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Abstract Mean-field models of the cortex have been used successfully to interpret the

origin of features on the electroencephalogram under situations such as sleep, anesthe-

sia, and seizures. In a mean-field scheme, dynamic changes in synaptic weights can

be considered through fluctuation-based Hebbian learning rules. However, because such

implementations deal with population-averaged properties, they are not well suited to

memory and learning applications where individual synaptic weights can be important.

We demonstrate that, through an extended system of equations, the mean-field models

can be developed further to look at higher-order statistics, in particular, the distribution of

synaptic weights within a cortical column. This allows us to make some general conclusions

on memory through a mean-field scheme. Specifically, we expect large changes in the

standard deviation of the distribution of synaptic weights when fluctuation in the mean soma

potentials are large, such as during the transitions between the “up” and “down” states of

slow-wave sleep. Moreover, a cortex that has low structure in its neuronal connections is

most likely to decrease its standard deviation in the weights of excitatory to excitatory

synapses, relative to the square of the mean, whereas a cortex with strongly patterned

connections is most likely to increase this measure. This suggests that fluctuations are used

to condense the coding of strong (presumably useful) memories into fewer, but dynamic,

neuron connections, while at the same time removing weaker (less useful) memories.
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1 Introduction

For many years, mean-field models have been used to describe the behavior of populations

of neurons, particularly in the cortex and thalamus. Their history includes key contributions

from Wilson and Cowan [1], Nunez [2], and Freeman [3], and has been developed more

recently, for example, by Wright and Liley [4], Robinson et al. [5], Liley et al. [6], Rennie

et al. [7], and Steyn-Ross et al. [8]. The dynamics of such models, including emergent

structures and temporal instabilities, have been studied in detail in one dimension by Hutt

et al. [9] and Kramer et al. [10]. In addition to the models above, which use the mean soma

potential as the state-variable, formulations have been demonstrated based on the refractory

period [11]. The motivation for this is the hypothesis that the time elapsed since the last

action potential is a better predictor of the probability of firing of a particular neuron than

its soma potential.

The major advantage of mean-field models over lower-level (neuron-by-neuron) models,

such as Bazhenov et al. [12], Compte et al. [13], and Hill and Tononi [14], is their

computational and mathematical simplicity. Additionally, mean-field models are generally

more useful for understanding the electroencephalogram (EEG) because the EEG from a

single scalp electrode is the result of the behavior of a large population of neurons. These

models have proved capable of providing insight on the origins of many of the spectral

components of the EEG, e.g., γ activity [7], β, α and spindle oscillations [15, 16], and

k complexes [17]. Formulations such as the Bojak and Liley [18] and Wilson et al. [19]

models the spatial behavior of the cortex through a two-dimensional grid. In this way, the

mean soma potentials at different locations in the cortex are allowed to be instantaneously

different. However, assuming spatial homogeneity, the statistics of the time-evolution at

different grid-points will be the same.

An understanding of the effects of synaptic plasticity is probably crucial for studies

of memory and, particularly, learning. A large number of learning schemes have been

studied in cortical models, such as Bienenstock et al. [20], Bienenstock and Lehmann [21],

Sandberg et al. [22], and Mongillo et al. [23]. Many are in the spirit of Hebb’s theory [24],

namely, that synaptic weight tends to grow between neurons whose firing history is strongly

correlated. In two recent papers, we have looked at the consequences of Hebb’s principle

in a mean-field scheme. In the first, Steyn-Ross et al. showed that correlations between

excitatory and inhibitory neuron pools increase as the cortical system approaches a saddle-

node bifurcation (corresponding to the transition between “up” and “down” states in slow-

wave sleep) [25]. This correlation would lead to an increase in excitatory to inhibitory

synaptic weights (through Hebb’s theory) that the authors associate with a suppression of

reverberations in the network. Physically, this could correspond to a weakening of unwanted

modes of response to stimuli. In the second paper, Wilson et al. [17] showed that a Hebb-

like change in synaptic weights will naturally bring the system towards such a critical

point (corresponding to a down-to-up transition) where these correlated fluctuations can

take place, and we wish to focus on this situation in this paper. However, use of a Hebbian

learning rule within a mean-field scheme is limited because the scheme by definition deals

with population averages, and insight into what happens to the synaptic population, and

which “memories” are erased, is limited. Our desire to understand better what is happening

when population correlations are large leads us to the second-order scheme described in

this paper.
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Recently, Stetter has modelled pools of neurons within a mean-field scheme to perform a

study of cognitive flexibility in the necortex [26]. In this approach, the global symmetry of

the mean-field model is broken by allowing different activation currents to enter different

pools of neurons, so that “memories” can be represented in the model. We take a different

approach in this paper by breaking the symmetry through the synaptic weights—specifically

by considering higher-order statistics (i.e., variances of synaptic weights) over the cortex,

but still within a mean-field framework. Our intention is to allow some understanding of

memory and learning to be developed within a modelling scheme that complements neural-

network approaches without the need to lose the advantages of speed and versatility offered

by a mean-field approach.

In this paper, we make a step towards this goal by developing a mean-field model in

the style of Liley et al. [6] and Steyn-Ross et al. [27] that includes second-order statistics

for the synaptic weights. Unfortunately, to close the set of equations, some approximation

is required. While we leave the major part of the mathematics to the Appendix, we will

outline the methodology in Section 2 below. We then demonstrate through analysis of the

equations and through simulations that the behavior of this statistic depends upon the nature

of the pre- and postsynaptic neurons (i.e., whether they are excitatory or inhibitory) and the

interconnectedness of neurons within the cortex. We compare the mean-field results with

predictions from simple neural-network models. Finally, we discuss the implications of our

results with particular reference to human sleep. We comment on a recent paper by Tononi

and Cirelli in which a purpose of sleep is described in terms of synaptic downscaling [28].

We emphasize that the theory developed here is not complete. In this paper we concentrate

on the growth in synaptic weight on the approach to a down-to-up transition in slow-wave

sleep, and we intentionally refrain from a detailed explanation of the synaptic downscaling

mechanisms or the dynamics of the transition itself. We also do not attempt to model

explicitly the slow waves of sleep.

2 Method

We will start with formulating equations at a low-level and then take averages of soma

potentials and synaptic variables over spatial regions of the cortex. Whereas in previous

work we have taken averages over “first-order” statistics only [17], we now extend the

analysis to consider averages over the square of the synaptic weight connections (second-

order statistics) and develop a set of self-consistent equations for these.

The basis of mean-field approaches such as Liley et al. [6] and Rennie et al. [7] is the

modelling of populations of neurons as opposed to individual neurons. This is a natural

approach if the model output is to be compared with EEG because EEG electrodes sample

the electric field produced by many thousands of neurons. In this approach, we use variables

such as the mean soma (membrane) potentials, synaptic flux rates, etc., averaged over

spatial regions of the cortex. We can conveniently use cortical columns for these averages

(a cortical column being a collection of neurons arranged in a tubular structure perpendicu-

lar to the cortex surface [29]); however, the method does not implicitly rely on a cortex

being ordered in this form. We consider a spatially homogeneous cortex—i.e., one where

parameters such as the number of connections per neuron, axonal propagation speed, etc.,

are assumed constant over the cortex. Although not anatomically accurate, it will not affect
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the qualitative results and conclusions and greatly simplifies the work. The model we use

is presented in the Appendix. Note that the homogeneous cortex does not imply that the

variables do not depend on space; for example, mean firing rates vary instantaneously with

space, but their long-term time-averages will be constant at all points in space. Although

we discuss column-averaged properties, it is important to note that we do not simulate

individual columns themselves but consider the averages in a “typical” column in the

vicinity of a particular point in space.

We assume that all the neurons in a cortical column are connected to each other neuron

within the column with a weight given by w
PQ

jk . Here, the suffix jk refers to the connection

between the j-th presynaptic neuron and the k-th postsynaptic neuron. The superscript PQ

tells us that the j-th neuron is of type P [where P is either excitatory (e) or inhibitory (i)] and

that the k-th neuron is of type Q (where Q is either e or i). If two neurons are not connected,

we can assign w
PQ

jk = 0. Also, neurons in the cortical column may be connected to others in

different columns. In what follows, we will use positive weights for all connections; the sign

difference between the effects of the excitatory and inhibitory neurons will be accounted for

explicitly through other quantities carrying “+” and “−” signs.

The major state variable of many mean-field models is the “averaged” soma potential

of neuron populations. We use this form of mean-field model in this paper, and therefore

specifically write V P

j meaning the soma-potential of the j-th neuron (which is of type P).

The definition of “average” is important here. In this work, we use a bar [e.g., Xj(t)] initially

to denote the time-average of a quantity (in this case, the arbitrary quantity X) over some

time period. Later, we will use it to denote an average over spatially separated regions of the

cortex assuming that this measure is the same. The quantity X is, in general, a function of

time (t) and neuron ( j). An alternative “average” is that over the neurons within a cortical

column. We use angle brackets (e.g., 〈Xj(t)〉 j) to denote the average over neurons j within

a column.

To avoid confusion, we will, in most cases, use a subscript on the final angled bracket

〈· · · 〉 j to be specific about which neurons we average over.

2.1 Hebbian Learning

There has been considerable development of “learning rules” in low-level modelling studies

of cortical networks. Hebb’s principle of “fire-together, wire-together” [24] has been

modified to account for physical effects such as the balance between long-term potentiation

and long-term depression [23]. Nonetheless, Hebb’s idea forms the basis of synaptic weight

modification in cortical networks and benefits from being both mathematically simple and

giving rich behavior. For this reason, we will pursue a Hebbian-based approach in this work,

but we acknowledge that modifications are possible and probably appropriate.

