@)

BiolVled Central

Software

ParaKMeans: Implementation of a parallelized K-means algorithm
suitable for general laboratory use

Piotr Kraj', Ashok Sharma', Nikhil Garge, Robert Podolsky and

Richard A McIndoe*

BIVIC Bioinformatics

Address: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA USA

Email: Piotr Kraj - pkraj@mail.mcg.edu; Ashok Sharma - assharma@students.mcg.edu; Nikhil Garge - ngarge@mail.mcg.edu;
Robert Podolsky - rpodolsky@mail.mcg.edu; Richard A McIndoe* - rmcindoe@mail.mcg.edu

* Corresponding author tEqual contributors

Published: 16 April 2008
BMC Bioinformatics 2008, 9:200 doi:10.1186/1471-2105-9-200

Received: 7 September 2007
Accepted: 16 April 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/200

© 2008 Kraj et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: During the last decade, the use of microarrays to assess the transcriptome of many
biological systems has generated an enormous amount of data. A common technique used to
organize and analyze microarray data is to perform cluster analysis. While many clustering
algorithms have been developed, they all suffer a significant decrease in computational performance
as the size of the dataset being analyzed becomes very large. For example, clustering 10000 genes
from an experiment containing 200 microarrays can be quite time consuming and challenging on a
desktop PC. One solution to the scalability problem of clustering algorithms is to distribute or
parallelize the algorithm across multiple computers.

Results: The software described in this paper is a high performance multithreaded application that
implements a parallelized version of the K-means Clustering algorithm. Most parallel processing
applications are not accessible to the general public and require specialized software libraries (e.g.
MPI) and specialized hardware configurations. The parallel nature of the application comes from
the use of a web service to perform the distance calculations and cluster assignments. Here we
show our parallel implementation provides significant performance gains over a wide range of
datasets using as little as seven nodes. The software was written in C# and was designed in a
modular fashion to provide both deployment flexibility as well as flexibility in the user interface.

Conclusion: ParaKMeans was designed to provide the general scientific community with an easy
and manageable client-server application that can be installed on a wide variety of Windows
operating systems.

Background

Data clustering is a process of partitioning a dataset into
separate groups ("clusters") containing "similar" data
items based on some distance function and does not
require a priori knowledge of the groups to which data
members belong. Clustering works by maximizing intra-

cluster similarities and minimizing inter-cluster similari-
ties. Clustering algorithms are used in various fields such
as computer graphics, statistics, data mining and biomed-
ical research. The application of high-throughput technol-
ogies, e.g. microarrays, in biomedical research generates
an enormous amount of high dimensional data that

Page 1 of 13

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/200
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18416829
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:200

requires further processing, such as clustering, to reveal
biological information.

Clustering algorithms can generally be classified as either
hierarchical or partitional. The k-means algorithm, intro-
duced by J.B. MacQueen in 1967, is one of the more pop-
ular partitioning methods. This algorithm groups data
into k groups of similar means. The number of groups to
be clustered must be defined prior to analysis. The k-
means algorithm will form k distinct nonempty clusters of
m-dimensional vectors such that each vector is assigned to
the cluster with the smallest distance to the cluster's cen-
troid. Several distance metrics can be used, including
Euclidean or Manhattan/City-Block distances. A serial k-
means algorithm has complexity of N*k*R where R is the
number of iterations and N is the number of arrays.

Large datasets, such as microarray data, pose new chal-
lenges for clustering algorithms. Algorithms with linear
complexity, like k-means clustering, need to be scaled-up
and implemented in a more efficient way to cluster very
large data sets. Making the algorithm parallel instead of
serial is one potential solution when a sequential cluster-
ing algorithm cannot be further optimized. With a parallel
algorithm, the computational workload is divided among
multiple CPUs and the main memory of all participating
computers is utilized to avoid caching operations to the
disk, which significantly decrease algorithm execution
time. Two general approaches have been attempted at
making the k- means algorithm parallel: hardware-based
solutions (e.g. [1]) and software-based solutions. The use
of a reconfigurable array of processors to achieve parallel
processing by Tsai et al. provides a good example of a
hardware-based solution [1]. A common attempt at a soft-
ware-based solution involves broadcasting the data to the
compute nodes for each iteration [2]. Though this algo-
rithm was faster than the serial version, a major disadvan-
tage is the delay associated with data being sent to the
participating nodes during each round of vector assign-
ments. In addition, the number of compute nodes was
limited to the number of clusters to be assigned. Another
software-based solution for multiprocessor computers is
to use a Message-Passing Model, which has been shown to
scale up well with the dataset [3-5]. This implementation
requires operating system-specific MPI libraries. An exam-
ple of an MPI implementation can be found at [6]. In
addition to the classical k-means algorithm, other parallel
versions of the variations in the k-means algorithm have
also been implemented using message passing models.
These variations include a parallel version of the bisecting
k-means algorithm [7] as well as the k-means vector quan-
tization (VQ) method [8].

Our focus here is to develop a user-friendly software-
based solution that could be utilized by biological

http://www.biomedcentral.com/1471-2105/9/200

researchers. Our solution utilizes a recent modification
developed by Zhang et al. that focuses on optimizing the
Performance Function [9]. The Performance Function
measures the quality of the clusters and, for the k-means
clustering algorithm, is the sum of the mean-square error
of each data point to the cluster centroid [9]. This Per-
formance Function depends only on the global Sufficient
Statistic (SS). In this parallel version of the k-means algo-
rithm, the global SS are calculated by summing over the
SS calculated for each subset of data sent to each node.
From the global SS, the new centroids are calculated for
each cluster [9]. This transformation makes it possible to
implement an efficient parallel processing scheme for the
k-means algorithm.

