
co
m

m
ent

review
s

repo
rts

depo
sited research

refereed research
interactio

ns
info

rm
atio

n

Open Access2007Bulazelet al.Volume 8, Issue 8, Article R170Research
Species-specific shifts in centromere sequence composition are 
coincident with breakpoint reuse in karyotypically divergent 
lineages
Kira V Bulazel*, Gianni C Ferreri*, Mark DB Eldridge†‡ and Rachel J O'Neill*

Addresses: *Department of Molecular and Cell Biology, Mansfield Rd, University of Connecticut, Storrs, CT 06269, USA. †Department of 
Biological Sciences, Macquarie University, NSW 2109, Australia. ‡Molecular Biology, Australian Museum, College St, Sydney, NSW 2010, 
Australia. 

Correspondence: Rachel J O'Neill. Email: rachel.oneill@uconn.edu

© 2007 Bulazel et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Centromere evolution<p>The evolution of three classes of centromere sequences across nine species of macropodine marsupials were compared with that of other genes, showing that each species has experienced differential expansion and contraction of individual classes. </p>

Abstract

Background: It has been hypothesized that rapid divergence in centromere sequences
accompanies rapid karyotypic change during speciation. However, the reuse of breakpoints
coincident with centromeres in the evolution of divergent karyotypes poses a potential paradox.
In distantly related species where the same centromere breakpoints are used in the independent
derivation of karyotypes, centromere-specific sequences may undergo convergent evolution rather
than rapid sequence divergence. To determine whether centromere sequence composition follows
the phylogenetic history of species evolution or patterns of convergent breakpoint reuse through
chromosome evolution, we examined the phylogenetic trajectory of centromere sequences within
a group of karyotypically diverse mammals, macropodine marsupials (wallabies, wallaroos and
kangaroos).

Results: The evolution of three classes of centromere sequences across nine species within the
genus Macropus (including Wallabia) were compared with the phylogenetic history of a
mitochondrial gene, Cytochrome b (Cyt b), a nuclear gene, selenocysteine tRNA (TRSP), and the
chromosomal histories of the syntenic blocks that define the different karyotype arrangements.
Convergent contraction or expansion of predominant satellites is found to accompany specific
karyotype rearrangements. The phylogenetic history of these centromere sequences includes the
convergence of centromere composition in divergent species through convergent breakpoint
reuse between syntenic blocks.

Conclusion: These data support the 'library hypothesis' of centromere evolution within this genus
as each species possesses all three satellites yet each species has experienced differential expansion
and contraction of individual classes. Thus, we have identified a correlation between the evolution
of centromere satellite sequences, the reuse of syntenic breakpoints, and karyotype convergence
in the context of a gene-based phylogeny.
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Background
The centromere paradox posits that the DNA at centromeres
is conserved for function, but not sequence [1]. Within the
murine and primate lineages, centromeric DNA sequences
are species specific and different chromosomes within a spe-
cies sometimes contain divergent centromeric DNA
sequences [2]. In stark contrast, the gross structure of the
centromere and the associated kinetochore proteins are con-
served across eukaryotes [3,4]. Such functional conservation
in the apparent absence of sequence conservation, combined
with the identification of functional centromeres at non-cen-
tromere locations (that is, neocentromeres), has led to the
hypothesis that centromeres are largely determined by epige-
netic modifications, such as histone variants [5,6] (reviewed
in [7]). In humans, it has been suggested that segmental
duplication events around the centromere ultimately lead to
the high degree of variability within centric sequences [8,9].
However, studying the evolution of human centromere
sequences in the context of karyotypic change has been diffi-
cult because the family of great apes has experienced little
gross chromosome change between species [10].

Several marsupial families have experienced extensive karyo-
typic change, deriving from the rearrangement of a basic
complement of 19 chromosome blocks through centric shifts
(centromere repositioning), fissions, fusions and transloca-
tions [11-13]. Extant marsupial karyotypes exhibit a bimodal
distribution between 2n = 14 and 2n = 22 [14,15]. While the
2n = 14 karyotype is homologous in several extant lineages,
the 2n = 22 karyotype is highly divergent, suggesting inde-
pendent derivation through breakpoint reuse. Rens et al. [12]
traced the history of the rearrangements of these 19 syntenic
blocks across several marsupial families, demonstrating fre-
quent convergent breakpoint reuse within marsupials at
breaks of synteny between these chromosome segments
[11,12].

The recent radiation of karyotypically diverse species within
the marsupial subfamily Macropodinae (kangaroos, walla-
roos and wallabies) [11] affords the opportunity to study cen-
tromere evolution in the context of karyotypic change within
a relatively short evolutionary time frame. Across the approx-
imately 58 macropodine species diploid numbers range from
2n = 10(XX)/11(XY1Y2) (Wallabia bicolor) to 2n = 24 (Lagos-
trophus fasciatus), all derived through different suites of cen-
tric fusions (Robertsonian translocations), centric shifts
(centromere repositioning) and pericentric inversions
[16,17]. Within the Macropodinae, the genus Macropus (14
species including W. bicolor) has undergone a recent (4-11
million years ago) [18-20] and rapid karyotypic radiation.
However, phylogenetic studies within this genus, relying on
DNA-DNA hybridization [21], chromosome evolution based
on G-banding studies [13] and serology-based studies [22,23]
have failed to provide well-supported concordant phylogenies
for species within this genus.

Confounding efforts to reconstruct phylogenetic relation-
ships based on chromosome evolution is the observation that
several species within Macropus have experienced break-
point reuse between syntenic blocks, each at active centro-
mere locations, in the derivation of novel karyotypes
(reviewed in [11]). For example, the karyotype of the model
species Macropus eugenii (tammar wallaby) is derived from
the ancestral 2n = 22 through a series of fusions and translo-
cations resulting in a reduction in chromosome number to 2n
= 16. In fact, three different 2n = 16 karyotypes are seen
within Macropus, each resulting from different fusions and
translocations at the centromeres of the same syntenic
blocks. The reuse of the breaks of synteny within this genus
occurs exclusively at centromeric sites, allowing commensu-
rate tracking of syntenic boundaries and centromeric
sequences.