The growth of a synaptic weight w
PQ

jk can be summarized through the correlation between

the soma potentials of the presynaptic neuron jand the postsynaptic neuron k [21, 25, 30]:

d
dt

w
PQ

jk = ηPQ

(
V P

j V Q

k − V P

j V Q

k

)
(1)

where the term ηPQ
is a constant. Two neurons, j and k, whose soma potentials fluctuate

together (“fire-together”) will have a high correlation and, therefore, a high rate of change

of weight.
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2.2 Mean-field Modelling and Ergodicity

Hebbian-learning in the form of (1) relates to individual neurons, not averages over neurons

within a cortical column. We can transform to a mean-field form by taking column averages:

〈
d
dt

w
PQ

jk

〉

jk
= ηPQ

〈(
V P

j V Q

k − V P

j V Q

k

)〉
jk

(2)

where we are averaging over the pre- and postsynaptic neurons independently. For this

reason, we can separate the jand k averages to leave:

d
dt

〈
w

PQ

jk

〉
jk

= ηPQ

(〈
V P

j
〉

j

〈
V Q

k

〉
k
− 〈

V P

j
〉

j

〈
V Q

k

〉
k

)
. (3)

Now the quantities are written in terms of column- and time-averages. Equation (3), in fact,

contains four equations corresponding to the different P and Q combinations, i.e., P = e,

Q = e; P = e, Q = i; P = i, Q = e; and P = i, Q = i. Note that the order of averaging does

not matter. In reference [17], we assumed ergodicity to make sense of the time-average in a

mean-field model in two spatial dimensions (�r ) of the cortex under natural sleep. Under this

assumption, the time-average of a quantity is equal to an average over space. Specifically,

the time-average denoted by the bars in (3) is assumed to be equal to an average over grid-

points in a simulation of the Liley-based cortical equations over two-dimensional space

( �r ) (i.e., an average over many cortical columns). The cortex must be in a state where

it is fluctuating about a stable equilibrium for this argument to apply—the phase-space

sampled by a given point ( �r ) over time t being equivalent to the phase-space sampled

at a given moment in time by the ensemble of grid-points ( �r ). The advantage of making

this assumption is that we do not need to keep track of a region’s time-history while we

perform the simulations. A disadvantage is that the equation set must include “space”; a

set of equations with no explicit description of space cannot be used in this way. In what

follows, we will implicitly use this hypothesis and use the “bar” to denote an average over

a simulation grid. If the grid is large enough, and no spatial inhomogeneities are modelled,

we would expect this hypothesis to be reasonable.

2.3 Outline of the Model

We wish to understand how the mean-square of the synaptic weight w
PQ

jk changes with time.

We define the variance of the synaptic weights as:

σ 2

PQ
=

〈
w

PQ

jk w
PQ

jk

〉
jk

−
〈
w

PQ

jk

〉2

jk
(4)

where the average is taken over all presynaptic neurons j (of type P) and all postsynaptic

neurons k (of type Q). We then develop a set of equations for describing dσ 2

PQ
/dt. The full

mathematics is presented in the Appendix. In outline, the method follows the steps below.

First, we differentiate (4) with respect to time. This gives terms involving dw
PQ

jk /dt for

which we can substitute from (1). The resultant equation contains averages over a product

of three terms, w
PQ

jk , V P

j , and V Q

k . To reduce to a “second-order” method, we assume that

V P

j and V Q

k have small deviations about their instantaneous equilibrium values. We are left
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with an equation containing the column-averaged pre- and postsynaptic potentials

〈
V P

j

〉
j
and

〈
V Q

k

〉
k
, and also second order terms, which we denote in this paper by:

ξ
PQ

post =
〈〈

w
PQ

jk

〉
j
V Q

k

〉

k
, (5)

ξPQ

pre
=

〈〈
w

PQ

jk

〉
k

V P

j

〉
j
. (6)

These terms provide information about the correlations between the weights w
PQ

jk and the

neuron’s potentials. A pictorial representation is given in Fig. 1. Note that we will usually

assume that all connections are reversible (w
PQ

jk = w
QP

kj ), so that ξ
PQ

post = ξ
QP

pre . The learning

rule, as used in (2), is consistent in that it implies all reversible connections jto k will remain

reversible at future times if ηPQ = ηQP
.

The time-variation of the column-average potential

〈
V Q

k

〉
k
has been the subject of many

papers, as referenced in the introduction. In our work, we draw on the equations developed

by Liley et al. [6] and used by Steyn-Ross et al. [27] and Wilson et al. [19] for the sleeping

cortex, although we remark that other self-consistent descriptions are valid here. The exact

equations are described in the Appendix; they are a set of coupled differential equations

for various variables, such as average excitatory and inhibitory soma potential and synaptic

flux rates, and we shall refer to these variables as the Liley-style variables.

To close the set of equations (i.e., to have a set of first-order differential equations in

time that describe how

〈
V Q

k

〉
k
, σ 2

PQ
etc., vary in time), we need to know how ξ

PQ

post changes

with time. Differentiating (5), we can substitute for dw
PQ

jk /dt from (1) and V Q

k (from the

Liley-style equations). We are left with a term of the form:

F PQR =
〈〈

w
PQ

jk

〉
j

〈
w

RQ

lk

〉
l

〉

k
=

〈〈
w

PQ

jk

〉
j

〈
w

QR

kl

〉
l

〉

k
=

〈
w

PQ

jk w
QR

kl

〉
jkl

. (7)

This is represented pictorially in Fig. 1c. Unfortunately, there are three means in this

expression, i.e., the size of the variable set has grown. To give a manageable (bounded)

equation set, we need to truncate this set, and do this by estimating F PQR
through terms

involving just two means.

When P �= R, we assume the PQ and RQ weights to be uncorrelated, so F PQR
splits into〈

w
PQ

jk

〉
jk

〈
w

RQ

lk

〉
lk

, which is simply a product of column-averaged weights and is in the form

we require.

2.4 Network Structure

When P = R, F PQR
has the form

〈〈
w

PQ

jk

〉2

j

〉

k
. To close the equation set, we wish to

relate this to the variance σ 2

PQ
, as defined in (4). To do this, we need a relationship

between the term

〈〈
w

PQ

jk

〉2

j

〉

k
and

〈
w

PQ

jk w
PQ

jk

〉
jk

. It is clear that, in the case where weights

are completely independent (e.g., Fig. 2a), we can use the central limit theorem to relate

these two quantities; i.e., the variance in

〈
w

PQ

jk

〉
j

over postsynaptic neurons k is equal
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Pre-synaptic
neurons P

Post-synaptic
neurons Q

VkQ

j
wjkPQ

〈 〉   wjk jPQ

Pre-synaptic
neurons P

Post-synaptic
neurons Q

VjP

k

wjkPQ

〈 〉   wjk kPQ

a b

c

〈 〉   wjk jPQ 〈 〉   wkl lQR

wjkPQ w
klQR

j

k

l

Pre-synaptic
neurons P

Post-synaptic
neurons R

Intermediate
neurons Q

Fig. 1 A pictorial representation of the terms ξ
PQ

post
(a), ξ

PQ

pre (b), and F PQR
(c). In each case, the ellipses

denote pools of neurons (pre- or postsynaptic; in the case of c, there is also an intermediate pool). The

averages denoted by the block arrows are carried out first, followed by averages over the remaining neuron

pool

to the variance in w
PQ

jk over all neurons j and k, divided by the number of type-P to

type-Q connections. Generally, however, the weights are not independent. In this case, we

speculatively introduce a parameter sPQ to describe the effective number of independent
type-P to type-Q connections and use the central limit theorem. We define sPQ through the

equation:

sPQ = NPQtotal − NPQ

NPQtotal

(8)

where NPQtotal is the total number of type-P to type-Q connections each postsynaptic neuron

has within a cortical column and NPQ is the total number of independent connections. This
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Fig. 2 A representation of the role of the parameter s for describing the structure of the weights network.

All four parts (a–d) show example weight matrices for a neural-network consisting of 40 neurons. The x axis

denotes the presynaptic neuron, the y axis the postsynaptic neuron. The strength of the weight between the

two is denoted by a grayscale value from 0 to 2. All four parts have the same mean weight (namely, 1.0) and

the same variance in the weights (namely, 0.4). However, whereas a has no “structure’ (knowledge of one

weight tells us nothing about any other weight), d has considerable structure. The s-parameter describes this

trend; s = 0.0, 0.26, 0.57, and 0.75 for a, b, c, and d, respectively

latter term can be defined more formally in (58). Physically, sPQ represents the degree of

“structure” that is present in the synaptic weights. For a hypothetical cortical structure where

synaptic connections are mostly independent of each other (presumably one that contains no

useful memories), sPQ ≈ 0. For a cortex whose synapses are strongly correlated with each

other, sPQ ≈ 1. For a physiologically realistic cortex, we would expect sPQ to lie between

these extremes. Figure 2 explains this in a diagrammatic form. However, note that, in the

simulations of the mean-field model, we do not model individual synaptic weights. Instead,

in our simulations, we specify a value of s (from 0 to 1) and find that this qualitatively

influences the results.

Interconnections of systems have been the subject of recent discussion. The biological

reviews of Douglas and Martin [31] and Thomson and Bannister [32] describe patterns

of cortical connectivity. Moreover, Tononi and Sporns use the idea of a “complexity” to

describe elements of a system that can integrate information among themselves [33], and

Albert and Barabási present a comprehensive review of network descriptions [34]. We

expect the parameter sPQ to be related to such measures but we do not discuss this further.
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V k tkQ ( , ) etc.r

w tjk jkPQ ( )

σ2PQ( )t

ξPQpost( , )r t

Fig. 3 The interdependence of the state variables in the differential equations of the model. Note that the box
around the

〈
V Q

k

〉
k
implies that there is the complete set of Liley-style equations to include here. A quantity

that is modelled over space through a series of grid-points contains the symbol r ; the symbol t denotes that

all these quantities depend on time. The left-hand pair of quantities is not influenced by the right-hand pair

In summary, we have a set of self-consistent first-order differential equations for

column-averaged quantities. Our state variables describing the system are (1) the Liley-

style variables (see Appendix), which describe the time-evolution of the column-averaged

membrane potentials, of which

〈
V Q

k

〉
k
is key; (2) the synaptic weights

〈
w

PQ

jk

〉
jk

(four of these

for P, Q = e and i); (3) the variances σ 2

PQ
(four of these); and (4) the second-order weight-

potential combination ξ
PQ

post (four of these).

