The pool size is
[NA] = 3(10−5)M. In order to take [NA] = 1, the dissociation constants have to be rescaled to
this concentration. Kd1 = 4.8(10−9)M/[NA] = 1.6(10−4), Kd2 = 12.0(10−9)M/[NA] = 3(10−4),
Kd3 = 17.0(10−9)M/[NA] = 5.7(10−4), Kd4 = 27.0(10−9)M/[NA] = 9(10−4), Kd5 = 3.2(10−7)/
[NA] = 1.6(10−2) where ε ≈ 0.1/80 = 1.25(10−3). The input or target concentration, [T] =
[NA]10−3 = 3(10−8)M = [T]1[NA]. Hence [T]1 = 1.0(10−3). If the initial distribution is such that

 with , then

. In order to find [T f] we need to solve the equation arising from (3.9)

which, in this case leads to a cubic in [T f]. However, using the values for [T]1, Kd1, KdN,

 we can easily estimate the value of [T f] as [T f] ≈ 1.6(10−5). Thus KdN ≫ Kd1 > [T f] ≫
εKd1 ≈ 2.0(10−7). If one seeks a pool consisting of 84% of the best binding nucleic acid, then
σ = 0.84 Then σ/(1 − σ) = 5.25. With M = 65536, ln(Θ σ/(1 − σ)) = 12.7485. We find that ln[1/
(1 − ⋀2)] ≈ ln[Kd2/Kd1] = ln[1.875] = 0.628 and this gives rU ≈ 12.7485/0.628 ≈ 21.0. On the
other hand  while ε = 1.25(10−3) so that1 − λ5 = 0.135/(1 + 0.00354) ≈ 0.135.
Thus 2 ln(1/(1 − λ5)) = 4.04 and hence rL ≈ 3.18. Thus we obtain 84% selectivity in not less
than three nor more than 20 rounds.

Notice that if we only demand a 50% pool of the best binding aptamer, then σ = 0.5 and ln
(Θσ/(1 − σ)) = ln(65535) so that rU ≈ 18 while rL = 2.7.

Using pubmed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed) as the search
engine, a review of the recent literature (2003 through mid-2006) revealed 26 publications
describing successful SELEX experiments (Boyce et al.(2006), Chen et al.(2003), Cerchia et
al. (2005), Cui et al. (2004), DeStefano et al. (2004), Eulberg et al. (2005), Fan et al. (2004),
Gening et al. (2006), Gopinath et al. (2006), Jarosch et al. (2006), Kim et al. (2003),
Kulbachinskiy et al. (2004), Lee et al. (2004), Lee et al. (2005), Mi et al. (2005), Mochizuki
et al. (2005), Moreno et al. (2003), Mori et al. (2003), Ogawa et al. (2004), Pileur et al.
(2003), Rhie et al. (2003), Skrypina et al. (2004), Surugiu-Warnmark et al. (2005), Vo et al.
(2003), Yang et al. (2006) and White et al. (2001)). In all instances the targets were proteins.
The number of rounds prior to cloning varied from 7 to 22 with a mean of 12 ± 4 and a median
of 12. These results identify the round at which each group of investigators identified binding
activity of the aptamer(s) in the oligonucleotide pool and decided to clone the sequences. The
decision to clone can vary depending on the results obtained from previous rounds of the
SELEX experiment and does not indicate that a certain percentage of the oligonucleotides in
the pool are aptamers of the highest a, nity form. Because it is prohibitively time consuming
to test every oligonucleotide sequence in the cloned pool, the information regarding percent
best binding aptamer sequences in the pool is usually sketchy at best. However, the collective
results from a number of SELEX experiments should provide a view of the number of rounds
it generally takes to obtain a population with measurable (greater than about 10%) binding
activity. With the understanding that the experimental data is not uniform, the results from the
mathematical model are consistent with the experimental data. The concordance of
experimental results with mathematical predictions that are based only on chemical equilibria
suggest that, in most SELEX experiments, the binding equilibrium is the major factor
determining selection, whereas the evolution enabled by in vitro mutagenesis might not have
a major impact on the rate of aptamer selection.
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As a second example, suppose that we compare the best binding nucleic acid with the worst
binding nucleic acid. Then ⋀2 = ⋀N = (1 − ε) Kd1/KdN and λN is given in (8.5). Suppose we
have a pool consisting of 10(1)2 nucleic acids, 10k of which are the best binder and the rest are

