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Abstract

Background: Extant life depends greatly on the binding of small molecules (such as ligands) with
macromolecules (such as proteins), and one ligand can bind multiple proteins. However, little is
known about the global patterns of ligand-protein mapping.

Results: By examining 2,186 well-defined small-molecule ligands and thousands of protein domains
derived from a database of druggable binding sites, we show that a few ligands bind tens of protein
domains or folds, whereas most ligands bind only one, which indicates that ligand-protein mapping
follows a power law. Through assigning the protein-binding orders (early or late) for bio-ligands,
we demonstrate that the preferential attachment principle still holds for the power-law relation
between ligands and proteins. We also found that polar molecular surface area, H-bond acceptor
counts, H-bond donor counts and partition coefficient are potential factors to discriminate ligands
from ordinary molecules and to differentiate super ligands (shared by three or more folds) from
others.

-
o,
o
]
o
o
[=§
-~
o
w
[]
Y
5
fal
=

Conclusion: These findings have significant implications for evolution and drug discovery. First,
the chronology of ligand-protein binding can be inferred by the power-law feature of ligand-protein
mapping. Some nucleotide-containing ligands, such as ATP, ADP, GDP, NAD, FAD, dihydro-
nicotinamide-adenine-dinucleotide ~ phosphate ~ (NDP),  nicotinamide-adenine-dinucleotide
phosphate (NAP), flavin mononucleotide (FMN) and AMP, are found to be the earliest cofactors
bound to proteins, agreeing with the current understanding of evolutionary history. Second, the
finding that about 30% of ligands are shared by two or more domains will help with drug discovery,
such as in finding new functions from old drugs, developing promiscuous drugs and depending more
on natural products.

Background depends greatly on the binding of small molecules (for exam-
Life is essentially a molecular network, not only in the indi-  ple, ligands and cofactors) with macromolecules (for exam-
vidual sense but also at the ecosystem level [1,2]. The network ple, proteins). Small-molecule ligands not only participate in
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many basic enzymatic reactions (as coenzymes or substrates)
to build metabolic networks, but also act as extra- and intra-
cellular signals to help construct regulation networks [3-9].
The great potential of small-molecule ligands to make links
between different proteins means that one ligand can bind to
diverse targets [10-13]. In fact, some ligands are extremely
powerful in contacting proteins, which are termed hubs of
biochemical networks [14-17]. However, little is known about
the global patterns of ligand-protein mapping, which stimu-
lated our interest to do a comprehensive analysis and explore
the biological and chemical bases underlying the mapping
patterns. Since ligand-protein binding is one of the most basic
biochemical processes, the present study has significant
implications for tracing the important events in the origin of
life and as well as for understanding the new paradigms in
drug discovery.

Results

Distribution patterns of ligands in the protein universe
Although considerable efforts have been devoted to con-
structing ligand databases [18-26], it is still a great challenge
to select clearly defined ligands from them. Thanks to the
endeavor of Rognan and co-workers, a well-defined ligand
database, the Annotated Database of Druggable Binding Sites
from the PDB (sc-PDB), was released recently [27]. For this
database, the ligands were collected according to the follow-
ing criteria: only host proteins with high-resolution (<2.5 A)
crystal structures were considered; water molecule, metal
ions and other 'unwanted molecules' (for example, solvents,
detergents and covalently bound ligands) were removed; only
small-molecular-weight ligands (ranging from 70 to 800 Da
for heavy atoms) were selected; and only ligands with a lim-
ited solvent-exposed surface (that is, less than 50% of their
surface exposed to the solvent) were picked. In addition, the
corresponding binding sites were also extracted and were
defined by all of the protein residues with at least one atom
within 6.5 A of any ligand atom. Taken together, the clear def-
inition for the ligands in sc-PDB guarantees the repeatability
of the present analysis, which gives sc-PDB an advantage over
other ligand databases.

Through searching sc-PDB, 2,186 small-molecule ligands
were selected, which are bound by 5,740 domains (the
domains were counted at a non-redundant level and consti-
tuted domain space; Additional data file 1). According to
SCOP 1.69 [28,29], these domains were classified into 591
folds. As one fold may cover multiple domains and bind more
than one ligand, the fold occurrences amounted to 3,224,
which constituted the fold universe.