The equations of the model are described by (1) the Liley-style equations given in the

Appendix, (24–31); (2) for d
〈
w

PQ

jk

〉
jk

/dt, (3); (3) for d σ 2

PQ
/dt, (47) of the Appendix; and

(4) for dξ
PQ

post/dt, (55) of the Appendix. The dependencies of the equation set are shown in

Fig. 3.

2.5 Equilibrium Conditions

It is easy to show (see Appendix) that an equilibrium for σ 2

PQ
exists for the case of:

σ 2

PQ
= 0, (9)

ξ
PQ

post =
〈
w

PQ

jk

〉
jk

〈
V Q

k

〉
k
. (10)

Physically, this equilibrium condition corresponds to a cortex where all synaptic weights

are identical (no variance in the weights, so that each weight is equal to its column average.)

This is encouraging because it implies that previous modelling (e.g., Steyn-Ross et al. [27]

and Wilson et al. [19]), which have not included variances in weights, can be considered

as being performed at an equilibrium state for the variance. However, the stability of this

equilibrium is hard to assess analytically. In the Appendix, we present an argument as to

why we would expect the equilibrium to be unstable.

3 Simulations

We now present results from simulations of this extended mean-field model, namely, the

Liley-style equations of the Appendix and (3), (47), and (55). The various parameters

are presented in Table 1. For convenience, we simulate the cortex as a 50 × 50-cm, two-

dimensional sheet, with the length scale chosen so that its area broadly matches that known

anatomically (about 2,600 cm
2

[29]). We choose a 16 × 16 spatial grid to model the spatial



222 M.T. Wilson et al.

Table 1 The standard parameters used throughout this paper, except where stated otherwise

Parameter Description Standard value

τe,i Membrane time constants 0.04, 0.04 s
−1

Qe,i
max Maximum firing rates 30, 60 s

−1

θe,i Sigmoid thresholds −58.5, −58.5 mV

σe,i Standard deviation for threshold 4.0, 6.0 mV

ρe,i Gain per synapse at resting voltage 0.001, −0.00105 mV · s

V e,i
rev Reversal potentials at synapse 0, −70 mV

V e,i
rest

Cell resting potential −64, −64 mV

Nα
ea Long-range e to e or i connectivity 3710

Nβ
ea Short-range e to e or i connectivity 410

Nβ
ia Short-range i to e or i connectivity 800〈

φsc
ea

〉
Mean e to e or i subcortical flux 750 s

−1〈
φsc

ia
〉

Mean i to e or i subcortical flux 1500 s
−1

γea Excitatory synaptic rate constant 300 s
−1

γia Inhibitory synaptic rate constant 65 s
−1

L x,y Spatial length of cortex in model 500 mm

amc Area of cortical column 1 mm
2

�ea Characteristic inverse length-scale for connections 0.2 mm
−1

v Mean axonal conduction speed 1400 mm s
−1

In this table, the superscript or suffix a can take on the labels e and i. The values are taken mostly from

the paper of Rennie et al. [7]. Although there is considerable uncertainty in these parameters, they form a

plausible set that is sufficient for the purposes of elucidating much of the physics of the cortical model. It is

quite possible that further physical effects can be produced by varying these parameters sufficiently

variation of the variables as a balance between fidelity and simulation speed. Periodic

boundary conditions are used because it is not clear how to “terminate” the cortex in such a

model; however, a large length (50 cm) reduces the impact of this uncertainty.

A second-order predictor-corrector method [35] is used for the stochastic time integration

with a time step of 0.2 ms. The rate of the learning parameter, ηPQ
, has been set to

1 × 10
2

mV
−2

s
−1

for all PQ. Because correlations between neighboring cortical columns

are small (except close to a critical point), this is a fairly small learning rate. This parameter

describes the dynamics of the change in the weights—it does not influence, for example, the

slow waves, which are not explicitly modelled in this paper. The system is driven by white

noise, as described in the Appendix. Although white-noise driving is clearly not experienced

by a human cortex, even during sleep, we use it because it is relatively easy to implement

numerically and it is adequate for bringing out the qualitative behavior in our model.

In our implementation, it is important to realize that, in this model, we do not consider in-

dividual synaptic connections explicitly, but describe their nature using the state-variables’

mean weight

〈
w

PQ

jk

〉
jk

(four of these for the four P, Q = e, i combinations), variance in the

weight σ 2

PQ
(four of these), and structure in the weight sPQ (in principle, four of these).

We focus our simulations away from the equilibrium point. This is where the behavior is

most interesting and relevant because a real cortex clearly does not have a zero variance

in its synaptic weights. Also, at the equilibrium point, simulations become difficult.

Numerically, negative variances are possible in this model, but physically, it is clear that

this should not happen—as the variance approaches zero from above, the change in variance

approaches zero. However, if the variance is set in the model to be negative, the equations

allow it to fall further, exaggerating an unphysical situation.



Second-order mean-field cortical modelling 223

We illustrate the case where we start with

〈
w

PQ

jk

〉
jk

= 1 and σ 2

PQ
= 0.5 for all PQ

combinations. To bring out the importance of the structure in the cortex, we contrast the

case of a strongly linked cortex (low NPQ, sPQ ≈ 1) with the obviously unrealistic and

hypothetical case of a nonlinked cortex (high NPQ, sPQ ≈ 0). Results for the weights

〈
w

PQ

jk

〉
jk

and variances σ 2

PQ
for both cases are shown in Fig. 4.

In part a, we present the mean excitatory soma potential,
〈
V e

j
〉

j , as a function of time. The

potential exhibits small fluctuations about an equilibrium that is increasing with time. The

size of the fluctuation is dependent on the strength of the noise terms in the underlying

equations. The dynamic nature of the equilibrium point is a direct result of changes in
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Fig. 4 Development of weights for a nonequilibrium situation. a The excitatory soma potential as a func-

tion of time. It exhibits small fluctuations (of order 0.01 mV) about a dynamically increasing equilibrium

point. The change in equilibrium is due to the movement in the mean weights, as described in reference [17].

b The mean weights

〈
w

PQ

jk

〉
jk

against time. c The variance in the weights σ 2

PQ
as a function of time, for a

weakly linked cortex (NPQ = 1000, sPQ ≈ 0). d XPQ, i.e., the variance divided by the mean weight squared,

against time, for NPQ = 1000, sPQ ≈ 0. e and f Similar to c and d but for a highly linked cortex (NPQ = 1,

sPQ ≈ 1). Key for all plots: ee, solid; ie = ei, dot-dash; ii, dotted
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the weights

〈
w

PQ

jk

〉
jk

, due to (3), which are plotted in part b. In reference [17], the authors

describe how the mean weights change in such a manner as to bring the system towards a

critical point. This is why the rate of change of the plotted values increases as we approach

about 50 s in time; we comment further on this below.

In parts c and e, we see that variance in the ee terms grows, whereas the variance in the

ii term falls, with the variance in the ei = ie term remaining approximately constant. The

rapid increase in gradient as the time approaches 50 s is due to the system organizing itself

towards a critical point, as described in Wilson et al. [17]. It is clear that the changes occur

much faster for the strongly linked cortex (e) compared to the weakly linked cortex (c).

Indeed, for the weakly linked cortex, the variances have hardly changed.

What is perhaps more interesting than the change in σ 2

PQ
is the change in σ 2

PQ
in relation to

the mean weights, because the mean weights also change. A relevant dimensionless measure

would be XPQ = σ 2

PQ
/
〈
w

PQ

jk

〉2

jk
, which describes the relative width of the distribution of the

weights in terms of the mean of the distribution. In effect, X is a “normalized” variance. A

network with high X would have a high variation in “relative” weights. This is important

because the straight learning rule (1) has no mechanism for preventing the weights from

growing to infinity. A simple correction, consistent with the second-order scheme, is

discussed below.

Plots of XPQ against time are also shown in Fig. 4d and f for the different numbers of

independent connections. In this case, there is a clear qualitative difference between the

weakly linked (d) and strongly linked (f) cortex. In the case of the weakly linked cortex, the

relative width of the weights distribution falls (that is, all the normalized weights become

more similar). However, in the strongly linked cortex, the ee variance grows quickly enough

so that the relative width of the distribution is increased.

3.1 The Approach to Bifurcation

Why do the quantities
〈
V e

k
〉
k,

〈
wee

jk

〉
jk

, etc., appear to diverge with time? In a previous

paper, we have described how a Liley-style mean-field model with Hebb’s principle

self-organizes to a saddle-node bifurcation, where a tiny increase in excitation (or,

more likely, a drop in inhibition [36]) would cause a discontinuous change transition to

a higher-firing state [17]. In Fig. 4, just beyond the 50-s time frame of the plot, the system

carries out such a discontinuous change (not shown because the numerics of the simulation

break down at this point), and the quantities rapidly change on the approach to this jump.

Moreover, fluctuations in quantities will increase on the approach to the transition, as the

strength of the stable attractor diminishes. Therefore, in the direct vicinity of the jump,

we would not expect our analysis to be valid because we have explicitly assumed small

fluctuations in soma potential from its instantaneous equilibrium value (through Eq. 43) to

reduce our equation set to second order.

The self-organization can be stabilized through, for example, breaking the symmetry

between the e → Q and i → Q synaptic weights. As an example, Fig. 5 shows
〈
V e

k
〉
k for the

same case as Fig. 4a but with ηiQ
three times higher than ηe Q

. We see that the pattern

of growth in the mean weights causes
〈
V e

k
〉
k to eventually stabilize. Note that, as

〈
V e

k
〉
k

reaches its limit, its fluctuations are large, corresponding to the approach to the bifurcation.