of the worst binding type. Then  and Θ = 1012 − k − 1. If we seek a pool of 50%
of the best binding aptamer, we have Kd1/KdN = 10−2. Then ln(σ Θ/(1 − σ)) ≈ (12 − k) ln 10 =
2.303(12 − k) while − ln(1 − ⋀N) = − ln(1 − 0.95(.99)) = − ln(0.0595) = 2.821 and

 and − ln(1 −
⋀N) = 1.14766. Thus 0.5(1.14766)2.303(12 − k) ≥ r ≥ 2.303(12 − k)/2.821 or

(8.10)

Thus when k = 0 we should need not fewer than 10 rounds nor no more than 16 rounds to get
a pool consisting of 50%. of the best binding aptamer. If we have 10 molecules of the best
binder so that k = 1, then 9 ≤ r ≤ 15. See Figures 11, 12.

9. Simulations
In this section, we present some simulations. We take a fixed number N = 15 of nucleic acids
and a fixed linear ordering of the dissociation constants. In Figures 2–8 we use Kdi = (1.6+2.2
(i − 1))10−4, i = 1,…, N (rescaled to a fixed pool size of [NA] = 3(10−5M). We started with a
nucleic acid pool generated by using a random number generator. Once the pool is selected, it
is fixed for the Figures 3–9.

In Figures 11–16 we increased the spread of the dissociation constants by a factor of 10, i. e.
we used This range is consistent with the data used in (Irvine et al. 1991), figure 4. We also

looked at the worst case pool distribution, i. e.  and .

Because we do not need to solve a large system of equations, the Matlab program we use runs
very rapidly. Figures 3–11 are organized as follows:

1. In the first set of experiments, we take ε = 0.05, [T]1 = 1.0 and vary the reduction

sequence. The choices for  are  (to illustrate Theorem 2),

 (Theorem 3, series in (7.2) is convergent, no selection) and
 (Theorem 3, series in (7.2) is divergent, selection). We give the graphs

of Kd, [T f], [T]b, as functions of round number.

In Figures 3 and 5 we have selection. However, while the panels 2 in both figures
indicate that the overall dissociation constant, Kd, is converging to the smallest such
constant, Kd1 with round number, the convergence is faster in the case of Figure 4.
Also, there is much less free target left and more efficient binding in the case of Figure
5 as compared to Figure 3 (compare panels 3, 4 in both figures).

2. For the second set of experiments, Figure 6, with [T]1 = 1.0, we examine the case that
, a series of constants. We compare slow reduction s = 0.1, 0.4, 0.6 and s =

0.95. While we are led to geometric series in (7.2) in all four cases, the rate of
convergence of the series accelerates as s increases toward unity.

Notice how, as we move from panel to panel in Figure 6, the number of rounds for
which the poorer binders survive increases. Notice also that nearly perfect selection
of the first nucleic acid becomes impossible to achieve in less than twenty rounds
when s > 0.5.
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3. In the third set of experiments, we start simulations with [T]1 = 0.1 and with ε variable
over the four values 0.05, 0.20, 0.40, 0.70 sr = 0.1 for all round numbers r. In the
panels in Figure 7, we see the effect of increasing ε ≈ bb/cp on selection.

4. In the fourth set of experiments, we start simulations with ε = .05 and with [T]1 =
4−k for k = −2, −1, 0, 1, 2,…2, 9. We reduced the target by 10%(sr = 0.1) in every
case. See Figure 8.

We see from Figures 8 that there is an optimal starting value for [T]1 lying in the
interval (1/16, 1/4) for which the round number leading to selection will be minimal.
Much of the discussion in (Irvine et al. 1991), pages 749–753, is concerned with
estimating this optimal starting value.

5. If we use the formula  in every round, we are led to fixing [T]
(r) ≈ 0.1451 for every round. That is, we are setting sr = 0. In Figure 9 we have given
the nucleic acid fractions for a random pool with this fixed value for the input target
with ε = 0.05.