As shown in Additional data file 1, ligands do not distribute
evenly in the domain space. A few ligands cover 100+
domains, 681 ligands (31.2%) are shared by 2 or more
domains and 1,505 (68.8%) bind only one. Moreover, ligands
also populate unevenly in the protein architecture universe.
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For instance, 1,833 ligands (83.9%) are bound by only one
fold, 185 (8.5%) by two, while 24 ligands (1.1%) are bound by
10+ folds (Additional data file 1). The most common ligand,
ATP (adenosine-5'-triphosphate), is shared by 35 folds. As
illustrated in Figure 1, the number of ligands (V) decays with
increasing number (L) of domains and folds that bind the lig-
and and follows the power law N = aL? (P < 0.0001). It is
interesting to note that most of the widely shared ligands
(such as those shared by 15+ folds; Additional data file 1) are
hubs of metabolic networks [14-16] and are vital to metabo-
lism (especially energy metabolism).
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Power-law behaviors of ligand-protein binding. The number of ligands (N)
decays with an increase in the number (L) of (a) domains and (b) folds
that bind the ligand and follows the equation N = al-b. The figure illustrates
that a few ligands cover tens of protein domains or folds, while most
ligands bind only one domain or fold.
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Biological basis underlying the power-law behaviors of
ligand-protein binding

Although power law is a central concept in network sciences
and has been implicated in most biological networks [14-16],
it is a challenge to elucidate the mechanisms underlying the
rule. The most popular theoretical models resort to preferen-
tial attachment principle, which attributes the different con-
nections of nodes to their different emerging orders, that is to
say, the more connected nodes originated earlier than the less
connected nodes [30]. Although the preferential attachment
principle has been justified for protein networks [31-33], it
remains unclear whether it can be applied to protein-ligand
binding.

As alarge part of the sc-PDB-derived ligands are synthetic, to
explore the applicability of the preferential attachment prin-
ciple to protein-ligand binding, we extracted bio-ligands from
the ligand dataset. To do this, the MetaCyc database (9.5; a
metabolic-pathway database that contains 5,253 metabolites)
[34] was employed to filter the non-metabolic ligands. As a
result, 128 bio-ligands were obtained, which bind to 1,662
domains (counted at a non-redundant level). According to
SCOP 1.69 [28,29], these domains were classified into 207
folds. As one fold may cover multiple domains and bind more
than one ligand, the fold occurrences amounted to 574.
Although these ligands are only metabolism-relevant, they
also follow power-law distribution in the protein universe
(Additional data file 2).

As the quantity of bio-ligands is limited, to guarantee statisti-
cal significance, the 128 bio-ligands were classified into only
two categories: first, 70 early ligands, which are owned by
both prokaryotic (Escherichia coli) and eukaryotic (yeast or
higher) species; and second, 54 late ligands, which are owned
only by eukaryotic (yeast or higher) species (4 ligands failed
in age assignment) (Additional data file 3). It is interesting to
note that early ligands cover 7.1 folds on average, in contrast
to late ligands, which cover only 1.2 folds on average, and that
all (100%) super ligands (shared by 3+ folds) originated early,
while most (64.8%) ordinary ligands (bind to 3 or less folds)
appeared late. All of these findings strongly suggest that the
preferential attachment principle still holds for ligand-pro-
tein binding to a large extent.

Chemical basis underlying the power-law behaviors of
ligand-protein binding

It has been widely accepted that protein folds are among the
most conserved elements of life [35-37]. However, the
present analysis indicates that 353 ligands (16.1%) are shared
by 2 or more folds and 104 ligands (4.8%) can cover 3+ folds,
which suggests that ligand binding is not constrained by the
global architecture of proteins. This finding is consistent with
arecent concept that the local structures around an active site
are more basic than folds to describe a protein's biological
space (binding site for potential ligands) [38]. This phenom-
enon can be elucidated, at least in part, in terms of the struc-
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ture-function relationships of proteins. First, binding sites
and ligands are quite flexible and plastic [39-41], and there-
fore, binding-site selection is, to certain extent, ligand
dependent [42-44]. Second, ligand binding is governed by a
few conserved residues and, thus, is a local rather than a glo-
bal property of proteins [10,11]. However, the structural fac-
tors underlying the strong protein-binding ability of the super
ligands still remain unknown. In addition, it is also of interest
to explore the structural features discriminating ligands from
ordinary molecules. Therefore, the chemical space consisting
of ligands and ordinary molecules was charted to reveal the
relationship between the ligand distribution patterns in the
protein universe and in the chemical space.

The chemical space is composed of 2,176 ligands derived from
sc-PDB (due to the lack of atomic parameters, 10 of the 2,186
ligands failed to go through the descriptor calculations) and
2,184 small molecules randomly selected from ACD-SC
(Available Chemicals Directory-Screening Compounds, Ver-
sion 2005.1, Molecular Design Ltd. Information Systems Inc.,
San Leardo, CA, USA; which collects chemicals that are com-
mercially available and is broadly regarded as a source of
ordinary molecules [45]). Seventy descriptors characterizing
the structural features of these molecules were calculated, of
which 13 were calculated by Sybyl (Tripos Inc., St Louis, Mis-
souri, USA [46]), 49 by Cerius2 (Version 4.10L, Accelrys Inc.,
San Diego, CA, USA [47]) and 8 by an in-house program writ-
ten in Perl (Table 1).