The stability is understood by realizing that, very close to the jump, the fluctuations

in σ 2

ei increase very rapidly as the excitatory and inhibitory neuron populations become
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Fig. 5 Left: A plot of the mean excitatory soma potential
〈
V e

k
〉
k against time, at one spatial grid-point, for the

case where ηiQ = 3ηeQ
. The fluctuations in

〈
V e

k
〉
k increase as time increases, corresponding to the approach

to a saddle-node bifurcation. However, the mean value stabilizes. Right: The mean weights as a function of

time. Although the mean soma potential reaches an equilibrium in this scheme, the mean weights do not (see

reference [17])

correlated [25]. This growth provides a rapid increase in the

〈
wei

jk

〉
jk

and

〈
wie

jk

〉
jk

terms, which

stabilize the system.

3.2 Including Limitation on Weights

An alternative approach to stabilizing the equations would be to limit the growth

of the synaptic weights. There are many approaches given in the literature (e.g.,

Blumenfeld et al. [37]), but they are not mostly tractable to our second-order analysis. One

workable approach, however, is to include an exponential decay-like term on (2), in the

manner of Bienenstock and Lehmann [21]. This has the additional advantage of ensuring

that noncorrelated or anticorrelated neurons have a reduced synaptic weight between them.

We remark, however, that the primary thrust of this paper is to look at the changes in

synaptic weights on the approach to the down-to-up transitions and, therefore, we choose

not to emphasize the precise neurophysiology behind the control of synaptic weights. An

exponential term is simply a convenient way of ensuring that weights do not diverge.

We now write:

dw
PQ

jk

dt
= ηPQ

(
V P

j V Q

k − V P

j V Q

k

)
+ μ

(
kPQ − w

PQ

jk

)
(11)

where μ is a decay constant and kPQ
is a “resting” weight value, i.e., the equilibrium value

in the absence of Hebbian learning. Following the previous steps of the method, we obtain

the change in the mean weight over a cortical column as:

〈
d
dt

w
PQ

jk

〉

jk
= ηPQ

(〈
V P

j
〉

j

〈
V Q

k

〉
k
− 〈

V P

j
〉

j

〈
V Q

k

〉
k

)
+ μ

(
kPQ − w

PQ

jk

)
. (12)
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The variance follows from the equation:

d
dt

σ 2

PQ
= d

dt

〈
w

PQ

jk w
PQ

jk

〉
jk

− d
dt

(〈
w

PQ

jk

〉2

jk

)

= 2

〈
w

PQ

jk
d
dt

w
PQ

jk

〉

jk
− 2

〈
w

PQ

jk

〉
jk

d
dt

〈
w

PQ

jk

〉
jk

, (13)
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Fig. 6 Development of statistics when an exponential decay factor is included. a A plot of the excitatory

soma potential

〈
V e

j

〉
j
as a function of time. It follows an upward trend as the weights grow, but stabilizes

as the weights settle. Note that it exhibits small fluctuations about the instantaneous equilibrium values. b

A plot against time of the mean weights

〈
w

PQ

jk

〉
jk

. These settle at large times to an equilibrium value. c The

variance in the weights σ 2

PQ
as a function of time, for a weakly linked cortex (NPQ = 1000). The three lines

ee, ie = ei, and ii are indistinguishable, except on the insert shown for large times. d XPQ, i.e., the variance

divided by the mean weight squared, against time, for NPQ = 1000. e and f Similar to c and d but for a

highly linked cortex (NPQ = 1). The insert in e expands the traces for large times. Here, the lines ee, ei = ie,

and ii can be distinguished, with the ee trace always having the largest variance; although, in this scheme,

all variances eventually reach zero, the ee variance takes the longest to fall. Key for all plots: ee, solid;

ie = ei, dot-dash; ii, dotted
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which gives from (11) and (12)

d
dt

σ 2

PQ
= 2ηPQ

[〈
w

PQ

jk

(
V P

j V Q

k − V P

j V Q

k

)〉
jk

−
〈
w

PQ

jk

〉
jk

〈
V P

j V Q

k

〉
jk

+
〈
w

PQ

jk

〉
jk

〈
V P

j

〉
j

〈
V Q

k

〉
k

]
− 2μσ 2

PQ
. (14)

This is the same as (40), except with an additional exponential decay term for σ 2

PQ
.

To illustrate this effect, we rerun the simulations of Fig. 4 for the case of μ = 0.05 s
−1

and k PQ = 1 for the weakly linked (low s) and strongly linked (high s) cases. Results are

shown in Fig. 6. We see in parts a and b that stabilization has occurred in soma potential

and weights, respectively. However, a clear drawback with this approach to stabilization is

that all variances eventually reach zero (parts c and e), indicating that all weights within a

given PQ population approach identical values. There are some consistencies with Fig 4;

note that this drop in variance is slowest for the case of ee correlations (i.e., at any stage, the

variation is greatest in the e → e weights), and differences between the PQ sets are most

pronounced in the strongly linked case.

4 Low-level Simulations

To provide some confirmation for the results of the second-order mean field model, we have

carried out simulations of small networks of simple neurons. Note that this approach is not

intended to be physiologically accurate but to provide some verification of our mean-field

results using a non-mean-field scheme. By doing this, our intention is not to make a detailed

analysis of the synaptic learning characteristics of these networks but rather to give some

validity to the results from the second-order analysis of the mean-field model.

4.1 Neurons with Somas

We first use a simple model that reduces to a similar form as the Liley-style equations under

a mean-field approximation. In this scheme, we model individual e and i neurons, assuming

a slow soma response but a fast synaptic response. A presynaptic neuron j (of type P) is

connected to a postsynaptic neuron k (of type Q) with a weight w
PQ

jk . Neurons of type Q (e
or i) have a soma potential V Q

k that evolves according to the equation:

τ
dV Q

k
dt

=
(

Vrest − V Q

k

)
+ χe

Me

Me∑
excits j=1

w
e Q

jk ψ
e Q

k q(V e
j ) + χi

Mi

M i∑
inhibs j=1

w
iQ
jk ψ

iQ
k q(V i

j),

(15)

where τ is a time-constant (40 ms); Vrest is a resting potential (−64 mV); Me
and M i

are the

numbers of individual excitatory and inhibitory neurons used in the simulation, respectively

(20 of each); χe is an effective excitatory neuron impact (1.0 mV s); χi is an effective

inhibitory neuron impact (−1.0 mV s); and the function q of the soma potential is a firing

rate given by:

q(V) = K [1 + tanh a(V − Vrest)] + υnoise. (16)



228 M.T. Wilson et al.

The firing-rate function (ignoring the noise term) clearly approaches zero as V is large

and negative (i.e., well below the resting potential of −64 mV), crosses K when V = Vrest,

and approaches 2K when V is large and positive (i.e., well above rest). The width of this

transition is governed by a. In our simulations, we choose K = 15 s
−1

and a = 0.1 mV
−1

.

The ψ
PQ

k terms bring in the reversal potentials V P

rev
, where:

ψ
PQ

k = V P

rev
− V Q

k
V P

rev
− Vrest

. (17)

Physically, the reversal potentials constrain V Q

k to the range V i
rev

< V Q

k < V e
rev

. In accor-

dance with the mean field simulations, we choose V e
rev

= 0 mV and V i
rev

= −70 mV.

The υnoise
term introduces white noise into the system; its statistics are:

υnoise(t) = 0 (18)

υnoise(t)υnoise(t ′) = C 2δ(t − t ′) (19)

with C 2
= 0.001 s

−1
. To keep this model simple, we have not considered the the details of

the shapes of the excitatory and inhibitory postsynaptic potentials, but we assume they occur

quickly. This assumption is akin to the adiabatic approximation made by Steyn-Ross et al.

[8, 27]. Numerical values are chosen to be roughly consistent with those of the Liley-style

model of the Appendix.

The synaptic weights grow according to a Hebb-style rule:

dw
PQ

jk

dt
= η

(
q(V P

j ) − K
) (

q(V Q

k ) − K
)

/K2 V P

j , V Q

k > Vrest

= 0 otherwise. (20)

In effect, when a presynaptic and a postsynaptic neuron are both high-firing, we increment

the weight, with the greatest increment being when they are both at their highest firing

rates (i.e., both have soma potentials greater than zero). In our simulations, we choose

η = 0.25 s
−1

.

To apply the model, we need to define a starting matrix for wjk, denoting the initial

strengths of connections between the presynaptic neuron j and the postsynaptic neuron

k. To model an “unlinked” cortex, we can generate each wjk independently from a

Gaussian distribution (but we ensure symmetry between ei and ie connections). This would

correspond to s = 0 (or high NPQ) in our model; see Fig. 2a. To model a “linked” cortex, we

need to remove some of the independency between weights. A simple way to do this is to

put the weights matrix wjk into a “block” form and assign weights to synapses in different

blocks from Gaussian distributions with different means. Figure 7a illustrates this. In this

case, s = 0.50, corresponding to a low value of NPQ. (See also Fig. 2c.)

For each run of the model, we can then extract, at each time step, the value for the mean

weights for the ee, ei, ie and ii connections. Also, we can find the variance in these weights,

equivalent to σ 2

PQ
of the second-order mean-field model.

We run this model 250 times with different starting values of the weights matrix wjk.

This allows us to estimate a statistical uncertainty in the mean and variance values. One

example of the weights matrix after a time evolution is given in Fig. 7b. Statistical results

are shown in Fig. 8. Again, we look at the “unlinked” case (independent weights, plots a

and b, with s ≈ 0) and the “linked case” (weights are correlated in a “block” form, plots c

and d, with, in this case, s ≈ 0.5). We see much of the same behavior as in Fig. 4. Looking
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Fig. 7 An example of a weights matrix wjk in which weights are assigned from a Gaussian distribution, but

with correlation between weights in particular blocks. a before propagation, b after propagation. Note how

some connections have become much stronger. White, strong connections; black, weak connections

at the variances in Fig. 8a for the weakly linked case, we see that, initially, the variance

in the ee term increases, the variance in the ii term decreases, and the variance in the

ei = ie term stays roughly constant. For the equivalent strongly linked case in part c, we

see the changes are much stronger, in agreement with the second-order mean-field results.