Although in this case there is no reduction in initial target from round to round, one
needs to have a reasonable idea of the background and capture fractions as well as
the geometric mean, , of the smallest and largest dissociation constants in
order to implement this in the laboratory. Notice also that in this case all the free target
is not consumed nor is the binding fraction as close to unity as they are in Figure 5.
(Compare panels 3 in Figures 5, 9 and panels 4 in Figures 5, 9.) Because we do not
have convergence of the free target to zero (Figure 9, panel 3) we do not obtain
convergence of the overall dissociation constant to Kd1. (Compare Figure 5, panel 2
with Figure 6, panel 2.)

6. In Figures 11 and 12 we use the values Kdi = (1.6 + 22 (i − 1))10−4, i = 1,…, N and
the starting value [T]1 = 1. We chose sr = 2/(2r + 1) so that selection is assured. Here

the pool is chosen in such a way that,  for k = 1, 2,… 5 and  while

 for 2 ≤ j ≤N −1. Figure 9 illustrates how the increase in the number of
best binding molecules in the initial pool affects the overall dissociation constant as
a function of round number. Figure 11 illustrates how the increase in the number of
best binding nucleic acid in the initial pool affects the number of rounds need to bring
the pool to a size consisting of 50% or more of best binding nucleic acid.

7. In Figure 13, we have taken KdN/Kd1 = 93 and Mb = 99 in the first column of figures.
We took  if n < 15 and  if N = 15 as the initial pool distribution in
all cases. Mb/(1 + Mb) is the probability of binding one molecule of [NA1]. (See (Irvine
et. al., 1991) for details.)

We follow the strategy of (Irvine et al. 1991) in that Kd is updated from round to round
while [T]1 = MbKd1 + MbKd1[NA]/(MbKd1 + Kd([T f])) is fixed in every round. This
choice gives [T]1 = 0.5304 as the initial target value. In the second column, we used
this as a starting ratio along with sr = 2r/(2r + 1). In the first case we do not achieve
even a 50-50 pool until after around 45 rounds while in the second case, we achieve
this pool in less than 20 rounds. On the other hand, in Figure 14, we took KdN/Kd1 =
9300 and Mb = 99. Here [T](1) = 0.1117. We see that this time it is better to follow
the strategy of (Irvine et al. 1991). Notice the shapes of the curves for Kd, [T]b are
very similar. It appears from the second panel in the first row as though Theorem 3
is violated. In fact, selection does occur here also but it takes many more than 30
rounds to achieve it because the initial target value [T](1) is so small. See Figure 8.
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8. Figures 16 and 17 indicate that either the use of Theorem 3 (with sr = 2/(2r + 1) here)
or use of equation  of (Irvine et al. 1991) to select the free
target from round to round, leads to very nearly the same round number for the nucleic
acid pool to consist of 50% of the best binding molecule when there is only one
initially present. The agreement is better, the larger the ratio KdN/Kd1 is. When this
ratio is relatively small, of order 10 or less, it is probably better to resort to some other
method for discriminating between aptamers such as cloning unless one has sufficient
information about Kd1 and Kd in order to be able to invoke .
Both methods for computing the round number at 50% lead to larger and larger values
for the round number but once at least one of the methods gives an estimate 20 or
more rounds, one should perhaps consider whether the time and expense of using the
SELEX method is worth the expected outcome.
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10. Appendix A. Geometric observations
The entire SELEX iteration scheme can be viewed to take place in the Cartesian product of
two sets . The set  is given by

(10.1)

the simplectic triangle in Euclidian N space.

The set  can be described as follows: In the three dimensional orthant determined by the
inequalities [Tf] ≥ 0, [NA] ≥ 0, [T] ≥ 0, there are two surfaces S1, SN say, defined by the equations

respectively. Then

(10.2)

is the region between and including the two surfaces S1, SN.

The surface S defined by
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must be between these two surfaces because Kd1 < Kd < KdN. Likewise the remaining N-2
surfaces Si defined by [T] = [Tf]+([NA][Tf])/(Kdi +[Tf]) for i = 2, …, N-1 sit between these two
surfaces. All N +1 surfaces intersect along the straight line ([Tf], [NA], [T]) = (0, [NA], [0]).
When one fixes [NA] = [NA]0 > say, the surfaces Si intersect this plane in curves Ci, which are
branches of hyperbolae. These curves are asymptotic to lines parallel to [T] = [Tf] as [Tf]
becomes large. They have different limiting slopes [T]′(0) = 1 + [NA]/Kdi at [Tf] = 0, . The
surface S has limiting slope 1 + [NA]/Kd(F⃗, 0).