We used factor analysis to visualize the diversity of the mole-
cules. Factor analysis is widely used to study the patterns of
relationship among many dependent variables, with the goal
of discovering something about the nature of the independent
variables (called factors) that affect them [48,49]. In the
present analysis, two factors, which can explain 65.5% of the
variance, were extracted by principal component analysis and
rotated by the Varimax method [50] to chart the two-dimen-
sional chemical space of small molecules. The factor loadings
(Varimax normalized) are listed in Table 1.

From the factor loadings, we see that the first factor, explain-
ing 52.8% of the variance, contains high loadings (>0.9;
shown in bold in Table 1) from constitutional properties (such
as total molecular surface area, total molecular volume,
molecular weight, total bond counts, number of non-hydro-
gen atoms and number of carbons atoms) and topological
properties (such as Kappa topological indices, subgraph top-
ological counts, Kier and Hall Chi connectivity indices and
Zagreb topological Index). In comparison, the second factor,
explaining 12.7% of the variance, contains important contri-
butions (with loadings of higher than 0.8; shown in bold in
Table 1) from electronic properties, such as polar molecular
surface area, H-bond acceptor counts (whose loading is
0.799), H-bond donor counts and partition coefficient (meas-
ured by AlogP98 and LogP).
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Table |

Descriptors of chemical space consisting of sc-PDB-derived ligands and ACD-SC-derived ordinary molecules and corresponding load-
ings (Varimax normalized) for the first two factors*

Descriptors Characterization Factor loadings Software
| 2
AREA Total molecular surface area 0.974 0.103 Sybyl
PSA Polar molecular surface area 0.255 0.892
PV Polar molecular volume 0.501 0.741
VOL Total molecular volume 0.991 0.062
MOLWEIGHT Molecular weight 0.958 0.206
Acceptor H-bond acceptor counts 0.464 0.799
Donor H-bond donor counts 0.376 0.817
BondCount Total bond counts 0.972 0.060
Chiral Counts of chiral center 0.367 0.617
Hydrophobe Hydrophobic fragment counts 0.767 -0.417
RingCount Ring counts 0.686 -0.069
RotBonds Number of rotatable bonds 0.630 0.428
HeavyAtoms Number of non-H atoms 0.978 0.149
Carbons Number of carbons atoms 0.943 -0.228  Perl
Oxygens Number of oxygen atoms 0.425 0.793
Nitrogens Number of nitrogen atoms 0.475 0.324
Sulfurs Number of sulfur atoms 0.141 -0.009
Phosphorus Number of phosphorus atoms 0.162 0617
Halides Number of halide atoms 0.076 -0.170
DoubleBonds Number of double bonds 0.527 0.378
TripleBonds Number of triple bonds -0.009 -0.109
RadOfGyration Radius of gyration 0.888 0.004  Cerius 2
ShadowXY Surface area projections 0.967 0.076
ShadowXZ 0.951 0.053
ShadowYZ 0.877 0.093
ShadowXYfrac -0.610 -0.027
ShadowXZfrac -0.421 -0.002
ShadowYZfrac -0.289 0.039
Shadownu 0.268 -0.117
ShadowXlength 0.849 -0.008
ShadowYlength 0.798 0.075
ShadowZlength 0.756 0.059
Density Density -0.089 0.354
PMImag Principal moment of inertia 0.819 0.134
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Table | (Continued)

Descriptors of chemical space consisting of sc-PDB-derived ligands and ACD-SC-derived ordinary molecules and corresponding load-
ings (Varimax normalized) for the first two factors*

AlogP Log of the partition coefficient using Ghose and Crippen's method. 0.425 -0.727

AlogP98 Log of the partition coefficient, atom-type value, using latest parameters. 0.365 -0.852

Fh2o Desolvation free energy for water -0.479 -0.762

Foct Desolvation free energy for octanol -0.578 -0.617

LogP Log of the partition coefficient. -0.022 -0.892

MR Molar refractivity using Hopfinger's method. 0.835 -0.110

MolRef Molar refractivity using linear additive method based on AlogP atom types 0.986 -0.033