However, in this simulation, all variances eventually increase, with the ii variance turning

direction (at about 30 s in Fig. 8c), whereas in the mean-field simulations of Fig. 4c and e,

the ii variance continues to decrease. The plots of Fig. 8b and d show the variances with

respect to the mean weights squared; in these cases, it is clear that the changes are small,

showing that the squared weights change in a similar manner to the variances. However,

part d shows an increase in this measure for the excitatory to excitatory connections, in

agreement with Fig. 4f, whereas the weakly linked case in part b shows a decay. An increase

is also obtained for the excitatory to inhibitory connections. Overall, we are encouraged by

the correspondence in many features between this simple neuron-by-neuron model and the

mean-field scheme.

We can introduce limitations on the synaptic weights in a similar way as for the mean-

field approach, using an exponential decay function. Equation (20) becomes:

dw
PQ

jk

dt
= η

(
q(V P

j ) − K
) (

q(V Q

k ) − K
)

/K2 + μ(κ − w
PQ

jk ) V P

j , V Q

k > Vrest

= μ(κ − w
PQ

jk ) otherwise. (21)

We illustrate this with the case of η = 0.25 s
−1

, μ = 0.03 s
−1

, and κ = 1, in Fig. 9, for

weakly and strongly linked starting weight matrices. In the case of the weakly linked

weights, Fig. 9a shows the decay in variance to zero is relatively fast and follows the

same trend as for the mean-field analysis of Fig. 6c—the ee, ei = ie, and ie traces are

indistinguishable. For the strongly linked case in Fig. 9c, the behavior is consistent with

Fig. 6e—the variances fall, with the ee falling slightly more slowly and ii falling slightly

more quickly. The variances measured in relation to the mean weight squared, as shown

in parts b and d for the weakly and strongly linked cases, respectively, all fall rapidly, in

agreement with the mean-field case shown in Figs. 4d and f.
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Fig. 8 Results from the soma neuron network model. a A plot of the variance in weights against time for

uncorrelated initial weights. b A plot of variance in the weights divided by the mean weight squared, i.e., the

X-parameter, for the uncorrelated initial weights. c The variance in weights against time for correlated initial

weights, of the form of Fig. 2c. d A plot of variance in the weights divided by mean weight squared, for the

correlated initial weights. Key: ee, solid; ie = ei, dot-dash; ii, dotted. The dashed lines on either side of the

ee line indicate the standard uncertainty in the mean, for a total of 250 trials

4.2 Binary Neurons

We have also performed simulations with a simpler, binary model, where each neuron is

either “firing” or “quiet.” This is similar to the model in (15) above, but with the width of

the hyperbolic tangent function in (16) being zero (i.e., a → ∞) and the removal of the

exponential decay from the rest term.

The state of a neuron at the next time step is then determined simply by whether the input

from the excitatory connections to the neuron, weighted by the w
PQ

jk , outweighs the input

from the inhibitory connections. That is, if we denote the state of neuron k at discrete time

t by Sk(t), where Sk = 1 denotes firing and Sk = 0 denotes quiet, the state of a neuron at

discrete time t + 1 is given by:

Sk(t + 1) = sign

⎛
⎝∑

j

pjwjk(t)Sj(t) + νk

⎞
⎠ + 1 (22)

where pj represents the sign of the presynaptic neuron—i.e., if it is an e neuron pj = 1 and

if it is an i neuron pj = −1. The term νk represents the “noise” input and can be taken, for

example, from a Gaussian distribution of mean 0 and some adjustable standard deviation.

Alongside this equation, a Hebbian-style learning rule is used—namely, that if two neurons
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Fig. 9 Results from the soma neuron network model when weights are limited by an exponential decay term.

a A plot of the variance in weights against time for uncorrelated initial weights; the three curves are virtually

identical. b A plot of variance in the weights divided by the mean weight squared, i.e., the X parameter,

for the uncorrelated initial weights; again, the three curves are virtually identical. c The variance in weights

against time for correlated initial weights, of the form of Fig. 2c. An insert shows the difference in the three

traces at larger times. d A plot of variance in the weights divided by mean weight squared, for the correlated

initial weights. Key: ee, solid; ie = ei, dot-dash; ii, dotted. The dashed lines on either side of the ee line

indicate the standard uncertainty in the mean, for a total of 250 trials

j and k both fire together at time t, the weight between them increments by a predetermined

amount η, i.e.:

Sj(t) = 1 and Sk(t) = 1 ⇒ w jk(t + 1) = w jk(t) + η. (23)

Depending upon the synaptic weights, the model can exhibit stable firing patterns and limit

cycles, which can be loosely attributed to “memories” following Hopfield [38]. Although

biophysically lacking in many regards, the model has the advantage of being mathematically

simple while maintaining physically dynamic behavior [39]. We run the simulation with

equal numbers of e and i neurons so that, on average, there will be equal numbers of firing

and quiet neurons.

Results are shown in Fig. 10 for a total of one thousand trials. Again, we see similar

behavior as in previous simulations. Looking at parts a and c, we see that, initially, the

variance in the ee term increases, the variance in the ii term decreases, and the variance in

the ie = ei term stays roughly constant. Again, the rate of these changes is largest for the

strongly linked cases (c), although the difference is clearly not as marked as for the mean-

field scheme. Eventually, the ii variance increases, as it does in Fig. 8. The changes in the



232 M.T. Wilson et al.

0 50 100 150 200
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

time step

va
ria

nc
e 

in
 w

ei
gh

ts

a

0 50 100 150 200
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

time step

X
P

ar
am

et
er

b

0 50 100 150 200
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

time step

va
ria

nc
e

in
w

ei
gh

ts

c

0 50 100 150 200
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

time step

d

X
pa

ra
m

et
er

Weakly linked s 0≈
σ2

Weakly linked s 0
/w

≈
σ2 2

ee

ii

ei ee

ii

ei

Strongly linked s 0.5≈
σ2

Strongly linked s 0.5
/w

≈
σ2 2

ee

ii

ei
ee

ii ei

Fig. 10 Results from the binary neuron network model. a A plot of the variance in weights against time for

uncorrelated initial weights. b A plot of variance in the weights divided by the mean weight squared, i.e., the

X parameter, for the uncorrelated initial weights. c The variance in weights against time for correlated initial

weights, of the form of Fig. 2c. d A plot of variance in the weights divided by mean weight squared, for

the correlated initial weights. Key: ee, solid; ie = ei, dot-dash; ii, dotted. The dashed lines on either side of

the ee line indicate the standard uncertainty in the mean, for a total of 1,000 trials. Note that, initially, the

ee variance rises, ii variance falls, and the ei = ie variance stays constant, but all the variances rise for later

times

variance terms in relation to the mean weights squared (parts b and d) are mostly in line

with the mean-field results of Fig. 4, although the ee term does not show an increase with

time for the highly correlated case.

It is fair to say that there are some differences between the low-level simulations and the

predictions of the mean-field model, as discussed above. In particular, there is the increase

in variance of the ei and ii terms at large times in Figs. 8c and 10a and c. This we attribute

to the fact that the mean-field analysis has assumed that fluctuations in soma potential from

the local equilibrium values are small; in the neuron models we have analyzed, this is not

necessarily the case, except at small times when, as expected, the predictions of the models

are more consistent. However, we draw encouragement from the fact that the variance in

the ee weights, in particular, shows an increase with time when weights are not bounded,

with that increase most significant when the weights are correlated.
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5 Discussion

What implications do these results have? Broadly, the results indicate the following trends:

– A growth in the variance of the e → e synaptic weights, but a fall in the variance of the

i → i synaptic weights, for unstabilized connections.

– An accelerated growth of synaptic weights in a highly linked cortex. If sPQ is large

enough, the growth in the variance may be greater than that in the mean square weight.

– An unstable equilibrium at σ 2

PQ = 0.

The growth in the variance of the e → e connections suggests that the strong connections

are growing faster than the weak connections. In other words, the network is emphasizing

particular e → e pathways above others. Physiologically, this suggests that the cortex is

coding “memories” in terms of a few key e → e connections, allowing other connections to

become available for “new” memories. Abraham and Robins [40] discuss the possibility of

a network requiring dynamically changing weights to be able to allow encoding of new

memories while retaining the ability to recall old ones efficiently, and Horn et al. [41]

and Pantic et al. [42] consider the benefits of synaptic depression to recall of memories

in neural networks. Conversely, given the drop in the variance of the i → i connections, the

implication is that these are not so important for memory, but rather to keep the network

stable. The number of i neurons in the cortex is substantially lower than the number of e
neurons, consistent with this interpretation. Just as interesting is the difference in behavior

between a strongly linked and a weakly linked cortex. In the case of no physical limitations

on weights, the strongly linked cortex, with relatively few independent connections, shows

a much greater increase in σ 2

ee than a weakly linked cortex. This suggests that the ee weights

in more highly linked regions of a cortex will be spread more than the weakly linked regions.

When physical limitations on weights are introduced, we could expect that the highly linked

key pathways will become cemented at the expense of weakly linked pathways, whose

weights will equalize, resulting in the removal of weak memories and more efficient coding

of strong memories. The result is a cortex that maintains the strongest memories but is in a

state where it can efficiently learn new memories [40]. The precise coding pathways would

be expected to be constantly changing.

We remark that we expect the growth in variance in excitatory to excitatory weights to

be a robust result when no physical limit is put on the weights. This is because (48) in the

Appendix, which describes the growth in variance in terms of weights and soma potentials,

comes from the expression of Hebb’s rule in (3) and is independent of the exact form of

the equations for soma potential. The requirements are: (1) the soma potentials do not

deviate greatly from their local equilibriums, and (2) the physically reasonable assumption

that a depolarizing of soma potential results in an increased firing rate. We would expect

assumption 1 to be reasonable, for example, in the down state of slow-wave sleep, where

the soma potentials are relatively constant [43], though not actually at the transition to the

up state itself, when the potentials rise quickly.