Depending on how one chooses [T]r → 0 and determines [Tf]r (from 3.12) and  (from (6.5)),
one can obtain a limiting ratio [T]r/[Tf]r that is different from 1 + [NA]/Kd1, the desired limiting
ratio for selection. (This cannot happen when s = 0.) The theorems give necessary and sufficient
conditions on the sequence {[T]r} in order to obtain the correct limit. Equation (3.12) defines
a functional dependence of [Tf] on [NA], [T] as independent variables because the left hand
side is a strictly increasing function of [Tf]. By means of implicit differentiation:

(10.3)

Therefore there is no extreme value for the free target in the region determined by [NA] > 0
and [T] > 0.

Likewise, using (3.9)

(10.4)

Viewing Kd = Kd([NA], [T]) after elimination of [Tf] from (3.9) and implicit differentiation
again, we find

(10.5)

It follows from (10.4), (10.5) and Schwarz’s inequality5 that the extreme value for Kd in 
occur if and only if one of the fractions Fi vanish and the exception is unity, i.e. when F⃗ is a
vertex of . When this happens, Kd([NA], [T]) = Kdi for some i. The smallest value of
Kd([NA], [T]) occurs when i = 1. In this case ([Tf], [T], [NA]) must be a point on S1, one of the
boundary surfaces, i. e. ([T] − [T f ])/[T] = [NA]/(Kd1 + [T f ] + [NA]). The maximum value of
this expression, the maximum target efficiency, occurs at ([Tf], [T], [NA]) = (0, 0, [NA]) for
fixed [NA] and increases to unity as [NA] → ∞.

5Schwarz’s inequality asserts that if x, y are two Euclidian vectors, then the magnitude of their scalar product cannot exceed the product
of their Euclidian lengths and can equal this product if and only if the two vectors are collinear. In this case, the two vectors are

 and .
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11. Appendix B.Proofs of Theorems
Because the value of [NA] plays no role in the proofs of the theorems, we take [NA] = 1 in this
section.

11.1. Proof of Theorem 1

If we strike the ratio  we see that

(11.6)

We see that for i ≥ 2,

(11.7)

Because Kd2 ≤ Kdi and the ratio (a + x) / (b + x) is increasing in x when a, b, x are all positive

and a < b, except when i = 1, the coefficient of  is bounded above by (Kd1 + [T]1) /

(Kdi + [T]1) < 1. Hence, i ≠ 1, limr→+∞ . since the sums , this implies

that .

The convergence of the overall dissociation constants then follows from:

(11.8)

since the denominators on the right hand side are all bounded away from zero by Kd1 and above
by KdN +[T]1.

Conversely, if , we must have  for i ≥ 2. This
establishes the equivalence.

11.2. Proof of Theorem 2

Again we strike the ratio  to find

(11.9)

If {[T]r} is a convergent sequence with a nonzero limit, then the same is true of the sequence
{[Tf]r}. Thus we can assume that 0 ≤ [T]0 ≤ [Tf]r ≤ [T]1. Because the function

satisfies fi(x) < 1 for 0 < x < ∞ if 0 < ε < 1, we know that on [[T]0, [T]1] there is a constant ℓi
such that fi(x) ≤ ℓi < 1. Consequently, we have  if i > 1. This implies that limr → ∞
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Kd(F⃗, [T f]r) = Kd1 as before. Likewise, if this limit holds, then from (11.8) it follows that

 for i ≥ 2.

11.3. Proof of Theorem 3
If [T]r → 0, then [T f]r → 0 and the functions fi([T f]r) converge to unity. Hence we cannot
assume that we have selection in this case. Thus the selection of the sequence {[T]r} is more
delicate. We write [T]r+1 = [T]r(1 − sr).

First we show that the sequence of vectors  converges to some vector and that the

sequence  converges to some limit, L.

We have again

The kthfactor in Gi,r can be written in the form

(11.10)

A theorem of analysis says that if |br| < 1, then the infinite product  converges to

a non zero constant if and only if the series  is convergent. (This follows from the
inequality ln(1 + |br|) ≤ |br| ≤ ln(1 + 2|br|) valid for 0 ≤ |b(r)| ≤ 1.)