JX Balaban indices -0.567 0.027

Kappal Kappa topological indices 0.969 0.189

Kappa2 0.926 0.026

Kappa3 0.691 0.033

Kappal AM 0.958 0.220

Kappa2AM 0.901 0.050

Kappa3AM 0.630 0.046

PHI Molecular flexibility index 0.800 0.078

SCo Subgraph topological counts 0.980 0.147

SClI 0.973 0.125

SC2 0.943 0.186

SC3pP 0.904 0.141

SC3C 0.749 0.389

SC3CH 0.016 -0.086

CHIO Kier and Hall Chi connectivity indices 0.974 0.190 -
CHII 0.983  0.1I5 )
CHI2 0.958 0.210 §
CHI3P 0.939 0.136 %
CHI3C 0.655 0.484 g_
CHI3CH 0.015 -0.087

CHIVO 0.990 0.076

CHIVI 0.971 0.120

CHIV2 0.913 0.137

CHIV3P 0.838 0.096

CHIV3C 0.476 0.148

CHIV3CH 0.016 -0.088

Wiener Wiener topological index 0.854 0.186

logZ Logarithm of Hosoya topological index -0.220 -0.131

Zagreb Zagreb topological index 0.958 0.162

*The first factor explains 52.8% of the variance and the second explains 12.7%. Factors with high loadings (>0.9 for first factors and >0.8 for second
factors) are shown in bold.
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In the chemical space formed by the two factors (Figure 2),
one can find some differences between the distribution pat-
terns of ligands and ordinary molecules. That is, ligands (in
red) occupy the relatively upper part of the space, while ordi-
nary molecules (in blue) hold the relatively lower part, which
implies that it is the second factor that discriminates ligands
from ordinary molecules. As a consequence, it can be deduced
that polar molecular surface area, H-bond donor counts, H-
bond acceptor counts and partition coefficient are likely
responsible for the differences between ligands and ordinary
molecules, which agrees well with the current understanding
of the chemical basis of ligand-protein binding that electro-
static interactions (including H-bond) and hydrophobic
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interactions make major contributions to the binding. More
interestingly, as shown in Figure 3, super ligands (in blue and
red) do not distribute randomly in the chemical space, but
concentrate in the relatively upper part of the space, which
suggests that polar molecular surface area, H-bond donor
counts, H-bond acceptor counts and partition coefficient are
also key factors discriminating super ligands from others.

To shed more light on the above findings, the average values
of descriptors characterizing polar molecular surface area, H-
bond donors, H-bond acceptors and partition coefficient were
calculated for ordinary molecules, ligands and super ligands.
From Table 2, it can be seen that there indeed exist correla-

Factor 2

Factor 1

Figure 2

Chemical space consisting of ligands (derived from sc-PDB) and ordinary molecules (randomly selected from ACD-SC), defined by the first two factors
derived from 70 descriptors. The figure illustrates that ligands (in red) occupy the relatively upper part of the space, while ordinary molecules (in blue)
occupy the relatively lower part, which means that it is the second factor that discriminates ligands from ordinary molecules. From the loadings of the
second factor, it can be deduced that polar molecular surface area, H-bond donor counts, H-bond acceptor counts and partition coefficient are likely
responsible for the differences between ligands and ordinary molecules, which is supported by the different average values of the four kinds of parameters

for ligands and ordinary molecules (Table 2).

Genome Biology 2007, 8:R176
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Factor 2

Factor 1

Figure 3

Chemical space consisting of sc-PDB-derived ligands, defined by the first two factors derived from 70 descriptors. The figure illustrates that super ligands
(shared by 3+ folds; in blue), especially those that are shared by 10+ folds (in red), concentrate in the relatively upper part of the space (the area of the
circle is directly proportional to the number of folds that bind the ligand), which suggests that polar molecular surface area, H-bond donor counts, H-bond
acceptor counts and partition coefficient are responsible for the strong protein-binding potential of the super ligands, which is supported by the different
average values of the four kinds of parameters for ligands with different protein-binding potentials (Table 2).

tions between protein-binding ability and the four kinds of
parameters. The protein-binding potential of ligands is posi-
tively correlated with polar molecular surface area, H-bond
donor and acceptor counts, and negatively correlated with
partition coefficient (measured by AlogP98 and LogP).

Recently, through examining the conformational diversity of
some very common ligands (that is, ATP, NAD and FAD)
bound to proteins, Stockwell and Thornton [41] suggested
that molecular flexibility is important for ligands to bind
diverse proteins. This opinion is partially supported by the
present analysis. Although the contribution from the number
of rotatable bonds (RotBonds) to the second factor is not very
strong (the loading is 0.428; Table 1), there is a correlation
between the protein-binding ability of ligands and index Rot-

Bonds. As listed in Table 2, the average RotBonds for ligands
is significantly higher than that for ordinary molecules
(independent samples t-test shows that P < 0.0001), and it is
clear that the more folds the ligands cover, the higher the
average RotBonds are for the ligands.