We hypothesize that the reuse of breaks of synteny involving
centromeric sequences, active or inactive, leads not to an
increase in the variability of involved DNA sequences, but
instead leads to their conservation. The 'library hypothesis'
posits that a suite of satellite sequences may be shared
between closely related species [24]. Different satellite fami-
lies may experience different evolutionary processes, such as
concerted evolution, intrachromosomal sequence conversion
and unequal crossing over [25]. Species specific 'turnover' of
these sequences may occur when a satellite family becomes
selected as a major centromere satellite capable of attracting
centromere proteins, and is thus functional with respect to
cell division [26]. We posit that the conservation of centro-
meric sequences between lineages will be reinforced the more
reuse the breakpoints associated with these centromere loca-
tions experience. This hypothesis can be tested in models
where centromere reuse is high, as the evolution of centro-
meric repeats will be predicted to accompany the evolution of
syntenic block rearrangements. The data presented herein
was used to determine whether the evolutionary trajectory of
centromeric sequence composition has paralleled chromo-
some evolution, and thus syntenic block arrangement, or
whether it follows species evolution.

Previous work on the macropodine species Macropus rufog-
riseus (red-necked wallaby, Mrb) detailed the sequence and
karyotypic distribution of three centromeric sequence
classes, a functional 178 bp centromere satellite (typified by
the sequence Mrb-sat23), a repeat derived from a simple 7-
mer (typified by the sequence Mrb-B29), and a degenerate
pericentric satellite (typified by the sequence Mrb-sat1)[27].
In the present study, we examined the karyotypic distribution
of these three centromeric constituents across Macropus and
have identified patterns of chromosome distributions. A gene
phylogeny based on mitochondrial and nuclear sequences
was constructed for nine species within Macropus. This phy-
logeny was then tested for concordance with a phylogeny
derived from syntenic block arrangement as determined by
GRIMM (Genome Rearrangements In Man and Mouse)
Genome Biology 2007, 8:R170
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algorithms within the Multiple Genome Rearrangements
(MGR) program [28]. Comparative analyses of these datasets
showed that the evolution of centromeric sequence composi-
tion has paralleled chromosome, and thus syntenic block,
evolution but has not strictly followed species evolution as
measured by phylogenetic metrics.

Results and discussion
Sequence analyses
The entire mitochondrial Cytochrome b (Cyt b) gene was
sequenced from eight Macropus species (M. robustus, M.
antilopinus, M. rufus, M. giganteus, M. eugenii, M. rufogri-
seus, M. agilis, M. parma) and W. bicolor. One Petrogale (P.
xanthopus) and one Thylogale (T. thetis) species were
sequenced as outgroups (reviewed in [18]), representing two
other macropodine genera (Additional data file 1). Thylogale
carries the ancestral karyotype of all Macropodidae and
shares a common ancestor with Macropus and Petrogale
[16,18], rendering it an ideal outgroup taxa for all datasets of
our study. The macropodine Cyt b is 1,146 bp in length and
was included in its entirety for these analyses. The polymor-
phic sites, 362 variable sites and 200 parsimony informative
sites, across the 11 species analyzed in this study were evenly
distributed throughout the gene (data not shown).

Due to the potential for natural interspecies hybridization
within the Macropus genus that may skew mitochrondrial
gene sequence towards one species, albeit a very rare occur-
rence in this clade [29], a nuclear gene, selenocysteine tRNA
(TRSP), and its flanking regions were included in these anal-
yses. TRSP is the gene region that includes the selenocysteine
tRNA gene, an alternative tRNA for the UGA termination
codon (also called the opal suppressor) in selenoproteins.
Similar in structure to cysteine, selenocysteine substitutes
sulfur with selenium. The TRSP region was selected because
previous studies indicated that regions flanking the TRSP
transcription unit carried sufficient informative sites for phy-
logenetic resolution of closely related species within the Cani-
dae [30]. The time since species divergence within the
Canidae (0.3-12 million years ago) [31,32] is similar to that of
Macropus (4-11 million years ago) [18,19]. Moreover, exten-
sive karyotype rearrangement has also been documented
across Canid species [33]. Bardeleben et al. [30] found the
evolutionary rates of the 5' and 3' flanking regions of TRSP to
be faster than that of introns of some nuclear genes, making
the choice of this gene more attractive for our intra-genus
study.

The 87 bp TRSP gene and its 5' (340 bp) and 3' (261 bp) flank-
ing regions were sequenced from 11 species (Additional data
file 1). Across the dataset, the TRSP region (688 bp) had 213
variable sites and 103 parsimony informative sites. Unlike the
informative sites identified in Cyt b that show an even distri-
bution across the entire gene (data not shown), the informa-
tive sites within TRSP are clustered in the regions flanking the

TRSP coding sequence (Figure 1). Nine of the variable sites
were intragenic, of which eight were transversions. Five
indels were present in the 5' region and six in the 3' region.
Within the 5' flanking region, though they do not have good
sequence identity, the proximal and distal sequence elements
can be found at the same positions as their eutherian counter-
parts. While the proximal and distal sequence elements are
not well conserved, other regions, such as -182 bp to -145 bp
upstream, are (Figure 1), but no established functionality has
been attributed to them.