Implementation

Algorithm

The classical k-means clustering algorithm begins by
determining k initial centroids based on the data to be
clustered. These initial centroids can be determined using
a number of schemes. However, the most common is a
simple random selection of k& data vectors from the data
set. Each remaining data vector (gene expression vector in
our case) is assigned to the closest centroid based on a dis-
tance metric, commonly Euclidian distance. Once all the
data vectors have been assigned to a centroid, a new cen-
troid is calculated for each cluster based on the assigned
data vectors. The entire dataset is then reassigned to these
new centroids. The algorithm repeats this process of vec-
tor assignment-centroid recalculation until the cluster
centroids do not change between iterations.

In contrast, the parallel k-means clustering algorithm [9]
implemented in ParaKMeans follows these steps:

(1) Determine k initial centroids based on the entire data-
set. Our program provides three different methods to ini-
tialize the centroids (described in detail below).

(2) Divide the whole dataset into subsets (S) equal to the
number of compute nodes (M) participating in the algo-
rithm.

(3) Send each data subset (S), the number of clusters (k),
and the initial centroid vectors to each compute node for
processing.

(4) On each compute node, individual data elements in a
subset (S) are assigned to one of k clusters based on the
shortest distance (using either Euclidean distance or Pear-
son Correlation) of each element to each cluster's cen-
troid. Note that each data subset (S) may contain
elements from all, some or only one cluster and that the
calculation of the cluster centroids is based on the entire
dataset, not the subsets sent to each node.

Page 2 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200

(5) Each compute node then calculates the components
of the sufficient statistic (SS) for each cluster based on the
data subset (S) assigned to each cluster on that node. The
components of the SS for each cluster (k) on each com-
pute node are the first moment (FM), the second moment
(SecM) and the number of elements (n,) in each cluster:

FM, = 22 2 (1)
SecM, = ZZ Vi, (2)

j=1 i=0

where ¢ is the index of the cluster, i is the index of gene ele-
ment, j is the index of microarray and m is the total
number of arrays in the experiment.

(6) The components of the Sufficient Statistics (FM, SecM,
and n,) for each cluster, ¢, for each data subset on each
compute node are sent back to the master computer to cal-
culate the new global cluster centroids (§CC,) for each
cluster.

gcc, =P0 (3)

where p is the index of child compute node and ¢ is the
cluster index, and the first and second moments are calcu-
lated on each child compute node separately and summa-
rized on the master node.

(7) The Sufficient Statistics are then used to calculate the
Performance Function used to measure the quality of the
clusters [9]. The global Performance Function is simply
the sum of all Performance Functions calculated for each
cluster (Perf,).

2
Perf, = SecM, — (PMc) (4)
n¢
(8) The new global cluster centroids are sent back to each
compute node and replace the previous iterations centro-
ids. The algorithm then loops between steps 4 and 7
above. When the Performance Function reaches a mini-
mum or doesn't change between iterations, the algorithm
execution stops and the clustered data are retrieved and
collated from the compute nodes.

This parallel implementation of the k-means algorithm
does not require expensive hardware and the number of

http://www.biomedcentral.com/1471-2105/9/200

compute nodes do not depend on the number of clusters.
In fact, any number of inexpensive desktop computers
connected by a network can be used. The data partitioning
scheme is not restricted and is entirely dependent on the
number of compute nodes participating in the algorithm.
Additionally, the data subsets (S) are sent only once from
the master computer to the compute nodes. Only the data
necessary to calculate the sufficient statistics is sent
between nodes, dramatically reducing communication
latency.

Metric for Cluster Assignment

ParaKMeans implements two different metrics for assign-
ing a gene (vector) to a cluster. The first is the common
Euclidian Distance and the second is Pearson Correlation.
For the Pearson Correlation, we use 1-r for the distance
calculation. While we can use either metric, all the data
generated for this manuscript uses Euclidian Distance.

Determination of the Initial Centroids

The execution time and cluster quality of k-means cluster-
ing algorithms are very sensitive to the values of the initial
centroids. We provide three different methods to deter-
mine the initial cluster centroids:

(1) Random From Data (RFD): k randomly selected genes
(vectors) are used as the starting centroids. This method is
a common method used by most k-means algorithm
implementations.

(2) Random Initial Assignments (RIA): All genes are ran-
domly assigned to one of the k clusters, and the mean of
these randomly assigned clusters are used as the starting
centroids.

(3) Bisecting K Means (BKM): The initial centroids are cal-
culated using a variation of the Bisecting K Means algo-
rithm [10]. This method works by first randomly selecting
one gene (gene0) from the data. The gene (genel) that is
the greatest distance (based on either Euclidean Distance
or Pearson Correlation) from that initial gene (gene0) is
selected, becoming the first centroid. The gene (gene2)
that is the greatest distance from genel becomes the sec-
ond centroid, and the third centroid is the gene that is the
farthest distance from both genel AND gene2. This proc-
ess continues until all centroids have been initialized.
While this initialization scheme can be time consuming,
it provides more stable and consistent clusters.

Implementation

ParaKMeans is a high performance multithreaded applica-
tion. We designed ParaKMeans with an easy and manage-
able client-server application model that can be easily
deployed in most laboratories. The system can be

Page 3 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200

deployed on a single computer or across many computers
(nodes).