Before we consider possible neurophysiological implications, we remark on the validity

of the learning rule for slow-wave sleep. In a down state, neurons have very low firing

rates, and so it is reasonable to ask whether any synaptic weight changes are possible. The

changes predicted by the model are a direct consequence of the well-used covariance form

of the learning rule in (1) and (3), which implies that correlated fluctuations in membrane
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potential (as we would expect to occur at a transition [25]) will induce a growth in synaptic

weight. There are at least three possible explanations as to why this effect might occur in

practice: (1) it is the very sparse (but correlated) action potentials that produce synaptic

weight changes (indeed, Crochet et al. [44] have shown that postsynaptic response is very

sensitive to presynaptic stimulation when the neurons are in a down state, and Massimini

et al. [45] have demonstrated a similar effect just prior to the transition to the up state); (2)

that the correlated subthreshold fluctuations themselves directly change synaptic weights

through intracellular dendritic mechanisms; or (3) that the subthreshold fluctuations act to

“prime” the cortex so that the initial burst of action potentials, which occur as the neurons

transition synchronously to the up state, are particularly efficacious in synaptic weight

modification.

5.1 Implications

Tononi and Cirelli have recently put forward an argument that a homeostatic purpose

of slow-wave sleep is to adjust synaptic gain [28]. They describe a thought-experiment

in which there are synapses of three different weights. After a period of slow-wave

sleep, they speculated that, although all synaptic weights are reduced, there could be a

relative strengthening of the strongest synapse and loss of the weakest one. Assuming

that synaptic weight changes can occur in the low-firing down state, our results could

provide a quantitative basis for their postulate—that a period of nonspecific episodic white

noise stimulation will cause a relative increase in the variance of the gain in excitatory to

excitatory synaptic weights in structured neuronal assemblies (see Fig. 6) when transitions

between down and up states occur (such as in slow-wave sleep). That is, the strong

have gotten stronger, the weak have gotten weaker. In less structured assemblies, which

presumably do not carry useful memories, the variance is reduced (i.e., the weights are

equalized). Further experimental research is required to test whether the neuromodulatory

environment of slow-wave sleep is conducive to the plasticity changes predicted by our

model.

According to (1), these synaptic changes will take place quickest when the correlations

between neurons are greatest. This is close to the points of transition between low- and high-

firing states [17, 25] (although we expect our analysis to break down at the transition itself).

This naturally suggests a role for the slow oscillation of slow-wave sleep [43, 46], where the

cortex makes multiple jumps between low- and high-firing states. Experimentally, Battaglia

et al. have reported that electroencephalographic sharp waves from the hippocampus are

correlated with the down–up transition of slow-wave sleep, suggestive of a role for slow

waves in long-term memory [47]. Additionally, Marshall et al. have demonstrated that

the transcranial application of slow-wave potentials improves declarative memory recall

in human subjects [48].

6 Conclusions

In this paper, we have presented an adaptation to a mean-field model that allows the study

of the distribution of synaptic weights as opposed to simply the mean synaptic weights.

The goal has been to produce a versatile model that has the advantages of both mean-

field and neural network approaches, and although the mathematics is only approximate,

our model is a step towards this. Specifically, the changes in this distribution under a

Hebbian learning rule have been followed; however, other schemes can be incorporated
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into the model. In the absence of physical limits on the size of the weights, the standard

deviation of the distribution of excitatory to excitatory synaptic weights grows with time,

with the rate of growth dependent upon the degree of independence between neuron

connections. The model requires that consideration be given to the degree of structure in the

connectivity of the network—i.e., “what does the weight wij imply about the weight w jk?”

The standard deviation of the excitatory to excitatory synaptic weights of a realistic cortical

network with highly linked connections grows more quickly than that of a hypothetical

network of independent connections. When limits are placed on the growth of weights

(albeit somewhat artificially), networks of independently connected neurons decrease their

standard deviation of the weights, implying that the weights begin to equalize. However,

sufficiently linked networks will grow their standard deviations for excitatory to excitatory

connections. This suggests that strong memories within the network, under driving by

noise, are gradually encoded with fewer neurons (higher standard deviation), whereas weak

memories are removed. These processes take place most quickly where fluctuations in soma

potential are greatest, suggesting that slow-wave sleep is important. The standard deviation

of inhibitory to inhibitory neurons tends to decrease, suggesting that these connections are

not so important for coding memories. Further work would be required to establish the

robustness of these results.

7 Appendix

7.1 Equations for the Mean-field Model

First, we describe the complete set of equations for the Liley-style mean-field cortical model

as used and presented in Wilson et al. [19], drawing from Liley et al. [6] and Rennie et al. [7].

τe
d 〈V e〉

dt
= V e

rest
− 〈V e〉 + 〈wee〉 ρeψ

ee�ee + 〈
wie〉 ρiψ

ie�ie; (24)

τi
d

〈
V i〉

dt
= V i

rest
− 〈

V i〉 + 〈
wei〉 ρeψ

ei�ei + 〈
wii〉 ρiψ

ii�ii; (25)

(
d 2

dt 2
+ 2γee

d
dt

+ γ 2

ee

)
�ee = γ 2

ee
(
Nα

eeφ
ee + Nβ

ee Qe + φsc

ee
) ; (26)

(
d 2

dt 2
+ 2γei

d
dt

+ γ 2

ei

)
�ei = γ 2

ei

(
Nα

ei φ
ei + Nβ

ei Qe + φsc

ei

)
; (27)

(
d 2

dt 2
+ 2γie

d
dt

+ γ 2

ie

)
�ie = γ 2

ie

(
Nβ

ie Qi + φsc

ie

)
; (28)

(
d 2

dt 2
+ 2γii

d
dt

+ γ 2

ii

)
�ii = γ 2

ii

(
Nβ

ii Qi + φsc

ii

)
; (29)

(
∂2

∂t2
+ 2v�ee

∂

∂t
+ v2�2

ee − v2∇2

)
φee = v2�2

ee Qe; (30)

(
∂2

∂t2
+ 2v�ei

∂

∂t
+ v2�2

ei − v2∇2

)
φei = v2�2

ei Q
e. (31)
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The column-averaged soma potentials excitatory e and inhibitory i soma potentials are

denoted by 〈V e〉 and
〈
V i〉

, respectively. Time is denoted by t.
In these equations, Ve

rest
and V i

rest
are the excitatory and inhibitory neurons’ resting

potentials and ρe and ρi are the strengths of the excitatory postsynaptic potential (EPSP)

and inhibitory postsynaptic potential (IPSP) response functions (i.e., the area of the plot

of postsynaptic potential response function against time). Note that the inhibitory effect

is modelled with a negative ρi. The terms 〈wee〉, 〈
wie〉

,
〈
wei〉

, and
〈
wii〉

represent column-

averaged synaptic weights—namely,
〈
wPQ

〉 =
〈
w

PQ

jk

〉
jk

, etc., where P and Q can take on

the labels e and i. In the modelling of Steyn-Ross et al. [27], each of the four weights is

implicitly assumed to be unity. The variables ψee
, ψei

, ψ ie
, and ψ ii

are weighting functions

dependent upon the soma potentials. They are given by:

ψab = V a
rev

− 〈
V b〉

Va
rev

− V b
rest

. (32)

Here, V a
rev

is the reversal potential of the type a synapse, due to the concentrations of the

neurotransmitters AMPA and GABA. The superscripts a and b can take on the labels e and

i. The terms τe and τi describe the time-constants for the e and i neurons.

The terms �ab
describe the synaptic flux rate for the connections from type a to type

b. The γab terms are synaptic rate-constants; their reciprocals give the time-scales over

which the EPSPs and IPSPs occur. Long-range synaptic flux-rate is represented through

the terms φea (note that there are no long-range inhibitory connections). The Nβ

ab represent

numbers of local intracolumn connections from type a neurons to type b (again, a and b
can take on the labels e and i) and the Nα

ea the number of long-range connections from

type e neurons to type a. The mean axonal velocity for long-range interactions is given by

v, and the characteristic length for long-range interactions is given by 1/�ea. Short-range

interactions are not modelled with axonal propagation but are assumed to be instantaneous;

the Nβ

jk terms couple directly with the population firing rates Qk
in (26–29).

The sigmoidal functions Qe
and Qi

, describing the population firing-rate of neurons, are

given by:

Qe(〈V e〉) = Qe
max

1 + exp
[ − π(〈Ve〉 − θe)/

√
3σe

] ; (33)

Qi(〈V i〉) = Qi
max

1 + exp
[ − π(〈Vi〉 − θi)/

√
3σi

] . (34)

Here, we have introduced further variables Qe
max

and Qi
max

, the maximum firing rates for the

excitatory and inhibitory neurons, respectively; θe and θi, the inflexion point voltage; and σe
and σi, the standard deviation of the threshold potential.

The φsc

ab terms provide the subcortical white-noise driving of the model. The time

variation of the subcortical noise is assumed to obey the equation:

φsc

ab(�r, t) = 〈
φsc

ab
〉 + υab(�r, t)

〈
φsc

ab

〉 1

2

. (35)
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The υab(�r, t) describe white noise; their statistics obey:

〈υab(�r, t)〉 = 0, (36)

〈
υab(�r, t)υcd( �r ′, t ′)

〉
= δacδbdδ(t − t ′)δ(�r − �r ′). (37)

Here, 〈· · · 〉 denotes an average over space and time.

The list of standard parameters used is given in Table 1. In the anesthesia modelling of

Steyn-Ross et al. [8], and the sleep modelling of Wilson et al. [19], these equations have

been slightly modified by various scaling parameters to describe the effects of drugs and

neuromodulators.

7.2 Developing the Equations to Include Variances

We wish to understand how the mean-square of the synaptic weight w
PQ

jk changes with time.