Phylogenetic analyses
Previous studies have failed to clarify the phylogenetic rela-
tionships amongst the five groups of Macropus species
included in this study: grey kangaroo (M. giganteus), red
kangaroo (M. rufus), the wallaroos (M. antilopinus and M.
robustus), swamp wallaby (W. bicolor), and the 'true' walla-
bies (M. parma, M. eugenii, M. agilis, M. rufogriseus). The
Cyt b analysis places W. bicolor within the 'true' wallabies, to
the exclusion of M. giganteus. The p-distances within the Cyt
b dataset for W. bicolor are low and comparable to those of
the other wallabies (Figure 2a). The two wallaroo species
maintain a close association and define a group unto them-
selves. In contrast, the TRSP tree places M. giganteus with
the 'true' wallabies, to the exclusion of W. bicolor (Figure 2b),
with more significant clade credibility values. The tree
derived from analysis of a concatenation of both sequences
maintains the topology of the TRSP tree with respect to these
two species and has strong supporting credibility values (Fig-
ure 2c). Given the individual or concatenated datasets, we
used the Shimodaira-Hasegawa test [34] (as implemented
using TREE-PUZZLE 5.2 [35]) to explore the confidence set
of phylogenies. Shimodaira-Hasegawa testing of single and
combined datasets did not significantly reject phylogenies
where M. giganteus and W. bicolor formed a distinct clade
and thus cannot reject the possibility that M. giganteus and
W. bicolor form a separate clade.

The association supported by the TRSP and concatenated
datasets places M. rufus as sister taxa to all other Macropus
and Wallabia. Surprisingly, in trees produced from both Cyt
b and TRSP, the wallaroos are sister taxa to Wallabia and the
rest of Macropus, though overall sequence differences of M.
rufus outweigh that association in the concatenated tree (Fig-
ure 2a,b versus 2c). The concatenated tree logically places M.
rufus on the ancestral Macropus node, places the two walla-
roo species together and places all the 'true' wallabies
together (see below and Figure 3). Neither the Cyt b nor TRSP
analysis alone resolves the species within the 'true' wallabies.
It is likely that there were not enough phylogenetically
informative sites to resolve this group due to their recent der-
ivation, though the combination of both genes does provide
some resolution. However, the phylogeny presented is statis-
tically robust (see Materials and methods), and thus provides
a sound topological basis from which to examine the pattern
of karyotypic evolution in this group.
Genome Biology 2007, 8:R170
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Multiple genome rearrangement analysis
Basic marsupial karyotypes can be defined by the arrange-
ment of 19 conserved chromosome segments, or syntenic
blocks derived from a common ancestor [11,12] (Figure 3a
key). These syntenic blocks can be used to trace the history of
chromosome rearrangements across Macropus species. The
syntenic blocks are arranged in six different configurations
among the eleven species examined. Though the karyotypes
of most Macropus species have been defined by G-banding
[13], deriving the most parsimonious chromosome phylogeny
has produced conflicting trees [11,13] largely due to a lack of

consensus on the amount of convergent breakpoint reuse and
the number of translocations across species with a 2n = 16
diploid number. Resolution has been further confounded by
the lack of a comprehensive gene phylogeny to use as a guide
from which to study the order and pattern of rearrangement
of affected chromosomes.

As a general measure of chromosome evolution, a karyotype
phylogeny has been generated for Macropus. The MGR pro-
gram [28] was used to reconstruct the most parsimonious lin-
eage for Macropus based on syntenic block organization. For

Nucleotide substitutions in TRSPFigure 1
Nucleotide substitutions in TRSP. Plot of the number of nucleotide substitutions per site versus position along consensus of TRSP across alignment of 11 
surveyed species. The tRNA selenocysteine coding region and TATA box are labeled with black arrows. White dashes in the grey gene region represent 
the position and size of indels, the smallest indel being 1 bp, the largest being 8 bp.
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Figure 2 (see legend on previous page)
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(b) TRSP GTR tree
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this analysis, each chromosomal segment was coded by syn-
tenic number relative to the ancestral karyotype, represented
by T. thetis, and oriented relative to the centromere position
(Figure 3a key). The MGR program allows break-point reuse,
fissions, fusions, inversions and translocations to occur in any
direction necessary to achieve maximum parsimony [28].
Our analysis of the phylogenetic history of the 19 synteny
blocks across this group of mammals supports a tree for the
taxa that reduces the number of rearrangements suggested by
previous phylogenies [11,13] and supports convergent break-
point reuse at the centromeres among syntenic blocks C1
(Figure 3a,b, dark pink), C2 (grey), C8 (light yellow), C10
(aqua), C15 (dark orange), and C18 (orange). These six blocks,
each with boundaries at the centromere, are involved in the
various suites of chromosome rearrangements within this
genus.

The MGR analysis of syntenic block rearrangement produced
an unrooted tree with three ancestral nodes from which the
input karyotypes derive (Figure 3a). Nine steps (one step =
one fission, fusion, or translocation) were extrapolated along
the total length of the tree. This tree also infers three ancestral
karyotypes, denoted as α, β and γ. The ancestral α karyotype,
presumed to be the oldest from its proximity to T. thetis (an
outgroup and a species carrying the 2n = 22 karyotype ances-
tral to all Macropodidae), is 2n = 20 and equivalent to M.
rufus. In the ancestral α (and M. rufus) karyotype, syntenic
block C8 has undergone a fusion with block C1. Ancestral α is
inferred to have undergone two autosomal fusions (denoted
by '^') to create the 2n = 16 karyotype of ancestral β
(C10^C18, C15^C2), equivalent to that of M. eugenii. From
ancestral β, a further translocation (denoted as '*'; C15*10,
C2*C18) achieved a karyotype equivalent to that of M. robus-
tus. A different translocation (C8*C18, C10*C1) occurred to
form the ancestral γ karyotype, still a 2n = 16 form. The kary-
otype of M. giganteus is derived by yet a different transloca-
tion event (C8*C2, C15*C18), still preserving the 2n = 16
form. The karyotype of W. bicolor is achieved from the ances-
tral γ by three fusions, including the fusions of two autosomes
to the X.