All the software was written using the .NET Framework
v1.1 and C# as the programming language. The applica-
tion was designed in a modular fashion to provide both
deployment flexibility and flexibility in the user interface,
and is made of three software components (Figure 1):

(1) ParallelCluster (The web service). A web service is
used to perform the distance calculations and cluster
assignments, allowing for parallel computation. Web
services (servers are not needed to run web services) are a
distributed computing technology that makes computing
resources (hardware and software) available over the
Internet. The technology behind web services is based on
common standards of communication, data representa-
tion and service description allowing for interoperability
between different computers. The web service is responsi-

ﬂocal Machine

Graphical User
Interface (GUI)

Win GUI

Web GUI

Application
Programming
%rface (API)

Laboratory
Computers

/Il\\

PKM- WS PKM WS PKM- WS PKM- ws PKM-WS
ParallelCluster
Webservice
(PKM-WS)
PKM-WS = hﬂpm 92.168.0.X/ParallelCluster’kMeansCalculate.asmx
(SetClusterData, ProcessClusterData, GetClusterindices)
Figure |

ParaKMeans software components and deployment
strategy. ParakKMeans has three software components; |)
the graphical user interface (GUI); 2) the application pro-
gramming interface (API) and 3) the ParallelCluster web serv-
ice. We provide the GUI in two forms, a windows GUIl and a
web GUI with the APl compiled into each. The GUI is
installed on the local machine while the ParallelCluster web
services is installed on one or more laboratory computers.
Installation of both the GUI and web service is done by dou-
ble clicking on the .msi installation file and following the
installation wizard's instructions.

http://www.biomedcentral.com/1471-2105/9/200

ble for assigning the vectors (e.g., genes) to the centroids
and calculating the Sufficient Statistics for that node.

(2) KMeansMasterComputer (The Main API). The main
Application Programming Interface (API) is the software
component (DLL) that connects to and uses the Parallel-
Cluster web service(s). This library is compiled into and
used by the graphical user interfaces. The API provides the
methods to load the data, initialize the centroids, parti-
tion the data and orchestrate the asynchronous multi-
threaded connections to the ParallelCluster web services
to perform the parallel k-means algorithm.

(3) ParaKMeans Windows and Web Graphical User
Interface (GUI). We provide two different graphical user
interfaces, a standalone windows GUI and a web based
GUI (Figures 1 and 2). The stand-alone GUI can be
installed on any Windows machine and provides easy file
management, compute node management, program
options and a results window for data viewing and saving.
The web GUI is an Ajax (Asynchronous JavaScript and
XML) enabled website. Ajax is a technique for creating
interactive web applications that are more responsive by
exchanging small amounts of data with the server behind
the scenes. Using Ajax results in only the relevant portions
of the web page needing to be posted and reloaded each
time the user makes a change. This technique increases the
web page's interactivity, speed, and usability. We imple-
mented Ajax using an open source .NET Ajax web control
(MagicAjax URL found in Availability and requirements
section). The web GUI provides the same functionality as
the stand alone program.

ParaKMeans is easily installed using the built-in Windows
Installer (MSI files). Essentially, the ParallelCluster web
service is installed on each machine that will be a compute
node, followed by the GUI being installed on the compu-
ter to be directly used by the user. The Windows GUI, the
web GUI or both can be installed on each user interface
computer. The intended installation is to have one master
computer and multiple compute nodes. However, techni-
cally, both the GUI and web service could be installed on
a single machine. You can simulate multiple compute
nodes by adding the IP address of the local machine mul-
tiple times. The program will spawn a separate thread for
each "node". However, a single machine install will lose
any advantage gained by distributing the algorithm (and
data) across multiple machines and will impact perform-
ance.

Datasets Used for Analysis

Simulated Datasets

We simulated clusters using separate multivariate normal
distributions as the basis for each cluster. The center for
each cluster was drawn from a uniform distribution with

Page 4 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200 http://www.biomedcentral.com/1471-2105/9/200

A

rParaKMeans - Parrallel K-means Algorithm [_ (O] x|
File Properties Exit About

Data File used for Parrallel K-Means Analysis

IEI: “Program Files\CBGM Bioinformatics\Parak M eanshsimulationshdCh358,_ 1000G_4C_dataszet.bst

—Input Data —K Means Algorithm Options

[” Log2 Transform data?
Number of Arrays: 35
Cluster What? : ¥ Genes [Arrays

Numb fG :
DUmMIer of Lenesl 1000 Number of Clusters (Genes) : I vl

Mazimum Yalue: 33.06
Number of Clusters (Arrays) : |2 vl

Initial Centroid Calculation : IBiseCting K-means x|

Minimum ¥alue: -26.82

Distance measure: Euclidian Distance

Number of Nodes Available: 7

Number of Nodes To Use : I? vl Refreshl

Processing: |

Perform K-means

[DataFile successtully loaded......... [1:46PM | 4/13/2008

for Microarray Data
Center for Biotechnology and Genomic Medicine at the Medical college of Georgia

@ ParaKMeans Web Application - A Parallel K-means Clustering Algorithm

o

Iain O Ma les Output Help

ParakMeans General Information
5 Input Data Information Upload Data

The following data file and infarmation will be used in the analysis

Data File Uploaded: csim_dc_35a_1000g_061408 txt
Humaber of Arrays: 35
Number of Genes: 1000
Maximum Value: 5.5779520529
Minimurm Valus -13.55124507

Lag2 Transform Data? False

21 ParaKMeans Algorithm Options Change Optiens.
What are you clustering? Mot Selectad
Murnber of Gene Glusters: Not Known
Mumber of Array Clusters: Hot Known
Centroid Initislizstion Schema: ot Selected
Distance Measurement: Euclidian Distance
& Compute Node Information
Humber of Nodes Availsble: 7
Hurnber of Nodes Using: 7
Proxy Information: Using your machine proxy settings

© General Data Information %

Perform ParakMeans

Copyright 2006 Medical College of Georgia. All rights reserved. Program provided AS IS, No Warranty is expressed or implied. Send any comments or problems to

Figure 2

ParaKMeans user interfaces. ParaKMeans user interfaces. A) Screen capture of the Windows stand alone ParakKMeans
application. The interface provides information on the data and program options being used. B) Home page of the web based
ParaKMeans application, providing an overview of the current data and program options being used.