We define the variance of the synaptic weights across a cortical column as:

σ 2

PQ
=

〈
w

PQ

jk w
PQ

jk

〉
jk

−
〈
w

PQ

jk

〉2

jk
(38)

where the average is taken over all presynaptic neurons j (of type P) and all postsynaptic

neurons k (of type Q). Taking the time-derivative of the variance, we get:

d
dt

σ 2

PQ
= 2

〈
w

PQ

jk
d
dt

w
PQ

jk

〉

jk
− 2

〈
w

PQ

jk

〉
jk

d
dt

〈
w

PQ

jk

〉
jk

. (39)

Substituting from (1) and (3), we obtain:

d
dt

σ 2

PQ
= 2ηPQ

[〈
w

PQ

jk

(
V P

j V Q

k − V P

j V Q

k

)〉
jk

−
〈
w

PQ

jk

〉
jk

〈
V P

j V Q

k

〉
jk

+
〈
w

PQ

jk

〉
jk

〈
V P

j

〉
j

〈
V Q

k

〉
k

]
. (40)

In (40), we are bringing in higher-order correlation terms. In particular, we will now

need to consider terms of the form

〈
w

PQ

jk V P

j V Q

k

〉
. The terms are of third-order in the sense

that they are several averages over a product of three different quantities. As a first step

away from considering purely the means of quantities, we wish to reduce this to second

order. Therefore, we take the usual approach of considering only small variations in V P

j and

V Q

k from their instantaneous column-averaged values. We write, without loss of generality:

V P

j =
〈
V P

j

〉
j
+ �V P

j (41)

V Q

k =
〈
V Q

k

〉
k
+ �V Q

k . (42)
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We therefore have, ignoring terms of order �V 2
:

〈
w

PQ

jk V P

j V Q

k

〉
jk

≈ −
〈
w

PQ

jk

〉
jk

〈
V P

j

〉
j

〈
V Q

k

〉
k
+

〈
V P

j

〉
j

〈〈
w

PQ

jk

〉
j
V Q

k

〉

k

+
〈
V Q

k

〉
k

〈〈
w

PQ

jk

〉
k

V P

j

〉
j
. (43)

These quantities are implicitly time-varying (e.g., V P

j = V P

j (t)); the “t” has been dropped

for clarity. Note carefully the order of averaging. We now have terms that are second-order

in the sense of averages over a product of two quantities. However, there is a new kind of

entity, involving a combined average over the synaptic weight connections w
PQ

jk , and the

soma potentials of the pre- and postsynaptic neurons (V P

j and V Q

k respectively). We define

two new variables for these averages:

ξ
PQ

post =
〈〈

w
PQ

jk

〉
j
V Q

k

〉

k
, (44)

ξPQ

pre
=

〈〈
w

PQ

jk

〉
k

V P

j

〉
j
. (45)

Here, ξ
PQ

post is an average over all postsynaptic neurons k of the soma potential multiplied

by the average synaptic weight onto that neuron. Conversely, ξ
PQ

pre is an average over all

presynaptic neurons j of the soma potential multiplied by the average synaptic weight

from that neuron. If there is symmetry in the weight connections, i.e., w
PQ

jk = w
QP

kj , then

ξ
PQ

post = ξ
QP

pre (note order of superscripts). Substituting (43–45) into (40), we obtain:

d
dt

σ 2

PQ
= 2ηPQ

(
−2

〈
w

PQ

jk

〉
jk

〈
V P

j
〉

j

〈
V Q

k

〉
k
+ 2

〈
w

PQ

jk

〉
jk

〈
V P

j
〉

j

〈
V Q

k

〉
k

+〈
V P

j
〉

jξ
PQ

post − 〈
V P

j
〉

j ξ
PQ

post +
〈
V Q

k

〉
k
ξ

PQ

pre −
〈
V Q

k

〉
k
ξ

PQ

pre

)
(46)

Using the definition of covariance as cov(A, B) = AB − A B, we can write this as:

d
dt

σ 2

PQ
= 2ηPQ

[
−2

〈
w

PQ

jk

〉
jk

cov

(〈
V P

j

〉
j
,
〈
V Q

k

〉
k

)

+ cov

(
ξ

PQ

post,
〈
V P

j

〉
j

)
+ cov

(
ξPQ

pre
,
〈
V Q

k

〉
k

)]
, (47)

where the covariances can be calculated in a simulation by considering the variation of

these terms over a two-dimensional grid (i.e., over the cortex). Using further the identity

cov(λA− μB, C) = λcov(A, C) − μcov(B, C), and (45), we obtain the expression:

d
dt

σ 2

PQ
= 2ηPQ

{
cov

∗
[

covk

(〈
w

PQ

jk

〉
j
, V Q

k

)
,
〈
V P

j

〉
j

]

+ cov
∗
[
cov j

(〈
w

PQ

jk

〉
k
, V P

j

)
,
〈
V Q

k

〉
k

]}
, (48)
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where covk denotes the covariance over all postsynaptic neurons within the cortical column,

cov j denotes the covariance over all presynaptic neurons in the cortical column, and cov
∗

denotes the covariance over all columns (i.e., over the cortex).

This equation is independent of that used to describe how V Q

k changes with time, but is

a direct consequence of the mean-field form of Hebb’s rule, (3).

To complete our equation set, we need to find out how the terms ξ
PQ

post and ξ
PQ

pre change

with time, and restrict them to second order. We can write:

d
dt

ξ
PQ

post = d
dt

〈〈
w

PQ

jk

〉
j
V Q

k

〉

k
=

〈〈
w

PQ

jk

〉
j

dV Q

k
dt

〉

k

(49)

where the final part assumes that the synaptic weights change much more slowly than the

mean soma potentials. There is a similar expression for ξ
PQ

pre .

We now require a description of the variation of the soma potential of a particular neuron,

V Q

k , as a function of time, and the variation of the column-averaged soma potential,

〈
V Q

k

〉
k
,

as a function of time.

The latter of these quantities is straightforward; it is the state variable that is modelled

in a large number of mean-field schemes. Any scheme can be used here; for illustration

purposes, we will use that of Liley et al. [6] and used by Steyn-Ross et al. [27] and Wilson

et al. [19], already presented. The mean soma potential

〈
V Q

k

〉
k
of type Q neurons follows

the equation:

τQ

d
〈
V Q

k

〉
k

dt
=

(
V Q

rest −
〈
V Q

k

〉
k

)
+ ρe

〈
w

eQ

lk

〉
lk

�eQψeQ + ρi

〈
w

iQ

mk

〉
mk

�iQψ iQ
(50)

where τQ is the average somatic time-constant for neurons of type Q (Q = e or i); VQ

rest is

the mean resting potential; ρe is the average time-integrated area of the EPSP; ρi is the

average time-integrated area of the IPSP; �eQ
is the average synaptic flux from excitatory

neurons onto neurons of type Q; �iQ
is the average synaptic flux from inhibitory neurons

onto neurons of type Q; and ψeQ
and ψ iQ

are weighting functions, depending on the reversal

potentials, describing how the susceptibility of a neuron to synaptic input changes with its

soma potential: ψe Q = (
V e

rev
−

〈
V Q

k

〉
k

)
/(V e

rev
− V Q

rest) where V e
rev

is the reversal potential

at excitatory synapses. A similar expression exists for ψ iQ
. Note that ρi is negative—this

accounts for the hyperpolarizing effect of the inhibitory synapses.

The equation for the soma potential of a particular neuron, V Q

k , requires further dis-

cussion. What is of importance is that we recover the mean-field equation (50) when we

take the mean over the neurons within a cortical column. It is not critical to model the

action-potentials explicitly because our intention is to look at the correlations in behavior

of neurons to determine the growth of the weight of the connection between them. This

correlation can be modelled more simply and without loss of applicability by ignoring the

spikes. With this in mind, we deconstruct (50) to obtain an approximate equation for the

potential change for a single neuron that is fit for the purpose of this model. That is:

τQ

dV Q

k
dt

=
(

VQ

rest − V Q

k

)
+ ρe

∑
l

w
eQ

lk �̃
eQ

lk ψ̃
eQ

k + ρi
∑

m
w

iQ

mk�̃
iQ
mkψ̃

iQ
k (51)

where the first sum is over excitatory neurons k only and the second sum is over inhibitory

neurons m only. The terms �̃
e Q

lk is the synaptic flux rate from, specifically, the l-th
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presynaptic (of type e) to the k-th postsynaptic neuron (of type Q). The term ψ̃
eQ

k describes

the effect of the reversal potential at excitatory synapses on the susceptibility of neuron k
through ψ̃

eQ

k = (Ve
rev

− V Q

k )/(V e
rev

− V Q
rest). A similar expression exists for ψ̃

iQ
k .

We can now substitute (51) into (49) to give:

τQ

dξ
PQ

post

dt
= −

(〈〈
w

PQ

jk

〉
j
V Q

k

〉

k
−

〈
w

PQ

jk

〉
jk

V Q

rest

)

+ ρe
∑

l

〈〈
w

PQ

jk

〉
j
w

eQ

lk �̃
eQ

lk ψ̃
eQ

k

〉

k
+ ρi

∑
m

〈〈
w

PQ

jk

〉
j
w

iQ

mk�̃
iQ
mkψ̃

iQ
k

〉

k
. (52)

In order for Eq. (51) to reduce to Eq. (50) on averaging over neurons k, we recognize that:

〈∑
l

�̃
eQ

lk ψ̃
eQ

k

〉

k

= �eQψeQ, (53)

〈∑
m

�̃
iQ
mkψ̃

iQ
k

〉

k

= �iQψ iQ, (54)

and so, Eq. (52) becomes:

τQ

dξ
PQ

post

dt
= −

(
ξ

PQ

post −
〈
w

PQ

jk

〉
jk

V Q

rest

)

+ ρe

〈〈
w

PQ

jk

〉
j

〈
w

eQ

lk

〉
l

〉

k
�eQψeQ + ρi

〈〈
w

PQ

jk

〉
j

〈
w

iQ

mk

〉
m

〉

k
�iQψ iQ

(55)

where we also assume no correlation between the synaptic flux rates �̃
eQ

lk onto neuron k
from neuron l and the weight w

eQ

lk (similarly for �̃
iQ
mk and w

iQ
mk).

This equation contains second-order terms in w. To close the set of equations completely,

we relate them to

〈
w

PQ

jk

〉
jk

and σ 2

PQ
.