Recall that limr → ∞[T f]r/[T]r is positive and finite and suppose first that

, i.e. the numbers [T f]r form the terms of a convergent series or
equivalently,

(11.11)

Then for each i,  exists and is not zero.(The series in (11.11) will not converge if

ε = 0.) Setting , it follows that

(11.12)

Hence selection does not occur in this case.

Suppose next that  diverges. Because the coefficients of  are Gi,r
and the series (11.11) is now divergent, we conclude that the infinite products Gi,r diverge to

zero. Hence  if i ≥ 2 and consequently . Thus selection occurs
in this case.
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Remark 3
It is of some mathematical interest to examine the total derivative of Kd as a function of F⃗, [T
f] along the iteration trajectory in  . We show that:

(11.13)

where

and use this to establish a relationship between the terms of the series  

and the rate of convergence of the sequence  to its limit.

We see from (11.13) that the first term describes how the differential changes in . The second
term describes how this differential changes in  . However, the change is being driven by
how [T f] → 0 at a rate that clearly depends on the background parameter ε. The closer ε is
to unity, the less influential changes in of the Fi in   are on Kd.

In our iteration scheme, a sequence   is generated using the formulas involving the
products Gi,r which tells us how to calculate the vector c→ and gives us specific information

on the rule for determining . Suppose therefore that   and
[T]r → 0. Then

(11.14)

as r → +∞. Likewise,  .

Using the shorthand  , we have

Thus

and hence, for any index m
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The overall dissociation constants satisfy  as [T f]r → 0.
Hence for all m and all sufficiently large r,

(11.15)

We abandon the round number index r temporarily for readability. We approximate ΔKd to
first order in ΔFi, Δ[T f] directly from the equation  . The
components of the gradient of Kd in these variables are:

where S2 is defined in (10.3) and is positive unless one of the Fi = 1 and all the others vanish.

We write s = sr, [T f] = [T f]r, [T f]r+1 = [T f]+ Δ[T f],  in order to
calculate the total differential of Kd. We need formulas for ΔFi and Δ[T f]. Recalling from
(6.4) the definition of Ei there results:

We have

Hence from equation (11.15) with m = 1,

Finally, returning to the index notation:

(11.16)

Thus the terms of the sequence {K(r)} decreases to L. Therefore for sufficiently large r

Letting m + ∞
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(11.17)

Thus we have an expression for   in terms of [T f]r. The first coefficient on
the right in (11.17) is bounded above by 1/ε and below by (1 − ε)/ε. Thus

must be convergent for all large indices r and hence (since 1 − sk ≤ 1) for every index r.

The sequence of coefficients   is convergent since F⃗(r) → c→. Thus, if the series

 is divergent,  . That is, the divergence of the series
forces the convergence of the iteration scheme to one of the vertices of   along one of the
hyperbolic curves Ci defined in Section 10, Appendix A.

The role of ε on the absolute convergence of (11.17) is easily seen. When sr = 1/(r + 1) and ε
= 1, the series on the right in (11.17) will converge whether or not  . (The reason

is that the coefficients   are bounded above and the series   is

convergent.) As ε decreases from unity, the partial sums  
increase. Thus the coefficients   in the partial sums of (11.17) decrease more rapidly
and hence, for the entire series, decrease more rapidly to zero as ε decreases. From Theorem
3 c1 = 1 and L = Kd1.

If the series   is convergent, nothing can be said about L or S2 from
(11.17). This is to be expected since from Theorem 3, selection cannot occur.

12. Appendix C. Matlab code
We include the programs we used here. Notice that only a single nonlinear equation is to be
solved by Newton’s method.
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13. Appendix D. A continuous analog of the SELEX iteration scheme
The mathematical and scientific literature abounds with examples of continuous time processes
being modeled as the limit of discrete time processes as a time step is allowed to go to zero.
Conversely, continuous processes are frequently approximated as discrete time processes.