Page 5 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200

a mean of 0 and a variance between cluster centroids (o?g)
was set relative to the variance between means (o?y,)
within a cluster. A gene specific mean (,) was then drawn
from a normal distribution with mean equal to the ran-
dom draw for the cluster (z-) and the variance equal to
. The relative size of the two variances controls the
degree of separation between the clusters. For the data we
simulated here, we used ¢2; =40 and ¢?,, = 0.4. Each array
was then simulated using the Cholesky decomposition of
the covariance matrix to sample the "error" terms, and a
mean vector equal to the vector of g, The covariance
matrix was defined as follows. The variance between indi-
viduals for a gene (02,) was determined by 0%, = o2x/(n -
1), where x ~Chi-squared(n - 1) and n is the number of
arrays. To ensure that the covariance matrix was positive
definite, we set most covariances to 0 with the number of
non-zero covariances determined by a Poisson distribu-
tion with mean equal to po(pc - 1)/2 (5*10-(ks(r)+2)),
where p is the number of genes being simulated for the
entire array and p is the number of genes within the clus-
ter. The probability that any given gene pair had some
non-zero correlation was then 5*10-03(r)+2), which we
determined empirically would result in positive-definite
covariance matrices. Non-zero covariances were calcu-
lated as the product of a correlation that was sampled
from a uniform distribution (r ~U(-1,1)) and the standard
deviations for both genes.

We used a combination of conditions for the number of
genes (p = 100, 500, 1000, 5000, 10000), number of clus-
ters present (1= 4, 10, 20), and number of arrays (n = 35,
100, 200) in the dataset to generate 45 total datasets.

Experimental Microarray Data

We also analyzed a dataset that utilized cDNA printed on
glass slides to examine expression differences in periph-
eral blood lymphocytes (PBL) between healthy controls
and type 1 diabetic patients [11]. PBL RNA samples were
isolated from 59 controls (mean age 13.9 yrs, range 0.5 —
50yrs) and 35 T1D patients (mean age 17.4 yrs, range 1.3
- 41.2 yrs). To increase the reliability of the data, 2-3 rep-
licate hybridizations were completed for each RNA sam-
ple, with the average of the replicates being used in all
analyses. Analyses of data for differential expression
between controls and patients identified 1195 cDNA
clones with differences between the controls and patients.
We evaluated the time taken to cluster these data by the
various methods and examined the stability of the clusters
produced using these data.

Configuration of Test System Used to Assess ParaKMeans
The length of time to perform the parallel k-means cluster-
ing algorithm will not only depend on the efficiency of
the algorithm, but also the computing hardware used to
perform the algorithm. The performance, accuracy and

http://www.biomedcentral.com/1471-2105/9/200

stability of ParaKMeans were evaluated using one master
computer with between 1 to 7 compute nodes. For com-
parisons, we installed Michael Eisen's Cluster program
[12] on the master computer. We did not compare our
program with other parallel software versions of k-means
clustering because our goal was to develop a user-friendly
version for general laboratory use. The master computer
and the seven compute nodes were all identical machines:
Dell Poweredge 2650 with Dual 3.06 GHz/512K Cache
Xeon Processors and 8.0 GB DDR 266 Mhz RAM.

Analysis of ParaKMeans Performance, Stability and
Accuracy

For all analyses, we used at least twelve replicate runs
under each condition to evaluate ParaKMeans, and
recorded run time and cluster assignments. Performance
was measured using run time, the accuracy of the identi-
fied clusters (the extent to which the clusters identified
reflected the clusters used in the simulation), and stability
of identified clusters (extent of consistency between repli-
cate runs without regard to the actual clusters based on
simulation conditions). Run time was log-transformed for
all analyses, and factorial analyses of variance (ANOVAs)
were used to analyze run time for all comparisons. We
observed heterogeneity in the variance of log-transformed
run time across the conditions, which we accommodated
by fitting a heterogeneous variance model using the Proc
Mixed procedure in the SAS statistical system (SAS 2002).
We fit multiple models to evaluate which conditions
showed the greatest heterogeneity in the variances, and
used the model that had the best Aikaike's information
criterion (AIC). All significant effects were subsequently
examined using Tukey's HSD. We used the adjusted Rand
index [13,14] to measure both stability and accuracy. For
accuracy, the ARI was calculated for each run relative to
the actual cluster identity. The ARI was calculated only
between two pairs of replicate runs to measure stability.
Comparisons of ARI were based on plots because the ARI
showed no variance in several conditions and differences
were quite large when they existed.