The second order-terms in w in (55) have the form:

FPQR =
〈〈

w
PQ

jk

〉
j

〈
w

RQ

lk

〉
l

〉

k
=

〈〈
w

PQ

jk

〉
j

〈
w

QR

kl

〉
l

〉

k
=

〈
w

PQ

jk w
QR

kl

〉
jkl

(56)

where the second step follows if we assume symmetry in the weights: w
PQ

jk = w
QP

kj . Because

the Hebbian rule (1) is symmetric, weights that start symmetric will stay symmetric at all

times. Here, P, Q, and R can each mark the populations e or i. We see that F PQR
is, in

effect, the mean of the matrix elements resulting from the product of the wPQ
and wQR

matrices, and it represents a second-order effect of population P influencing population

R via population Q (or R influencing P via population Q.) The term F PQR
unfortunately

involves three means, and this is not conducive to physical modelling because it generates

further terms that must be considered as time-varying quantities. To make the modelling

manageable, we seek to write F PQR
approximately with terms involving just two means.
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Let us consider the case when P = R (=e or i). This will always be the case for one of the

two final terms on the right-hand-side of (55). The populations wPQ
and wRQ

are certainly

correlated. Then, we have:

F PQR =
〈〈

w
PQ

jk

〉
j

〈
w

PQ

lk

〉
l

〉

k
=

〈〈
w

PQ

jk

〉2

j

〉

k
. (57)

We wish to relate this to the variance σ 2

PQ
=

〈
w

PQ2

jk

〉
jk

−
〈
w

PQ

jk

〉2

jk
. The simplest way of doing

this is to assume, through the central limit theorem, that the variance (over neurons k) in〈
w

PQ

jk

〉
j

is equal to the variance in w
PQ

jk (over all j and k) divided by the number NPQ of

independent P to Q connections in the cortical column for each postsynaptic neuron of type

Q. This allows us to write:

〈〈
w

PQ

jk

〉2

j

〉

k
−

〈
w

PQ

jk

〉2

jk
= σ 2

PQ
/NPQ

⇒
〈〈

w
PQ

jk

〉2

j

〉

k
= σ 2

PQ
/NPQ +

〈
w

PQ

jk

〉2

jk
. (58)

Equation (58) can be substituted for one of the terms in (55), depending on whether

P = R = e or P = R = i. This leaves a second term, namely, when P �= R. In this case, we will

assume that the populations wPQ
and wRQ

are uncorrelated. Therefore, we will write:

〈〈
w

PQ

jk

〉
j

〈
w

RQ

lk

〉
l

〉

k
=

〈
w

PQ

jk

〉
jk

〈
w

RQ

lk

〉
lk

, (59)

which is now in terms of means over weights (to the power 1). Therefore, we have written

(55) in terms of the set of variables

〈
w

PQ

jk

〉
jk

and σ 2

PQ
, where P and Q can take the values e

and i. This completes the set of equations, namely, (3), (47), and (55), with assumptions (58)

and (59) and symmetry in the weights matrix. Our state variables are

〈
V P

j

〉
j
,

〈
w

PQ

jk

〉
jk

, σ 2

PQ

and ξ
PQ

post, and these equations describe how these quantities change with time. (We also

require the other Liley-style equations for �PQ
, etc., for the model of Steyn-Ross et al. [27]).

For the modelling to proceed, we need to specify NPQ as a parameter. To provide for a

more physical description, we transform this to a parameter s given by:

sPQ = NPQtotal − NPQ

NPQtotal

(60)

where NPQtotal is the averaged total number of connections for each post-synaptic neuron

of type Q. This is different for e and i neurons, but we use a value of 1000 as a physically

reasonable approximation (see Table 1). This means that sPQ ≈ 0 represents a cortex that

is “weakly-linked” in that its synaptic weights are mostly independent of each other, but

sPQ ≈ 1 represents a cortex that is “strongly-linked,” in that its synaptic weights have strong

dependencies. Figure 2 explains this pictorially.
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7.3 Analysis of the Equilibrium

It is easy to show that an equilibrium for σ 2

PQ
exists for the case of:

σ 2

PQ
= 0, (61)

ξ
PQ

post =
〈
w

PQ

jk

〉
jk

〈
V Q

k

〉
k
. (62)

Physically, this corresponds to a cortex where all weights are the same. To see this

equilibrium, first of all, put (61) and (62) into (58) and then into (55). This allows us to

take the mean weight out as a common factor to give:

dξ
PQ

post

dt
=

〈
w

PQ

jk

〉
jk

d
〈
V Q

k

〉
k

dt
, (63)

where we have used (50). Integrating gives:

ξ
PQ

post =
〈
w

PQ

jk

〉
jk

〈
V Q

k

〉
k
+ Const (64)

where the constant can be set to zero by the initial condition (62). Therefore, (62) remains

valid at later times. Likewise, putting (61) and (62) into (40), using the assumption that

ηPQ = ηQP
so ξ

QP

pre = ξ
PQ

post, gives us:

d
dt

σ 2

PQ
= 0, (65)

which completes the analysis. Note that ξ
PQ

post itself is not constant, but it always follows

(62). In effect, we can define a (spatially dependent) variable

�PQ = ξ
PQ

post −
〈
w

PQ

jk

〉
jk

〈
V Q

k

〉
k
= cov j

(〈
w

PQ

jk

〉
k
, V P

j

)
(66)

which is constant along with σ 2

PQ
under these equilibrium conditions. Note that �PQ

is the

inner covariance of (48).

We now consider the stability of the equilibrium conditions (61) and (62). We look at the

equation for the variation in �PQ
(66). We have, from (50) and (52):

τQ

d�PQ

dt
= τQ

d
dt

(
ξ

PQ

post −
〈
w

PQ

jk

〉
jk

〈
V Q

k

〉
k

)

= −
(

ξ
PQ

post −
〈
w

PQ

jk

〉
jk

〈
V Q

k

〉
k

)

+ ρe

[〈〈
w

PQ

jk

〉
j

〈
w

eQ

lk

〉
l

〉

k
−

〈
w

PQ

jk

〉
jk

〈
w

eQ

lk

〉
lk

]
�eQψeQ

+ ρi

[〈〈
w

PQ

jk

〉
j

〈
w

iQ
mk

〉
m

〉

k
−

〈
w

PQ

jk

〉
jk

〈
w

iQ
mk

〉
mk

]
�iQψ iQ. (67)
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Looking at the two terms in [· · · ] brackets, we can see that one of them will be zero,

depending upon whether P = e or i. The other becomes the variance σ 2

PQ
/NPQ, from (58).

This leaves us:

τQ

d�PQ

dt
= −�PQ + ρP�

PQψPQσ 2

PQ

NPQ

. (68)

The negative sign in front of the �PQ
on the right-hand-side of this equation ensures that,

for all σ 2

PQ
(assuming for the moment that σ 2

PQ
does not change), �PQ

will approach its

equilibrium value.

We now need to look at the change in σ 2

PQ
. However, linearizing in σ 2

PQ
and �PQ

is not

straightforward because of the covariances in (48), so we must look at the signs of the

time-derivatives of the quantities using simple arguments. Equation (48) describes how σ 2

PQ

changes with time. The covariance terms describe the correlation between quantities, and

we can again determine the signs of these from inspection of the relevant equations.

7.3.1 Case of P = Q = e

Here, the two terms on the right-hand-side of (48) are identical. Let us look at the innermost

covariance term, covk

(〈
wee

jk

〉
j
, Ve

k

)
, where the covariance is taken over postsynaptic

neurons k. If this covariance is positive, it means physically that postsynaptic neurons with

higher Ve values will have the higher average pre–post weight. If this is the case, it follows

that the presynaptic neurons with these higher weights must also have higher Ve values,

so that the increased excitatory effect from the higher-weight neurons drives up the soma

potential of the postsynaptic neurons. Conversely, if the inner covariance is negative, this

means that the postsynaptic neurons with the lowest Ve values would have the higher-than-

average pre–post weight (i.e., low-firing neurons have the strongest weight). Therefore, the

excitatory input from the presynaptic neurons to such postsynaptic neurons would be low.

Therefore, we expect the outer covariance cov
∗
, that is the covariance between the inner

covariance and the postsynaptic soma-potential, also to be positive. This means that the

rate of increase of variance σ 2

ee will be positive. This result requires only the assumption

of higher soma-potentials giving higher firing rates, and therefore, we would expect it to

be robust to changes in the models for evolution of the soma-potential. Moreover, it is

reasonable to assume that a more highly structured cortex would have greater covariances

and, therefore, more rapid changes in variance of weight.

7.3.2 Case of P = Q = i

Again, let us look at the innermost covariance term. Again, assume that this covariance is

positive, so that the postsynaptic neurons with the highest soma potentials are also the ones

with the highest average pre–post weights. However, because the presynaptic neurons are

inhibitory, this must mean that the presynaptic neurons where the weights are maximum

have a lower-than-average firing-rate and soma potential; otherwise, they would cause the

postsynaptic soma potential to be lower than average. Therefore, we would expect the outer

covariance cov
∗

to be negative.

7.3.3 Case of P = e, Q = i

The two terms of (48) are no longer equal. However, by the same argument of the case

P=Q= e, we would expect both terms to be positive—a positive correlation between the
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weights and the postsynaptic soma potential must be as a result of a high firing (high

soma potential) presynaptic neurons, and vice-versa [first term on right-hand side of (48)].

Similarly, a positive correlation between the weights and the presynaptic soma potential

must imply high postsynaptic soma potential [second term on right-hand side of (48)].

Therefore, the outer covariance terms will be positive.

7.3.4 Case of P = i, Q = e

By the same argument as the case of P = Q = i, we would expect both terms to be negative.

We note that, because we are using a symmetric learning rule, (1), we would expect

σ 2

ei = σ 2

ie. However, the arguments above would suggest that the former grows with time

and the latter would fall with time. This contradiction is reconciled when we realize that the

correlations between populations of e and i neurons would normally be significantly lower

than the correlations between populations of e and e neurons, or i and i neurons [25]. In

other words, we would expect the growth of these terms to be approximately zero in the

low noise limit assumed by (43). Note also that we would not physically expect σ 2

ei, σ 2

ie,

or σ 2

ii to fall below zero. Overall, therefore, we might expect the equilibrium point to be

unstable, given the growth in the term σ 2

ee.
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