The MGR derived phylogeny is not concordant with the gene
tree (Figure 2c) as it places M. giganteus and W. bicolor in a
separate monophyletic group derived from the γ ancestral
karyotype. When the derivation of these arrangements,
including the inferred ancestors, is mapped along the tree
derived from our sequence analyses, convergent breakpoint
reuse is implicated (Figures 3, 4, 5). The breaks between
blocks C1, C2, C8, C10, C15 and C18 are used in the derivation
of the β ancestral karyotype in the lineage leading to the M.
eugenii group as well as in the derivation of the γ ancestral
karyotype in the lineages leading to M. giganteus and W.
bicolor.

Fluorescence in situ hybridization of centromere 
satellites
Our MGR analysis, taken in the context of species evolution,
indicated that convergent breakpoint reuse has occurred sev-
eral times within this genus. Moreover, the rearrangements
within Macropus that distinguish each karyotype involve a
breakpoint at a centromere. With the exception of the W.
bicolor X, which has two autosomes fused to it [36], this kary-
otypic lability is derived from intrachromosomal rearrange-
ments of six syntenic blocks (C1, C2, C8, C10, C15 and C18)
that border active centromeres in all macropodine species
(Figure 3b). Each species within Macropus also carries a
unique X chromosome arrangement and structure (see below
and Figure 6), yet is composed of only one syntenic block
(C19). For these reasons, we wanted to investigate genetic
markers that would prove informative for analyses of sex
chromosome evolution in addition to karyotypic evolution of
the autosomal complement.

To track the evolution of centromere sequences, with atten-
tion towards breakpoint reuse and chromosome rearrange-
ment, as well as sex chromosome structure, we analyzed the
chromosome distribution of large blocks of the three centro-
mere satellite classes, sat1, sat23 and B29 [27]. Fluorescence
in situ hybridization (FISH) of these three satellite classes
previously proved informative in the identification of func-
tional centromere sequences within the 2n = 16 M. rufogri-
seus karyotype [27].

A representative of each of these satellite classes was used as
a probe for FISH on metaphase chromosome preparations
from eight Macropus species (M. eugenii, M. agilis, M. rufog-
riseus, M. parma, M. giganteus, M. robustus, M. antilopinus,
M. rufus), W. bicolor and P. xanthopus (Figure 4, Additional
data files 1-3). The Mrb-sat1 probe is a degenerate pericentric
satellite from M. rufogriseus, containing just over two 342 bp
tandem repeats of 71% homology to one another. The 410 bp
Mrb-B29 probe contains simple, tandem 6- and 7-mer repeat
variants of GGAATTT. The Mrb-sat23 probed contains one
and a half units of a 178 bp alphoid satellite containing a func-
tional CENP-B-box [27].

Figure 4 shows the FISH data for satellites found at all centro-
meres within a karyotype while Figure 6 summarizes the dis-
tribution of all three satellites to the X and Y chromosomes of
each species. Within M. rufogriseus, W. bicolor and M.
giganteus, sat1 is centromeric on the X chromosomes. M.
giganteus and M. rufus are unique in sharing the localization
of sat1 to nearly all autosomal centromeres (Figures 4 and 6).
Hybridization of this satellite to M. rufus chromosome 7
could not be detected, perhaps because of the small size of the
centromere on this chromosome. The ubiquitous presence of
sat1 at the centromeres of M. giganteus indicates this
sequence may be acting as a functional centromere in this
species.
Genome Biology 2007, 8:R170
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The sat1 hybridization to wallaroo M. robustus chromosomes
is a prominent indicator of the governance rearrangements of
the six syntenic blocks (C1, C2, C8, C10, C15 and C18) may
have over centromere sequences (Figure 5). The only centro-

meres to contain sat1 (chromosomes 1, 5 and 6) are the cen-
tromeres that separate syntenic blocks C1, C2, C8, C10, C15
and C18. These are the only actively rearranging blocks in the
karyotype of this lineage, indicating that the use of these

MGR parsimony tree of syntenic block rearrangementsFigure 3
MGR parsimony tree of syntenic block rearrangements. (a) Syntenic blocks are colored according to homology for the karyotype of the last common 
ancestor (represented by T. thetis, see KEY). The diploid number is indicated in grey below the karyotype. The number of rearrangements is indicated on 
branches as fissions (/), fusions (^), and translocations (*). Unmarked branches have no changes. Estimated ancestral karyotypes, constructed by MGR, are 
included at marked nodes α, β, and γ, without sex chromosome inference. Note that the M. rufus karyotype is equivalent to ancestral α, the M. eugenii 
karyotype is equivalent to ancestral β, and the ancestral γ karyotype has no extant counterpart. Nine rearrangements reconstruct all six karyotypes of the 
genus. The M. eugenii autosomal karyotype is equivalent to those of the true wallabies; the M. robustus autosomal karyotype is equivalent to the wallaroos 
herein. Spacers on the X chromosomes represent the positions of the nucleolous orgranizer regions [17]. (b) Syntenic blocks active in rearrangements: 
C1 (dark pink), C2 (grey), C8 (light yellow), C10 (aqua), C15 (dark orange), C18 (orange). The syntenic block numbering is based on the relation to the 2n 
= 14 ancestral karyotype (see the errata in [11]).
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Synthesis of phylogenetic and karyotypic dataFigure 4
Synthesis of phylogenetic and karyotypic data. Tree topology from Figure 2c overlaid with chromosome rearrangements from Figure 3 and patterns of 
sequence expansion and contraction as seen from FISH with sat1, B29 and sat23 (right) probes to full karyotypes of representative Macropus species. 
Predominant FISH images are shown on the right, and chromosomes are ordered sequentially (see Additional data files 3-5 for the complete set). Ten 
rearrangements are indicated on branches as fusions (^) or translocations (*). The positions of the ancestral karyotypes α, β, and γ relevant to this tree are 
marked. Predominant centromere satellite accretion (+, gain) and diminution (-, loss) is marked by grey and white boxes. The incongruity between the 
concatenated gene phylogeny and the MGR tree is that the γ ancestor karyotype must have been formed twice and independently in the W. bicolor and M. 
giganteus lineages as shown here. Numbered arrows identify chromosome rearrangements coincident with shifts in satellite content. The major satellite 
constituent for each macropodine group is indicated to the far right.
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centromeres as sites of rearrangement has led to the conser-
vation of this satellite sequence. M. antilopinus, while closely
related to M. robustus, shows a similar distribution of sat1,
although the hybridization signal is more dispersed. Sat23
signal is also reduced in M. antilopinus, perhaps an indica-
tion of a lesser amount of heterochromatic material. In fact,
hybridization signal of centromere satellites in general will be
less detectible in M. antilopinus as its centromeres in general
are smaller than those of M. robustus.