Discussion

Since ligand-protein binding is one of the most basic bio-
chemical processes, the present findings have broad biologi-
cal and medical implications.

Genome Biology 2007, 8:R176

-
o
®
e
I
o
o
-
I
4
0
8
8
[o]
>




R176.8 Genome Biology 2007,  Volume 8, Issue 8, Article R176 Jietal http://genomebiology.com/2007/8/8/R176

Table 2

Average values of descriptors characterizing polar molecular surface area, H-bond donors, H-bond acceptors, partition coefficient and
rotatable bonds for ordinary molecules, ligands and ligands with different protein-binding potentials

Descriptor* Small moleculest Average values Standard error Number of molecules
PSA Molecules 111.81 1.79 2,184
Ligands 230.59 2.79 2,176
Ligands (< 3) 22571 2.80 2,072
Ligands (4-9) 304.28 15.67 80
Ligands (> 10) 406.83 33.10 24
Donor Molecules 1.51 0.04 2,184
Ligands 3.97 0.07 2,176
Ligands (< 3) 3.87 0.07 2,072
Ligands (4-9) 5.24 0.43 80
Ligands (= 10) 8.2l 0.90 24
Acceptor Molecules 3.35 0.05 2,184
Ligands 5.87 0.09 2,176
Ligands (< 3) 5.74 0.09 2,072
Ligands (4-9) 7.69 0.53 80
Ligands (= 10) 11.00 1.18 24
AlogP98 Molecules 2.87 0.05 2,184
Ligands 0.8l 0.06 2,176
Ligands (< 3) 0.92 0.06 2,072
Ligands (4-9) -1.33 0.25 80
Ligands (= 10) -1.80 0.38 24
LogP Molecules 0.77 0.08 2,184
Ligands -2.27 0.10 2,176
Ligands (< 3) -2.10 0.10 2,072
Ligands (4-9) -5.06 0.50 80
Ligands (> 10) -8.11 0.96 24
RotBond Molecules 4.88 0.09 2,184
Ligands 749 0.11 2,176
Ligands (< 3) 743 0.11 2072
Ligands (4-9) 8.00 0.50 80
Ligands (= 10) 11.33 I.19 24

* PSA, polar molecular surface area; Donor, H-bond donor counts; Acceptor, H-bond acceptor counts; AlogP98, log of the partition coefficient,
atom-type value, using latest parameters; LogP, log of the partition coefficient; RotBond, number of rotatable bonds. TMolecules, ACD-SC-derived
ordinary molecules; Ligands, sc-PDB-derived ligands; Ligands (< 3), ligands covering < 3 folds; Ligands (4-9), ligands covering 4-9 folds; Ligands (> 10),
ligands covering > 10 folds.

Implications for tracing the chronology of ligand
binding to proteins

The most challenging issue in life sciences may be elucidating
how organisms originated from inorganic scratches (gases,
water and clays), during which one of the most important
missions is to establish the chronology of the important bio-
logical events. Thanks to the continuing efforts of chemists
and biologists, the chronologies of the evolution of amino
acids and proteins have been established in principle [37,51-

55]. However, as many proteins bind ligands that are essen-
tial for their functions and the ligands are likely to have orig-
inated independently of proteins [56-59], the binding of
ligands with primordial proteins would also be a critical step
in the origin of life. Thus, it is intriguing to explore the chro-
nology of ligand-protein binding and answer the following
questions: which ligand was first recognized by a protein and
what kind of architecture did the host protein have. Neverthe-
less, since there is no fossil of the last universal common

Genome Biology 2007, 8:R176
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ancestor, let alone the more ancestral organisms, it is a great
challenge to trace the protein-binding history of early ligands.

As stated above, through determining the protein-binding
ages of ligands, a rough temporal order (early or late) for
ligand-protein binding can be inferred (as shown in Addi-
tional data file 3). However, considering the fact that fold dis-
tribution pattern in the sequence universe helps greatly to
reveal the chronology of the evolution of protein architecture
[37,53,54], we speculate that the power-law distribution of
ligands in the protein universe may implicate a more explicit
temporal order for ligand-protein binding. In fact, the prefer-
ential attachment principle underlying the power-law behav-
ior of ligand-protein mapping suggests that the more widely a
ligand is shared, the earlier it bound to proteins. As protein
architecture is more conserved than sequence [35-37], the
fold-based inference is believed to be more robust than the
domain-based one. Therefore, the nine bio-ligands that are
most popular in the fold universe (covering 15+ folds; Table
3) are considered to have bound their host proteins relatively
earlier than others and to follow the order (from early to late):
ATP, ADP (adenosine-5'-diphosphate), GDP (guanosine-5'-
diphosphate), NAD (nicotinamide-adenine-dinucleotide),
FAD (flavin-adenine dinucleotide), NDP (dihydro-nicotina-
mide-adenine-dinucleotide phosphate), NAP (nicotinamide-
adenine-dinucleotide phosphate), FMN (flavin mononucle-
otide) and AMP (adenosine monophosphate).