We first analyzed all 45 datasets using between 1 and 7
nodes to run ParaKMeans with the RFD initialization. A
four way ANOVA that included number of nodes, number
of clusters, number of genes, and number of arrays was
used to examine the differences in run times. This ANOVA
model included heterogeneity in the variance among the
levels for the number of genes in an array. We next com-
pared ParaKMeans with Eisen's Cluster program [12]. For
this comparison, we used only those datasets that had
5000 and 10000 genes. A three-way ANOVA that included
algorithm (ParaKMeans vs. Cluster), number of clusters,
and number of genes was used to examine differences in
run times. This ANOVA model included heterogeneity in
the variance among the levels for the number of genes in

Page 6 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200 http://www.biomedcentral.com/1471-2105/9/200

Genes vs Nodes

7
(-5

=]

o

[}

Q

Q.

(77)

(%]

(0]

=

o |m100 p=0.6806

(@) -21

5 (8500 _ p=1x10

% [@1000 _ p=3x103°

'g 5000 —p=1x10'1°5
2 10000— p=2x10"13%

Number of Compute Nodes

Clusters vs Nodes

a1l

Speedup
N

o 10 I 510"

@20

Number of Compute Nodes

Number of clusters

Figure 3

Detected interactions that affect the time of execution using ParaKMeans. The column charts plot the speedup
(fold increase) relative to a single node configuration versus the number of compute nodes used in the analysis. The bar graphs
at the bottom of each plot illustrate the number of compute nodes where one finds statistically significant increases in speed.
The p values presented are for tests of differences between the number of compute nodes for a given number of genes or clus-
ters. A) The effect of the interaction between the number of genes and number of compute nodes on the speed of execution.
B) The effect of the interaction between the number of clusters and number of compute nodes on the speed of execution.

Page 7 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200

an array with these variances also differing between algo-
rithms. We then compared initialization methods for Par-
aKMeans. For this comparison, we ran ParaKMeans using
both 1 and 7 nodes for each initialization method, and we
analyzed only those datasets having 100 arrays, 5000 and
10,000 genes with 4 and 20 clusters. We used factorial
ANOVA to compare the run times, using a model that
included heterogeneity in the variance among the levels
for the combination of number of genes and initialization
method.

Results

Significantly Increased Speedup

The average time taken to cluster each dataset ranged from
0.4 seconds with 7 nodes for a small dataset (e.g. 1000
genes, 35 arrays, 4 clusters) to 24.33 minutes with 1 node
for a large complex dataset (10,000 genes, 200 arrays, 20
clusters). The long average time for large complex datasets
was reduced to 3.03 minutes using 7 nodes (8 fold
decrease in execution time). Execution times were evalu-
ated for ParaKMeans three ways: (1) the effect of the par-
allel algorithm with multiple computers on time to
completion; (2) the point at which adding more compute
nodes did not provide any further decrease in time to
completion; (3) the effect of the number of arrays, genes
or clusters on the execution time of the algorithm.

Each of these effects was evaluated using ANOVA to assess
the interactions between the numbers of genes, arrays,
clusters and compute nodes on the length of time to run
the program using the simulated datasets (45 separate
files, each run 12 times). This analysis detected two signif-
icant interactions that could explain the decrease in execu-
tion time (Figure 3): an interaction between the number
of compute nodes used and the number of genes in the
data file (p < 0.0001), and an interaction between the
number of clusters being partitioned and the number of
compute nodes (p = 0.02). The number of arrays being
analyzed (35-200) did have an impact on the time of exe-
cution (p < 0.0001), but did not interact with the number
of compute nodes, indicating that the decrease in execu-
tion time with increasing number of compute nodes was
not affected by the number of arrays. We defined speedup
as the average time for execution for each test divided by
the average time when using only one compute node. All
the individual plots of speedup relative to the number of
genes, arrays and clusters versus the number of nodes can
be found in the online supplement [see Additional files 1,
2,3].

As now defined, speedup was affected by the number of
genes in a data set where no significant speedup was
observed for datasets containing 100 genes (Figure 3).
Execution time for datasets containing 100 genes did not
decrease significantly by increasing the number of com-

http://www.biomedcentral.com/1471-2105/9/200

pute nodes used, as would be expected. However, datasets
with a larger number of genes did show significant spee-
dup, suggesting that datasets containing 500 or more
genes will significantly benefit from the parallelization of
the k-means algorithm. For example, analyses of the
10,000 gene datasets (cross-hatched) using 7 compute
nodes had nearly a 5 fold speedup relative to the single
node configuration (Figure 3A).

We next asked whether there was a point at which spee-
dup did not increase further by adding more compute
nodes. Speedup was affected by the number of genes in a
dataset (Figure 3A, bar graph at the bottom of the plot).
However, we observed that the increase in speedup
obtained by adding compute node became small as the
number of compute nodes being compared increased. For
example, execution time for analyses of datasets contain-
ing 1000 genes did not decrease significantly after 4 com-
pute nodes (meaning 7 nodes are as good as 4 nodes).
However, analyses of 10,000 gene datasets showed no fur-
ther statistical increase in speedup after approximately 5
nodes. We should note that although the results are not
statistically significant after 5 compute nodes, the speedup
does continue to increase (5 nodes = 4.1 fold, 7 nodes =
4.9 fold). This result is noteworthy since laboratories with
as few as 6 computers (1 master and 5 compute nodes)
can realize the benefits of parallelization over a broad
range of data combinations (i.e. genes/arrays/clusters).

Speedup was also affected by the number of clusters being
grouped. As illustrated in Figure 3B (column chart), anal-
yses grouping the data into 4, 10 and 20 clusters signifi-
cantly benefited from the parallelization of the k-means
algorithm. The best speedup observed for a given cluster
size was a 3 fold increase in speed when k = 20 clusters on
6-7 nodes. Again, we found that there was a point at
which the number of compute nodes provided no further
benefit to speed. One example is that speedup no longer
increased beyond using 4 nodes to identify k = 4 clusters.