Traces of B29, the simple repeat, are seen at the centromeres
of P. xanthopus, indicating this satellite is not restricted to the
Macropus (Figure 4). Within the other wallabies (for example
M. eugenii) this sequence is lost at the X centromere core, but
is present pericentromerically (Figure 6, Additional data files
3-5). Remarkably, B29 is conserved as a major component of
the Y chromosome in every species included in this study
(Figure 6). Its predominance in the P. xanthopus and pres-
ence in the Macropus Y chromosomes implies that once this
repeat has been introduced to the Y chromosome, it has not
been removed over the evolutionary time period analyzed
herein (approximately 15 million years).

Sat23, which contains a CENP-B binding domain in the M.
rufogriseus variant, does not appear to be present in large
enough tandem arrays in P. xanthopus to be detected via
FISH analyses (Additional data files 3-5), though Southern
analyses detect its presence in lower copy number (Additional
data file 6). Sat23 is present at every autosomal centromere
except for those of W. bicolor and M. giganteus (Figure 4).
However, this satellite is present at the centromere of the X
and Y1 of W. bicolor and the centromere of the Y of M. gigan-
teus (Figures 4 and 6). The presence of sat23 in tandem arrays
exclusively at all centromeres of most Macropus species (Fig-
ure 4, Additional data files 3-5) indicates that this genus is
characterized by a conserved centromeric sequence. It is

important to note that given the low stringency applied to our
FISH assays, these sequences are likely not identical but are
homologous and only detectable in large repeated blocks.

The pattern of satellite expansion and contraction, taken in
the context of tree topology and chromosome rearrangement
(Figure 4) indicates that the amounts of both sat1 and sat23
have each grown and diminished in divergent lineages that
have experienced different types of chromosome rearrange-
ments. For example, the contraction of sat23 in W. bicolor
and M. giganteus coincides with the formation of the ances-
tral γ karyotype through the same translocation of (C8*C18)
and (C10*C1) (Figure 3). Subsequent to this, sat1 experienced
another expansion specific to the M. giganteus lineage and
coincident with one more translocation between (C8*C2) and
(C15*C18) (Figure 3). Prior to the divergence of M. rufus an
expansion of sat23 and the reduction of B29 coincides with a
fusion (C1^C8). The wallaroos (M. robustus and M. antilopi-
nus) experience a partial increase of sat1 accompanying a
translocation (C15*C10, C2*C18) in their karyotype lineage
only in the centromeres participant in common translocation
sites (the centromeres between C1 and C8, C15 and C10, and
C2 and C18) (Figures 3, 4, 5).

Every change in karyotypic evolution in this genus has been
accompanied by a corresponding change in predominant cen-
tromeric sequence composition. From our data it appears
that the contractions of centromere satellites are most often
associated with fusion events during chromosome rearrange-
ment, and the expansion of centromere satellites are most
often associated with translocation events. The amount of
satellite B29 diminishment coincides with a fusion at arrow 1
in Figure 4. Reduction of satellites sat1 and sat23 coincide
with fusions at arrows 3 and 4, respectively. Arrows 2 and 5
indicate sat1 accretion accompanies translocation events. On
the lineage to W. bicolor (arrow 4) a translocation also occurs.
While we have been able to identify a centromeric repeat that
has undergone diminution associated with the fusion, we
have not been able to identify a predominant centric sequence
nor its accompanying accretion in this lineage as predicted by
the presence of the translocation. It is likely that an as yet uni-
dentified sequence exists, and we predict it has undergone an
expansion to become more prevalent at the centromeres of
this species.

Conclusion
Phylogenetic history of Macropus
While several studies have attempted to refine a phylogeny
for the genus Macropus, these studies were lacking in either
species coverage or support. Previous morphological and
serological studies of Macropus adequately sampled the
genus, though were lacking in statistical support [22,23,37].
Previous genetic studies, while statistically supported, lacked
adequate representation of the genus [18]. The choice of two
genes, one mitochrondrial and one nuclear, provides for a

Satellite shifts and breaks of syntenyFigure 5
Satellite shifts and breaks of synteny. Satellite shift coincident with breaks 
of synteny at C8, C15, C10, C2, C18, and C1 in M. robustus. Top panel: 
FISH analysis of sat1. Bottom panel: karyotype of M. robustus with the 
chromosome segments involved in breakpoint reuse indicated in bold.
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sound phylogenetic analysis of this group of species [38-58].
The Cyt b and TRSP gene phylogenies reported herein
include 9 of the 13 extant species (approximately 70% cover-
age), encompassing a more comprehensive dataset for devel-
oping a Macropus phylogeny. Our phylogenetic analyses
derived from the Cyt b/TRSP concatenated dataset shows
high Bayesian clade credibility values and maximum likeli-
hood (ML) boostrap values (Figure 2c), providing a robust
phylogeny on which to analyze the pattern of centromere and
chromosome evolution across this group of mammals.