A close inspection of ATP's host proteins reveals that
although ATP covers 35 folds and 97 domains, most domains
belong to a small group of folds, indicating that power law is
still effective (Additional data file 4). According to the
preferential attachment principle of fold usage [37], it is rea-
sonable to infer that the most prevalent fold, P-loop hydrolase
(c.37), was employed by ATP's first host (Table 3). Interest-
ingly, c.37 is the most ancient fold predicted by a
phylogenomic analysis of protein architectures [37,53,54]-
Similar analyses allowed us to deduce the most ancestral host
proteins of the other eight early ligands (Additional data file

Table 3

Genome Biology 2007,  Volume 8, Issue 8, Article R176

4, Table 3). It is interesting to note that the predicted earliest
hosts for the nine bio-ligands appeared in roughly the same
order as the protein structures deduced by a phylogenomic
analysis (that is, c.37 is the earliest, followed by c.2, c.23, c.3
and c.26, all of which belong to the o/p class) [37,53,54].
Although no consensus has been reached on the exact tempo-
ral order of protein architectures, o/ is generally considered
to be the most ancient protein class [37,53,54,60-62]. In addi-
tion, based on an extensive analysis of sequences and struc-
tures of numerous proteins, Trifonov and co-workers [63-65]
also inferred that some P-loop ATP-binding domains repre-
sent the most ancient proteins. Recently, through a phyloge-
nomic analysis on protein architectures of modern metabolic
networks, Caetano-Anollés and co-workers [66] indicated
that enzymes with the P-loop hydrolase fold engaged in
nucleotide (especially purine) metabolism may be the most
primitive members of metabolic systems. Through examining
the structures and functions of these members, we found that
most (approximately 80%) of them need ATP to work nor-
mally. Therefore, the present speculations on the chronology
of ligand-protein binding are self-consistent and are in line
with the up-to-date knowledge on protein evolutionary
history.

To get a deeper insight into the evolutionary features of lig-
ands, the building block usage of 128 bio-ligands was ana-
lyzed. As shown in Additional data file 5, nucleic acid bases
are the most frequently used building blocks, followed by
carbohydrates and amino acids, which is in accordance with
Nobeli et al.'s [67] finding that nucleic acid bases are the most
common fragments of metabolites. More interestingly, many
early bio-ligands (45.0%) contain nucleic acid bases; in par-
ticular, the nine earliest bio-ligands all contain one or more
bases. In contrast, carbohydrates or amino acids are con-
tained by only a small proportion of early bio-ligands (25.0%
and 7.5%, respectively). This provides further evidence to
support the notion that early ligands are vestiges of the RNA
world [56].

The most prevalent bio-ligands in the fold universe (shared by 15+ folds) and the most common folds used by host proteins of each ligand

Ligands Number of folds Most common folds

Adenosine-5'-triphosphate (ATP) 35 P-loop containing nucleoside triphosphate hydrolases (c.37)
Adenosine-5'-diphosphate (ADP) 31 P-loop containing nucleoside triphosphate hydrolases (c.37)
Guanosine-5'-diphosphate (GDP) 29 P-loop containing nucleoside triphosphate hydrolases (c.37)
Nicotinamide-adenine-dinucleotide (NAD) 27 NAD(P)-binding Rossmann-fold domains (c.2)
Flavin-adenine dinucleotide (FAD) 21 FAD/NAD(P)-binding domain (c.3)
Dihydro-nicotinamide-adenine-dinucleotide phosphate (NDP) 18 NAD(P)-binding Rossmann-fold domains (c.2)
Nicotinamide-adenine-dinucleotide phosphate (NAP) 16 NAD(P)-binding Rossmann-fold domains (c.2)

Flavin mononucleotide (FMN) 16 Flavodoxin-like (c.23)

Adenosine monophosphate (AMP) 15 Adenine nucleotide alpha hydrolase-like (c.26)
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As mentioned above, the presently revealed chronology of
early ligands' host proteins is roughly in line with the previ-
ously deduced evolutionary history of protein architectures
[37,53,54]. Thus, it is interesting to ask: is the accordance
between both events fortuitous? Our answer is maybe not.
Considering the prevalent ligand-induced protein folding
[68-72], we conjecture that early ligands might have facili-
tated protein formation as catalysts (to assemble amino acids
or peptide segments), as molecular chaperons (to help
protein folding) and/or as selectors (because of the important
functions of the early ligands), which naturally resulted in the
accordance between both events. This conjecture implicates
that the origin of primitive proteins benefited from ligand
binding, which is reasonable in terms of the thermodynamics
of ligand binding and protein folding.