ParaKMeans Initialization Schemes

The time analyses described above used the RFD initiali-
zation scheme. To test if the initialization scheme could
have an impact on the length of time to run ParaKMeans,
we recorded the time to completion (n = 12) for ParaK-
Means using both 1 and 7 nodes for each initialization
method, and we analyzed only those datasets with 100
arrays, 5000 and 10,000 genes with 4 and 20 clusters. The
results of the ANOVA analysis indicated that there was a
significant difference (p < 0.001) between the initializa-
tion methods where the RFD initialization scheme was
the fastest followed by BKM and then RIA. Not surprising,
for smaller clusters (k = 4) the RIA and RFD schemes per-
formed similarly but significantly faster than the BKM (p
<0.001).

Page 8 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200

Comparison to Cluster

Cluster is a popular gene clustering program written by
Michael Eisen [12] and provides the biologist with a vari-
ety of clustering techniques. One of these is the k-means
clustering algorithm. Cluster is a Microsoft Windows
based program written in C++ and optimized for the Intel
architecture. We wanted to determine if our program
could perform as well as Cluster, since this program is used
by many laboratories. The centroid initialization used in
Cluster is the same as ParaKMeans' RIA initialization
scheme. In order to compare the two programs, we ran
ParaKMeans using the single compute node configuration
and the 'Random Initial Assignment' (RIA) initialization
scheme. Cluster was installed on the same machine as the
ParaKMeans windows application (see configuration of
test system above). To compare the time of execution, we
used the simulated data files that represented the extremes
using the k-means algorithm in Cluster and the single
node/RIA configuration of ParaKMeans. Specifically, we
tested the 100 array datasets with 5000 and 10,000 genes
for the 4 and 20 cluster datasets. The times for each run
were recorded and used in an ANOVA.

ParaKMeans was significantly faster than Cluster, overall.
With the exception of the 5000 gene/20 cluster dataset
(Fig. 4B), ParaKMeans was significantly faster in all com-
binations of genes and arrays. On average, ParaKMeans
was 2.0x faster (range 0.8-2.9) than Cluster. This result
was surprising considering ParaKMeans must send the
data to be clustered to the compute node to be processed,
and the computer node is constantly communicating with
the master node. This result suggests that the latency
involved in the data transfer does not significantly impact
the program's performance.

Evaluation of the Cluster Quality

In order to evaluate the quality of the cluster assignments
produced by ParaKMeans, we needed to use a statistic that
provided a measure of agreement between the cluster
results. A common statistic used to evaluate gene cluster-
ing methods is the Rand Index [15]. This statistic indicates
the fraction of agreement between two cluster partitions.
Agreement can be either pairs of objects that are in the
same group in both partitions or in different groups in
both partitions. The Rand Index can be between 0 and 1
with 1 indicating perfect agreement. The adjusted Rand
Index [13,14] adjusts the score so that the expected value
in the case of random partitions is 0. The adjusted Rand
Index (ARI) is a popular statistic used to evaluate gene
expression clustering algorithms [16,17].

We used the ARI to evaluate both the accuracy and stabil-
ity of the cluster partitions generated by gene clustering
methods. Accuracy was evaluated using the ARI calculated
between the resulting cluster partitions and the true parti-

http://www.biomedcentral.com/1471-2105/9/200

tions. Accuracy is difficult to measure with experimentally
derived data since the true clusters are not known. How-
ever, the true clusters are known for simulated datasets.
Cluster stability was evaluated by calculating the ARI in
pairwise comparisons between all resulting cluster parti-
tions, which should assess the consistency of the resulting
partitions when the program is run repeatedly on the
same dataset. Factors that could affect the accuracy and
stability include the number of genes, the number of clus-
ters and the initial centroids used. In assessing the accu-
racy and stability of ParaKMeans, we analyzed data sets
that would be difficult for most programs to cluster accu-
rately. Previous work evaluating the accuracy and stability
of gene clustering algorithms used synthetic data with as
few as 400 genes [16]. While useful, we wanted to exam-
ine how accuracy and stability were affected by much
larger datasets. We decided to test the accuracy and stabil-

4 Cluster Data
300
p<0.001
250
%T 200
e
8
$ 150 p<0.001
@
£
= 100 | | |
i _——' - I
0
5000 10000
Number of Genes Clustered
20 Cluster Data
2000
1800 p<0.001
1600
— 1400
3
S 1200 H
o
2 1000
g 800 T =
= 600 H
400 4 H
200 4 u
o
5000 10000
Number of Genes Clustered
Figure 4

Time comparison of Cluster and ParaKMeans. ParaK-
Means was run using single node/RIA configuration. The cal-
culated p values are presented above the comparisons. A) 4
cluster data B) 20 cluster data. White bars = Cluster; black
bars = PKM.

Page 9 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200

ity of ParaKMeans using the 4 and 20 cluster 100 array
simulated datasets with 5000 and 10000 genes. As the ini-
tialization scheme could affect the results, we ran ParaK-
Means using all three initialization methods. We also ran
ParaKMeans using a single compute node and seven com-
pute nodes to assess the impact of parallelization on the
accuracy. For comparison, we performed a k-means cluster
of the same datasets using Michael Eisen's Cluster pro-
gram.