The placement of W. bicolor in relation to the Macropus phy-
logeny has previously been debated [19]. W. bicolor is the
only extant member of its genus. The status of this species as
a sister genus to Macropus has been historically supported by
morphological [19], immunological [22], and limited gene
phylogeny studies [18]. However, this placement has been
challenged by serology [23] and DNA-DNA hybridization
[19,20,37], providing support for inclusion of Wallabia spe-
cies within Macropus. Our gene based phylogenies (Figure 2)

and MGR karyotype analysis (Figure 3) find Macropus to be
monophyletic including Wallabia.

Another conclusion from these phylogenetic analyses is the
relative position of M. rufus (red kangaroo) and M. giganteus
(grey kangaroo). The Cyt b/TRSP tree (Figure 2c) excludes M.
rufus from the rest of Macropus, while placing M. giganteus
and W. bicolor with the 'true' wallabies. Previous taxonomists
placed M. rufus with the wallaroos in a separate genus,
Osphranter [19]. The analyses presented herein do not place
these three species into one monophyletic group and support
their inclusion within Macropus.

Chromosomal history of Macropus
Comparison of the Cyt b/TRSP phylogeny (Figure 2c) over-
laid with the karyotype analysis derived from the MGR phyl-
ogeny (Figure 3) indicates ten different rearrangements are
needed to form every karyotype derived from the ancestral α
karyotype (Figure 4). Though the representation of chromo-
some rearrangements with respect to the gene phylogeny is

Sex chromosome composite idiogram of probe localization by FISHFigure 6
Sex chromosome composite idiogram of probe localization by FISH. Centromeres are represented as small, constricted blocks, and nucleolous orgranizer 
regions, often found proximal to the centromere, are represented by three thin lines. Chromosomal location of hybridization is indicated in black. Each 
image was made from observations of ten metaphase spreads. The relative sizing of X chromosomes is according to [17] and this study. Vertical lines 
separate relative groups of species based on probe distribution in the X and Y. Predominant centromeric probes (pc) indicate hybridization of probe to all 
autosomal centromeres of the species.
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less parsimonious than the MGR analysis by one step, it is
probably more reflective of the natural history of the clade as
measured by the Cyt b/TRSP analysis and FISH analyses.

In our analyses we examined the evolution of centromere sat-
ellite repeats across Macropus species to determine whether
the path of centromere evolution has paralleled chromosome
evolution or species evolution, as measured by gene histories.
The distribution of predominant centromeric sequences
across these species is not informative when mapped onto the
gene phylogeny alone (Figure 4). When the history of syntenic
block rearrangement is considered, the contractions and
expansions of predominant satellites are found to consist-
ently accompany specific karyotype rearrangements of syn-
tenic blocks C1, C2, C8, C10, C15 and C18 (see Figure 5 for an
example). Thus, there is a strong correlation between changes
in predominant satellite sequences, with respect to homoge-
nous distribution across all centromeres within a karyotype,
and chromosome rearrangement events.

Of significance is the demonstration that convergent break-
point reuse between C1, C2, C8, C10, C15 and C18 results in
convergent centromere restructuring. Other studies have
identified retention of low-copy numbers of sat23 satellite
sequence at the breaks of synteny between most of the 19 con-
served chromosome segments within M. eugenii [6]. Based
on evidence of convergent centromere sequence expansion of
sat1 among M. rufus, M. robustus, and M. giganteus (Figure
4), we hypothesize that retention of these sequences at breaks
of synteny in low copy provides the sequence targets for cen-
tromere satellite expansion.

Our data suggest that 'new' satellite sequences have not been
repeatedly introduced into the macropodine genome to
become predominant centromeric sequences as predicted by
centromere drive [59]. Rather, these centromeric satellites
remain in the genome, likely at latent centromere locations
[6], and undergo recurrent repeat copy number expansion
and contraction in divergent lineages. This analysis does not
imply de novo adoption of previously non-centromeric
sequences at centromere locations following chromosome
rearrangement, but indicates the same sequences can
undergo convergent expansion across all centromeres in dif-
ferent lineages.

Salser et al. [24] proposed the 'library hypothesis' of satellite
evolution in which related lineages share a collection of hete-
rochromatic repeat sequences that may become preferentially
amplified in any of the given species during the normal events
of centromere evolution. In Macropus the 'library' of satellite
sequences, including sat1, sat23 and B29, is involved in the
creation of large, satellite arrays. This conservation implies
that centromeric sequences are not created de novo, but recy-
cled from the existing library. Mestrovic et al. [60] found sup-
port for the 'library hypothesis' in examining satellite
sequence predominance across congeneric species of Palorus

insects. By PCR assays it was determined that though all Pal-
orus species examined possessed all satellites examined, a
different single satellite was greatly amplified in each of the
different species, demonstrating that all species shared a
common satellite library from which the amplifications
occurred. We have found the same to be true by FISH (Fig-
ures 4 and 5, Additional data files 3-5) and Southern analyses
of our repeats across Macropus (Additional data file 6). Lin
and Li [61] identified similar inter-genera evidence of centro-
meric heterochromatin conservation among cervid deer.

Within Macropus, the recurrent pattern of detectable repeat
presence or absence by FISH in the autosomes versus the sex
chromosomes (Figures 4 and 6) could be indicative of the rate
at which these two types of chromosomes accumulate and
dissipate centromeric material. The sex chromosomes of this
group appear to retain tandem arrays of ancestral
centromeric material for longer periods of time. For example,
the presence of B29 on the sex chromosomes of all species
examined indicates an origin for this satellite predating Mac-
ropus diversification. While most Macropus species carry all
three satellites on their sex chromosomes, subsequent reduc-
tion of sat1 on the sex chromosomes has occurred in the line-
age leading to M. robustus/M. antilopinus as well as within
M. parma. Most species within Macropus carry a suite of sat-
ellites (B29, sat1) on their sex chromosomes that are no
longer found as expanded satellites on their autosomal coun-
terparts. Evidence from cervid deer and muntjac also shows
retention of tandem arrays of satellites in the sex chromo-
somes that are not found in the autosomes [61,62].