It has been found that some early ligands, such as ADP and
GDP, can bind proteins related to the very old P-loop hydro-
lase fold (for example, preprotein translocase SecA (1M74),
ADP-ribosylation factor-like protein 3 (1FZQ) and GTP-bind-
ing protein (1A4R)) with an affinity (free energy) of 10-15
kcal/mol [73], which is just in the range of the free energy loss
(10-20 kcal/mol) during protein folding [74,75]. Thus, the
free energy release during ligand binding may meet the free
energy demand during protein folding. It is tempting to
examine the conjecture of ligand-induced formation and/or
folding of primordial proteins through experimentation. To
do that, in vitro selection may be an appropriate methodology
[76]. It is interesting to note that in vitro selection of proteins
(consisting of 80 residues) targeted to bind ATP has been per-
formed [77]. The randomly generated proteins indeed belong
to the a/p class, but are not related to P-loop hydrolases fold
[78]. However, considering the fact that the shortest protein
sequence for the P-loop hydrolase fold contains 94 residues
(according to the Protein Databank), we suggest that to
explore whether the formation of the most ancient proteins
was induced by ATP, one should adopt longer protein
sequences in the in vitro selection experiments and use small
amino acids as building blocks, because in the primordial
world only these amino acids were available [51,55].

Implications for understanding the new paradigms in
drug discovery

Nowadays, the pharmaceutical industry is facing an unprece-
dented challenge. Global research funding has doubled since
1991, whereas the number of approved new drugs has fallen
by 50% [79,80]. To meet the more-investment-less-outcome
challenge, some novel drug discovery strategies have
appeared in recent years, which include finding new func-
tions from old drugs, developing promiscuous drugs rather
than selective agents and depending more on natural prod-
ucts than on combinatorial libraries of synthetic compounds
to derive drug leads. Since the essence of drug action is the
binding between drugs and target biomolecules (most of
which are proteins), the ligand-protein binding features
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revealed in the present study have important implications for
understanding these new drug discovery strategies.

As indicated above, approximately 30% of ligands are bound
by two or more domains (this number gets ~15%, if counted
on fold level), which suggests that if a ligand can bind to a pro-
tein, it has great potential to bind to others. Considering the
fact that the US Food and Drug Administration (FDA) has
approved approximately 2,000 drugs (chemical entities) and
there exist only 2,000-3,000 druggable genes and 600-1,500
drug targets [81,82], it is truly possible to find new functions
from these old 'safe' drugs, which supports an increasingly
shared notion in drug development that the most fruitful
basis for the discovery of a new drug is to start with an old
drug [83-85].

Since most human diseases, such as cancer, diabetes, heart
disease, arthritis and neurodegenerative diseases, involve
multiple pathogenetic factors, the more-investment-less-out-
come predicament is attributed in part to the limitations of
the current one-drug-one-target paradigm in drug discovery
[79,86]. Therefore, more and more efforts are devoted to
finding new therapeutics aimed at multiple targets [86],
which is becoming a new paradigm in drug discovery. To hit
the multiple targets implicated in complex diseases, two
strategies are conceivable. One is called the multicomponent
therapeutic strategy, which incorporates two or more active
ingredients in one drug [86-89], as was applied in some tra-
ditional medicines (in China and many other countries) and
in recently developed drug cocktails. The other is to hit the
multiple targets with a single component, which is termed the
one-ligand-multiple-targets strategy or promiscuous drug
strategy [89-99]. Compared with the former strategy, the lat-
ter might take advantage of lower risks of drug-drug interac-
tions and more predictable pharmacokinetic behaviors
[91,92] and thus has been paid more and more attention. The
feasibility of the one-ligand-multiple-targets strategy is sup-
ported by the present findings, because a certain proportion
of ligands do indeed bind to two or more domains (even
folds). In addition, the presently revealed structural features
of super ligands are of significance for selecting and/or
designing multipotent agents. Of course, the new strategy
should be treated with wariness, because of the potential side
effects of the promiscuous ligands.