In that spirit, we can think of the round number as a continuous parameter (time). Our goal is
to determine the dynamical system of ordinary differential equations that corresponds to the

selection process. We replace the discrete time notation , sr, [T]r, [Tf]r,  by the
continuous time notation Fi(r), s(r), [T](r), [Tf](r), Kd(r) and convert differences to time

derivatives by replacing” difference quotients” of the form  by
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 and let Δr → 0. Thus, we should expect to have, for the continuous
dynamics, the following:

(13.18)

where

and where

Then

(13.19)

Because the disassociation constants are ordered, [Tf](r) ≤ [T](r) ≤ [Tf](r)(1 + [NA]/Kd1) and
[T](r) ≤ [T](1) and one can show that L[Tf](r) ≤ E1(r) − Ei(r) ≤ U[Tf](r) where L, U are constants
given by

From these simple inequalities and the fact that  it follows
immediately that Fi(r) → 0 for i ≥ 2 as r → +∞ if and only if

(13.20)

Two cases obtain:

1.  and (13.20) holds. Then Kd(r) + [Tf](r) → K1d + [Tf](r) so Kd(r) →
Kd1. Consequently, [T](r) → T∞ > 0 and [Tf](r) → [Tf]∞ where Kd1(T∞ − [Tf]∞) =
[Tf]∞ (1 + T∞ − [Tf]∞), a quadratic easily solved for T∞ > 0. In this case

i.e. maximum bound target efficiency is not obtained.

2. . In this case we still must require that (13.20) holds. Then T∞ = 0 =
[Tf]∞ and

i.e. maximum bound target efficiency is obtained.
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If we take s(r) = s0/r2 where s0 ∈ (0, 1) then  and we have the first case. If
we take s(r) = 1/r we are in the second case. In both cases, (13.20) holds. Notice that when s
(r) = s0 where s0 ∈ (0, 1) the result says that selection cannot occur.

Finally, a calculation shows that

where

This tells us that  if and only if selection occurs.