Mechanistic processes inherent to fusion and translocation
events may be responsible for the observed contractions and
expansions of the satellite arrays. Diminution of satellite
arrays by excision may occur as a result of subtractive proc-
esses occurring during fusion events. Prior to Robertsonian
fusions, chromosome breaks within the centric satellites
remove the p-arms, and a portion of the centromere and peri-
centromere, to expose the fusion sites [63,64]. The centric
position of the break sites leads to overall reduction of satel-
lite sequences as a result of fusion events.

In contrast, duplication of centromere material leading to
accretion of satellite arrays may be the result of arm-swap-
ping translocations. Studies of patterns of segmental duplica-
tions in humans indicate that segmental duplications precede
and accompany translocation events [8]. Segmental duplica-
tions show a concentration near centromeres and occur more
often interchromosomally. As such, they are hypothesized to
aid in centromere sequence convergence [9,65,66]. Segmen-
tal duplications preceding a translocation event would
increase sequence identity between sites, making such trans-
locations events more likely [67]. At the centromeres, such
duplication events would also serve to distribute satellite
sequences to centromeres throughout the genome, increasing
the likelihood of the adoption of a predominant satellite
Genome Biology 2007, 8:R170
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sequence [2]. Propagation of satellites via segmental duplica-
tion events also supports the 'library hypothesis' of centro-
mere satellite origination, as it represents a recycling process
inherent to the hypothesis.

After predominant centromere satellites were identified in a
majority of the genus, these sequences were used to track cen-
tromere evolution. Comparing the karyotype phylogeny to the
gene-tree topology concludes that while Macropus species
possess several divergent karyotypes, there is reuse of satel-
lite sequences as a result of breakpoint reuse at specific syn-
tenic block boundaries coincident with centromeres. This
study shows that the 'library hypothesis' describes the pat-
terns of centromere sequence convergence within this mam-
malian lineage. Thus, satellite sequence evolution is found to
strictly follow chromosomal evolution, likely as a result of the
dynamic role the centromere plays in karyotype change.

Materials and methods
Cyt B sequence analyses
Mitochondrial Cyt b was amplified from 11 species (Addi-
tional data file 1) using the primers Mr1/Mr2 [68] (Additional
data file 7) that flank the gene. Internal gene sequencing was
done with combinations of primers (Additional data file 7).
Products were direct sequenced with ABI BigDye3.1 on an
ABI 3130 sequencer as per the manufacturer's instructions
(ABI: Foster City, CA, USA). Cyt b was sequenced from two
individuals per species to confirm species identity. However,
two individuals each were unavailable for M. antilopinus and
M. parma. Thus, branch lengths based on the number of sub-
stitutions per site were calculated to evaluate intra-versus
interspecies diversity across the first 406 bp of Cyt b from all
available Macropodine sequences available from GenBank
and our dataset (Additional data file 1). All interspecies
branch lengths were larger than all intraspecies branch
lengths. The distances between the respective nearest neigh-
bors to M. antilopinus and M. parma exceeded all intraspe-
cies branch length values and thus were concluded to be
appropriately individual species, at least sharing identity with
none of the species included in this study. P. xanthopus and
T. thetis were sequenced as outgroups.

TRSP sequence analyses
Mus musculus (mouse), Oryctolagus cuniculus (rabbit) and
Gallus gallus (chicken) sequences of the 87 bp TRSP tran-
scription unit were used to search the NCBI Trace Archives of
M. eugenii. The Trace Archives' sequences of M. eugenii with
the highest percent identity to the mouse, rabbit and chicken
TRSP were aligned with VectorNTI version 10 (Invitrogen:
Carlsbad, CA, USA) to find the largest contiguous trace
sequence containing TRSP.

The M. eugenii trace sequence accession number [Gen-
bank:976005645] was found to have the highest percent
identity to both the other trace sequences from M. eugenii as

well as TRSP from mouse and rabbit. Primer3 [69] was then
used to construct primers from [Genbank:976005645] span-
ning the TRSP gene region (Additional data file 7). Primers to
the TRSP gene itself were designed using the Ornithorhyn-
chus anatinus (platypus) trace sequence
[Genbank:188164072] (Additional data file 7).

The nuclear gene region of TRSP (688 bp) was sequenced
from two individuals of each species. Direct sequencing was
performed as above. Within W. bicolor, M. robustus and M.
antilopinus, some regions of this gene were not amenable to
direct sequencing and, thus, were subcloned into pGEM-T
Easy (Promega: Madison, WI, USA) and then sequenced in
triplicate from the plasmid clones. The TRSP gene from P.
xanthopus and T. thetis were PCR amplified and direct
sequenced as outgroups.

Alignments were performed in Clustal X [70]. MEGA 3.1 was
used to find the number of informative sites and proportional
distance values for both genes [71] (Figure1).

Phylogenetic analyses
Identical tree topologies were generated using MrBayes
[72,73], Mega [71] and PhyML [74]. Analyses performed were
used to infer phylogenetic relationships for Cyt b, TRSP, and
Cyt b-TRSP concatenated together. T. thetis and P. xantho-
pus are outgroups to the Macropus dataset. Within MrBayes,
the general time reversible (GTR) model gave the greatest ML
and clade credibility values across all three datasets. Five
Markov Chain Monte Carlo chains were run for 1,000,000
generations, sampling every generation with a burn-in of
1,000 generations. Potential scale reduction factor values all
converged on 1.000 by the conclusion of the runs. For each of
the Cyt b and TRSP datasets, tree topology did not change
with respect to model choice. When the two datasets were
concatenated to form a contiguous sequence, only the sup-
ported tree topology within the wallabies changed with
respect to the model.