Table 1 presents the accuracy and stability results for the
5000 and 10000 gene datasets for both ParaKMeans and
Cluster. For ParaKMeans, each of the initialization
schemes is presented separately. The results for the accu-
racy and stability when using either 1 or 7 nodes was not
statistically different (p = 0.98, data not shown), therefore
we combined the results from these analyses (Table 1). As
can be seen, the resulting cluster partitions produced by
ParaKMeans were significantly more accurate than Cluster
(p < 0.0001, Table 1). As expected, the number of genes
being clustered had an impact on the accuracy of the
resulting cluster partitions. This result held for both Clus-
ter and ParaKMeans. For example, the median ARI
increased from 0.405 for the 5000 gene 4 cluster dataset
to 0.594 for the 10000 gene dataset using Cluster, while
the median ARI ranges for ParaKMeans were 0.489-0.519
and 0.770-0.896 for the 5000 and 10000 datasets, respec-
tively. In addition, the initialization scheme for ParaK-
Means had an effect on the accuracy of the results. Using
RIA to initialize the centroids produced results with better
accuracy when k clusters is small (k = 4) and the number

http://www.biomedcentral.com/1471-2105/9/200

of genes is large. For example, the median ARI for PKM-
RIA was significantly better then Cluster, PKM-RFD and
PKM-BKM (10,000 gene, median ARI = 0.896, p <
0.0001). However, as the number of expected clusters
increases (k = 20) the BKM initialization scheme did sig-
nificantly better then all others (combined median ARI =
0.545, p < 0.0001)

Interestingly, the resulting cluster partitions produced by
ParaKMeans were also more stable when compared to
Cluster. Similar to the accuracy results, the number of
genes, k clusters used and the initialization scheme all had
an impact on the stability of the resulting cluster parti-
tions. For example, the results using BKM as the initializa-
tion scheme produced consistently perfectly stable cluster
partitions (ARI = 1.0), while the partitions generated
using RIA yielded a median ARI of 0.711 (Cluster median
ARI = 0.618).

Real Microarray Data

To evaluate how ParaKMeans handles real microarray
data, we analyzed the results from a ¢cDNA microarray
experiment where we compared gene expression profiles
of peripheral blood lymphocytes (PBLs) between healthy
individuals and type 1 diabetic patients [11]. This dataset
(T1Dset) contained 94 arrays (35 patients/59 controls)
and 1195 differentially expressed genes. Unlike the simu-
lated dataset, we did not know the true number of clus-
ters, without which we could not estimate cluster
accuracy. However, we could determine the stability of the
cluster partitions produced using ParaKMeans and com-

Table |I: Accuracy and stability results using different clustering programes, initialization schemes and number of genes/clusters.

Clusters 5000 genes 10000 genes Combined

Accuracy

Cluster* 4 0.405 (0.404—0.405) 0.594 (0.569-0.604) 0.487 (0.404-0.604)
PKM-RIA* 4 0.519 (0.453-0.597) 0.896 (0.896-0.896) 0.747 (0.453-0.896)
PKM-RFD* 4 0.519 (0.322-0.519) 0.770 (0.586—-0.896) 0.553 (0.322-0.896)
PKM-BKM* 4 0.489 (0.489-0.489) 0.770 (0.770-0.770) 0.629 (0.629-0.629)

Cluster* 20 0.163 (0.124-0.183) 0.256 (0.196-0.297) 0.190 (0.124-0.297)
PKM-RIA* 20 0.231 (0.211-0.461) 0.216 (0.208-0.233) 0.227 (0.208-0.461)
PKM-RFD* 20 0.189 (0.178-0.226) 0.210 (0.202-0.252) 0.202 (0.178-0.252)
PKM-BKM#* 20 0.400 (0.400-0.400 0.691 (0.691-0.691) 0.545 (0.400-0.691)

Stability

Cluster* 4 0.439 (0.436-0.442) 0.797 (0.783-0.812) 0.618 (0.436-0.812)
PKM-RIA* 4 0.514 (0.435-1.00) 1.00 (1.00-1.00) 1.00 (0.435-1.00)
PKM-RFD* 4 0.569 (0.483—1.00) 0.769 (0.586-0.770) 0.711 (0.483-1.00)
PKM-BKM* 4 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00)

Cluster* 20 0.347 (0.321-0.393) 0.492 (0.418-0.907) 0.405 (0.321-0.907)
PKM-RIA* 20 0.738 (0.444-0.888) 0.904 (0.682-0.994) 0.788 (0.444-0.994)
PKM-RFD* 20 0.594 (0.548-0.643) 0.652 (0.573-0.668) 0.634 (0.548-0.668)
PKM-BKM* 20 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00)

* — Cluster k-means: Single Node (N = 12), All PKM: | and 7 node data (N = 12)

All values are the median adjusted Rand Index with the range of values in parentheses.

Accuracy = cluster results vs. known assignments, Stability = over all agreement between cluster results

PKM = ParaKMeans, RFD = Random From Data, RIA = Random Initial Assignment, BKM = Bissecting K Means, Cluster = Eisen Cluster program.