Another feature of the recent drug discovery paradigm shift is
that more attention has been given to natural-product repos-
itories rather than combinatorial libraries of synthetic com-
pounds for finding novel drug leads [100,101]. Due to their
biosynthetic origin, natural products are natively bound to
proteins (synthases). In light of the present findings, one can
conclude that natural products have more potential than syn-
thetic compounds to bind proteins, including those of human,
which helps to understand the natural product-based drug
discovery strategy. In addition, it can be inferred that it is
rather easy to build a protein-ligand network on the basis of
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naturally occurring small-molecule ligands, which definitely
benefits the birth of networked life and facilitates the forma-
tion of links within different species.

Materials and methods

Data selection/collection

Until June 2006, 2,721 ligands had been recorded in sc-PDB.
As our interest was focused on non-peptide ligands, 433 pep-
tides were eliminated. After removing 102 repeated ligands
(which have the same structures to others but were given dif-
ferent release names), 2,186 small-molecule ligands
remained (Additional data file 1), which bind to 5,740 non-
redundant domains (to remove the redundancy of domains,
only one domain was chosen from each species). Domain is
defined as an independently folded unit within a protein,
often joined by a flexible segment of the polypeptide chain
[102]. For a small proportion of ligands that are shared by two
domains, both domains were counted. According to SCOP
1.69 [28,29], these domains were classified into 591 folds. As
one fold may cover multiple domains and hold more than one
ligand, the fold occurrences amounted to 3,224.

Since sc-PDB is a subset of the PDB, one may be concerned
about the robustness of the conclusions derived when using
it. However, considering the facts that the present inferences
were made mainly on the level of protein fold and that folds
are much more conserved than domains, and thus fold
increase is much slower than that of domains in the PDB
[103], it is believed that the present conclusions are solid. In
fact, even if the latest data of the sc-PDB (containing 396 new
ligands and 827 new domains, which were kindly provided by
Dr Rognan and have not been uploaded on the website) are
considered, all of the present conclusions still hold.

Descriptor calculation

Seventy descriptors characterizing the structural features of
2,186 ligands selected from the sc-PDB and 2,184 small mol-
ecules randomly selected from ACD-SC were calculated by
Sybyl (13 descriptors) [46], Cerius 2 (49 descriptors) [47] and
an in-house program written in Perl (8 descriptors). Then, the
calculated data were linked together with Perl for further
analysis. Because of the lack of atomic parameters for ten lig-
ands (that is, 2,3,4,5,6-pentafluorobenzyl alcohol, 2-amino-
4-0x0-4,7-dihydro-3h-pyrrolo [2,3-d] pyrimidine-5-carboni-
trile, 3,5,3',5'-tetraiodo-1-thyronine, 6,7-dinitroquinoxaline-
2,3-dione, 9-hydroxy aristolochic acid, 3,5,7-trihydroxy-2-(4-
hydroxyphenyl)-4h-chromen-4-one, 5-hydroxy-2-(4-hydrox-
yphenyl)-1-benzofuran-7-carbonitrile, 3,3',5,5'-tetraiodothy-
roacetic acid, 3,5,7,3',4'-pentahydroxyflavone and radicicol),
some descriptors could not be calculated for these molecules.
Hence, only 2,176 ligands went through the calculation. How-
ever, as each of the ten ligands covers only one fold, their
absence has no impact on the conclusion of the present study.
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Factor analysis

SPSS 13.0 (SPSS Inc., Chicago, IL, USA) was employed to do
the factor analysis. The factors were extracted by means of
principal component analysis [48,49] and the parameter set-
tings were as follows: a correlation matrix was used; and two
factors were extracted to visualize the two-dimensional
chemical space of ligands and ordinary molecules. In order to
simplify the interpretation of the extracted factors, factor
rotation was performed, during which the most popular
orthogonal rotation method, Varimax, developed by Kaiser
[501, was employed. For other variables, default parameters
were adopted.

Age assignment for bio-ligands

An early bio-ligand is defined as that owned by both prokary-
otic (E. coli) and eukaryotic (yeast or higher) species, while a
late bio-ligand is defined as that owned only by eukaryotic
(yeast or higher) species. As there is no direct information on
ligand ownership, we used the information of their host pro-
teins to deduce their ages. That is, a ligand is early, provided
that at least one of its host proteins is owned by both E. coli
and yeast (or higher species); and a ligand is late if none of its
host proteins is owned by E. coli but at least one is owned by
yeast or higher species. During the age-assigning process, not
only the host proteins recorded in sc-PDB were checked, but
also the corresponding homologous proteins retrieved from
Swiss-Prot [104] were considered.
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