ML trees were generated in PhyML [74] using the following
parameters: GTR nucleotides substitution model, discrete
gamma model, 4-categories, shape parameter, proportion of
invariant sites and nucleotide frequencies estimated from the
data. Bootstrap values were also generated in PhyML (shown
in Figure 2). The ML trees, and an additional 18 tree topolo-
gies obtained through rearrangement, were used for the Shi-
modaira-Hasegawa test [34] in TREE-PUZZLE 5.2 [35].

Multiple genome rearrangements tool
The web-based software MGR [28,75], designed for con-
structing phylogenies based on gene order for multichromo-
somal rearrangements, was used to construct a phylogeny
based on syntenic block rearrangement across the clade (Fig-
ure 3). Only fissions, fusions, inversion and translocations are
considered significant. Rearrangement events between syn-
tenic blocks or chromosomes occur one at a time. As per the
Genome Biology 2007, 8:R170
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rules of this program, no unitary associations were locked,
meaning breakpoint reuse was allowed. The input was ori-
ented relative to the arrangement of the Thylogale syntenic
arrangement and the output was an unrooted parsimony tree.

Thylogale, a macropodeid possessing the ancestral familial
karyotype and diploid number of 2n = 22, was coded such
that each syntenic block was oriented and numbered accord-
ing to [11]. T. thetis also shares its autosomal karyotype with
P. xanthopus. All other species included in this analysis expe-
rienced reductions in chromosome number relative to T.
thetis and were coded relative to this ancestral form. The 2n
= 16 karyotype of M. eugenii is shared with M. agilis, M.
rufogriseus and M. parma. The 2n = 16 karyotype of M.
robustus, defined by a different suite of fusions, is shared
with the other wallaroo species, M. antilopinus.

Cross species fluorescence in situ hybridization
Mrb-sat1, Mrb-B29, and Mrb-sat23 clones, isolated following
microdissection of the M. rufogriseus X chromosome [27],
were PCR labeled with biotin-16-dUTP (Roche: Basel, Swit-
zerland) as per the manufacture's instructions. M. rufogri-
seus FISH were performed as per [27]. T. thetis chromosomes
were unattainable for this study, though this species has a
karyotype configuration equivalent to P. xanthopus. All
cross-species FISH experiments were hybridized at 37°C in
50% hybridization solution (50% formamide, 2 × SSC, 500
ng/ml salmon sperm DNA, 200 ng probe) and washed at
room temperature (three 50% formamide/2 × SSC washes for
5 minutes each, followed by three 2 × SSC rinses at room tem-
perature). Slides were blocked with 4 × SSC/0.2% Tween-20/
5% bovine serum albumin before avidin rhodamine (Texas
Red; Invitrogen: Carlsbad, CA, USA) incubation at 37°C for
30 minutes. Antibody layering, when needed, was of first,
avidin TexasRed, second, anti-rhodamine biotin, and third,
avidin TexasRed.

For each species, we determined the most stringent condi-
tions required to obtain FISH signal without losing signal
integrity. Hybridization time and layering varied as follows:
M. eugenii with all three probes, and M. agilis with Mrb-B29
and Mrb-sat23 were hybridized for two nights and detected
with one layer; M. parma, M. rufus, and M. giganteus with all
three probes, W. bicolor with Mrb-B29, M. robustus with
Mrb-B29 and Mrb-sat23, and M. antilopinus with Mrb-B29
were hybridized for three nights and detected with one layer;
W. bicolor with Mrb-sat1 and Mrb-sat23, P. xanthopus with
Mrb-B29 and Mrb-sat23, and M. antilopinus with Mrb-sat23
were hybridized for three nights and detected with three
layers.

Because of low signal strength from the sat1 probes, due to
cross species variation, sat1 FISH to M. agilis, M. antilopinus,
M. robustus and P. xanthopus used pooled sat1 probes
derived from M. robustus, M. parma, W. bicolor, and M.
rufus species (probes named Mrob-sat1, Mpm-sat1, Wbi-sat1

and Mrfs-sat1, respectively). The pooled sat1 probes from
these species were PCR amplified with Mrb-sat1 primers
(Additional data file 7). PCR products were cloned and
sequenced, with a range of 74.8-91.5% identity to Mrb-sat1,
verifying PCR product identity given the average sequence
identity observed for satellites both within one genome (50-
100% between different monomers) and between species
[76,77]. Clones were PCR labeled for FISH as above. Probes
were pooled during precipitation (200 ng of each) prior to
rehydration in the hybridization solution. Pooled probes were
hybridized for four nights, and detected with three layers, as
above. All FISH conditions are described in Additional data
file 2.

Slides were mounted with DAPI/Vectasheld (Vector Labora-
tories: Burlingame, CA, USA) mounting media. Images were
captured with a Leica DM6000B microscope with a
DFC350FX-R2 digital camera and analyzed with Leica
CW4000 Cytogenetics Karyotype software (Leica Microsys-
tems: Bannockburn, IL, USA).

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a list of all spe-
cies names and corresponding accession numbers used in
phylogenetic studies. Additional data file 2 lists the cross-spe-
cies FISH hybridization conditions. For each species (left),
probes used are indicated (top). For the pooled probe set, a
combination of sat1 sequences from Mrob, Mpm, Wbi, Mrfs
were used in one hybridization reaction. Hybridization time is
indicated by the number (hyb #) of days probe is incubated at
37°C. The number of antibody detection layers is also indi-
cated. All other conditions are described in the Materials and
methods. Additional data files 3, 4 and 5 are the FISH for each
satellite (sat1, B29 and sat23, respectively) to each species
used in these analyses. Probe images are in red and met-
aphase chromosomes are inverted DAPI. Additional data file
6 shows the Southern analyses of each satellite (sat1, B29 and
sat23) to each species used in these analyses. Additional data
file 7 is a list of all primer sequences used in sequence and
phylogenetic analyses. Cyt b nucleotide positions are num-
bered according to M. robustus numbering
[GenBank:Y10524]; Cyt b spans 14,184 bp to 15,329 bp.
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