Finally, after a little algebra we find

From these inequalities it is possible to get upper and lower bounds on how large r must be in
order that F1(r) reach a fixed fraction. Notice that as ε increases to unity, these upper and lower
bounds on r must recede to infinity as L, U → 0 with ε ↑ 1.
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Figure 1.
The steps of SELEX are demonstrated in this figure. Starting in the top left corner of the figure,
the blue and pink ovals represent the initial NA pools. SELEX can be done for RNA or single
stranded DNA (ssDNA) molecules. Both protocols are represented here. The RNA selection
protocols can be followed by the red dashed arrows and the ssDNA protocols by the black
arrows. The square yellow selection step [support (S) with or without target (T)] is used to
select the S-NA complex in combination with or without the T-NA complex. The S-NA
complex, selected in the absence of T is discarded as is the NA that flows through the support-
target combination. Retained extracted NA is taken through a SELEX round that includes the
PCR amplification step and that generates the next NA pool, which is again selected against
the support and or support plus target. SELEX protocols can vary greatly, depending on the
desired characteristics of the selected aptamer. Not all rounds of SELEX include an initial
selection against support, although this is a recommended practice (Pollard et al. (2000)).
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Figure 2.
Survey of Rounds to Completion in SELEX Experiments. Plotted is a summary of 26
publications from 2003 to mid-2006 in which SELEX experiments were reported that resulted
in the cloning of one of more aptamers. The number of rounds performed before the aptamers
were cloned was determined for each instance and the number of instances is plotted against
the number of rounds prior to cloning. The number of rounds prior to cloning varied from 7 to
22 with a mean of 12 ± 4 and a median of 12.
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Figure 3.
The decrease in target concentration from round to round is very slow but nevertheless,
selection is occurring, nearly all but the first and second nucleic acids being essentially gone
after 10 rounds. In panels 2, 4 the plots begin at round numbers 2 and 3. This was done for
convenience of scale. In particular, in Panel 4, we see that the maximum target efficiency is 1/
(1 + Kd1 + [Tf](20)) < 1/(1 + Kd1) at twenty rounds.
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Figure 4.
The decrease in target concentration from round to round is such that the series in (7.2) is
convergent. Clearly selection is not taking place. Notice the scale on the vertical axis in Panel
1. Notice also that almost all of the free target is used up after four rounds. Panel 2 (incorrectly)
suggests that we have achieved selection as the overall (rescaled) dissociation constant has
fallen to 0.6(10−3). If we didn’t have other information we might be inclined to conclude that
this value is Kd1. In fact, for this experiment, Kd1 = 1.6(10−4). Although all of the free target
is exhausted, the maximum bound target fraction is not unity, but rather 0.9995 ≈ 1/(1.00006),
a number smaller than the maximum target efficiency, 1/(1 + Kd1).
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Figure 5.
The decrease in target concentration from round to round is such that the series in (7.2) is
divergent. Almost all of the target is gone after seven rounds and that only the best binding
nucleic acid remains in the pool after eight or nine rounds. Now we see from Panel 4, that the
maximum target efficiency (≈ 0.9998) has been attained.
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Figure 6.
The results of uniform reduction from round to round. Selection becomes harder to achieve if
we reduce the starting target from round to round too quickly.
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Figure 7.
The effects of partitioning (losses). As the loss fraction (ε), increases from 0 to 1, it becomes
harder to achieve selection.
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Figure 8.
As the initial target is decreased progressively from panel 1 through panel 6, selection takes
fewer rounds to achieve. Further increases in the initial target result in increases in the round
number (the number of rounds required to reach a fixed percentage of ligand 1), begins to
increase. This illustrates the point that simply increasing target over the concentration of the
initial pool or else reducing it considerably will not necessarily decrease round number.
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Figure 9.
We use formula  for the initial target in every round. That is, sr = 0. The
initial pool is again random and ε = 0.05. The first panel demonstrates improved selection over
all the panels in Figure 7.
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Figure 10.
A plot of the best and poorest binding fractions as a function of round number with only one
molecule of each nucleic acid present except the poorest binder and there = 10−2 molecules of
it. There are fifteen nucleic acid types. Notice the unusual kink in the graph in Panel 2. It occurs
at about the value of the round number for which the pool size is roughly evenly divided.
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Figure 11.
A plot of the overall dissociation constant as a function of round number for six different initial
fractions of best binding nucleic acid. 10k=number of best binding [NA] molecules in a pool
of = 1012 molecules. There are fifteen nucleic acid types.
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Figure 12.
A plot of the best and poorest binding fractions as a function of round number for three different
initial fractions of best binding nucleic acid. Here 10k=number of best binding [NA] molecules
in a pool of = 1012 molecules. There are fifteen nucleic acid types. Clearly the round number
at which the nucleic acid fractions of the best and worst binders are each 1/2 of the pool falls
with in the range predicted by the inequalities in (8.10)
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Figure 13.
In this set of figures the starting value for the target is taken as the starting value of the target
dictated by demanding a probability of 0.99 for one molecule of the best binding nucleic acid
to bind in order to generate the starting target value as dictated by (Irvine et al. 1991). The ratio
KdN/Kd1 ≈ 100 was used for these figures. Again, we need to interpret the bound target graphs
carefully. The maximum value in the bottom panel in the first column here is clearly smaller
than unity, as it should be. In the bottom panel in the second column, it appears to reach unity,
but is in fact, smaller than unity, being approximately 1/(1 + Kd1) as the free target is nearly
zero near the last few rounds.
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Figure 14.
In this figure we plot the total target as a function of round number for the two cases illustrated
in Figure 13.
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Figure 15.
The effect of using the small starting value of the target dictated by demanding a probability
of 0.99 for one molecule of the best binding nucleic acid to bind in order to generate the starting
target using Theorem 3. To generate this figure the ratio KdN /Kd1 ≈ 104 was used. The same
comments concerning the graphs of [T]b in the figure caption for Figure 13 apply here also.
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Figure 16.
The top row of figures illustrates the effect of increasing the ratio KdN / Kd1 on the round number
at which selection becomes significant. The the round number for which 50% selection is
achieved decreases from 14 to around 8 over six orders of magnitude. The input target at
subsequent rounds was dictated by Theorem 3. The bottom row of figures was generated by
using the solution  of to generate the free target at each round.
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Figure 17.
Here all the relevant plots are given for the case KdN /Kd1 = 103, a case not included in Figure
16. The same comments concerning the graphs of [T]b in the figure caption for Figure 13 apply
here also.
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Table 1
Notation and problem formulation for a single SELEX round
We extend the notation of Irvine et al. (1991) to permit a more general discussion. Thus the protein (P) is replaced
by a target (T) and RNA by NA (nucleic acid).

species quantity (See (Irvine et al. 1991).)
starting target [T]
starting NAi [NAi]
starting NA [NA]

free NAi [NAfi]
free NA [NAf]

bound NAi [{T:NAi}]
free target [Tf]

bound NA (max.avail for PCR) [T:NA]
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