Page 10 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200

http://www.biomedcentral.com/1471-2105/9/200

1.0 * L Y
t : | i
0.9 - ' *
*
* *
08 S . - —- ¢
z {3 ;
a 0.7 A b4
2
i
S s ‘ 3
~ 06 - *
5 . ; s
= : M
£ 05 . 3
2 . §
© 04 -
@ i - !
@
w 0.3
=
e
< 02
0.1 4
0.0
IBKM RIA RFD Cluster | | BKM RIA RFD Cluster | | BKM RIA RFD Cluster |
I [[
4 10 20
Number of Clusters

Figure 5

Stability results for ParaKMeans and Cluster using real microarray data. ParaKMeans was run using 7 nodes with
the initialization scheme indicated on the x-axis. Both ParaKMeans and Cluster were run using k = 4, 10 and 20 partitions. The
median ARI for each analysis is shown using the horizontal line in each plot. Initialization schemes: BKM = Bissecting K Means,

RIA = Random Initial Assignment, RFD = Random From Data.

pared these results to what we found using the simulated
datasets. We analyzed the T1Dset 12 times each using
both ParaKMeans and Cluster where k = 4, 10 and 20 to
assess cluster stability. The resulting cluster partitions were
saved for each run and a pairwise ARI was calculated for
all 12 runs. Figure 5 is a plot of all the pairwise stability
scores (ARI) for each program configuration. As with the
simulated dataset, ParaKMeans tended to have a higher
median ARI score with the BKM initialization scheme
being the most stable. For example, the highest median
ARI for the k = 20 results was using PKM-BKM (ARI =
0.805) followed by PKM-RIA (ARI = 0.615), PKM-RFD
(ARI =0.461) and Cluster (ARI = 0.448). This pattern is the
same as we observed with the simulated datasets
(BKM>RIA>RFD>Cluster when k = 20). In addition, only a
few PKM-BKM solutions were found for each dataset. For
example, when k = 10 the PKM-BKM analysis found only
2 solutions (6 runs each gave identical results, ARI = 1.0)
while PKM-RIA, PKM-RFD and Cluster produced 10, 12,
and 12 solutions respectively. This result was similar to

the simulated datasets where PKM-BKM gave perfectly sta-
ble results (ARI = 1.0, meaning only one solution) and the
other algorithms produced multiple solutions.

Conclusion

This paper presents a parallelized version of the k-means
clustering algorithm that can be easily deployed by labo-
ratory personnel using most laboratory computers. Often,
algorithms that have been converted to run using multiple
machines require the use of either specialized hardware or
software that may not be accessible to most laboratories.
Our goal was to not only produce an efficient parallel k-
means algorithm, but provide it in an easily deployable
manner. Because we use web services, the main require-
ment for installing the program is that the compute nodes
have IIS installed and running. Computers running Win-
dows XP Professional or better will have this installed by
default. While we have made every effort to make the soft-
ware easy to understand and install, users may still have
problems. To assist end users, we have created tutorials,

Page 11 of 13

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:200

troubleshooting guidelines and a full featured help system
[see Additional file 2] that provides installation instruc-
tions. The help subsystem is provided in two versions, a
Windows Help File (.CHM) [see Additional files 4, 5] and
help web site [18]. We have also opened the web GUI of
ParaKMeans to the public [19].

With respect to the increased speed of execution, Figure 3
clearly demonstrates that ParaKMeans provides a signifi-
cant increase in algorithm speedup when we use multiple
compute nodes. As anticipated, the magnitude of this
increase is dependent on the number of clusters being par-
titioned, the number of genes being clustered and the
number of compute nodes participating in the analysis. In
addition to the increased speed, ParaKMeans provides
consistent and accurate clusters. Because the initialization
scheme of the centroids can affect both the accuracy and
stability of cluster programs, we provide the user with
three alternative strategies to initialize the centroids.
Finally, as datasets continue to grow in size, the impor-
tance of parallel algorithms becomes more important
(Dublin, 2007).

Availability and Requirements
Project name: ParaKMeans

Project home page:

http://www.amdcc.org/bioinformatics/software/parak
means.aspx

Online Help: http://bioanalysis.genomics.mcg.edu/par
akmeans/help/webframe.html

Web version open to the public: http://biocanaly
sis.genomics.mcg.edu/parakmeans/

Operating system(s): Windows XP Professional or greater
Programming language: C#

Other requirements: .NET 1.1 or higher

License: Open Software License v3.0, freeware.

Any restrictions to use by non-academics: none
MagicAjax:http://www.magicajax.net

Abbreviations

PKM: ParaKMeans; RFD: Random From Data; RI: Random

Initial Assignment; BKM: Bissecting K-Means; ARI:
Adjusted Rand Index.

http://www.biomedcentral.com/1471-2105/9/200

Authors' contributions

RAM conceived the software and participated in the eval-
uation, analysis, design and writing of the software and
manuscript. PK participated in writing the software and
draft version of the manuscript. RB and NG participated in
the design of the study, development of the simulated
datasets and statistical analysis. AS participated in the
evaluation and analysis of the performance of the soft-
ware. All authors read and approved the final manuscript.

Additional material

Additional file 1

Speedup results for the four cluster simulated data using 35, 100 and 200
arrays. For each plot, the y-axis is the speedup value and the x-axis is the
number of nodes used to run ParaKMeans. Each line is a different number
of genes clustered in that dataset.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-200-S1.ppt]

Additional file 2

Speedup results for the ten cluster simulated data using 35, 100 and 200
arrays. For each plot, the y-axis is the speedup value and the x-axis is the
number of nodes used to run ParaKMeans. Each line is a different number
of genes clustered in that dataset.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-200-S2.ppt]

Additional file 3

Speedup results for the twenty cluster simulated data using 35, 100 and
200 arrays. For each plot, the y-axis is the speedup value and the x-axis is
the number of nodes used to run ParaKMeans. Each line is a different
number of genes clustered in that dataset.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-200-S3.ppt]

Additional file 4

ParaKMeans Help system. The Windows Help file contains a description
of the program, installation instructions, tutorials and the API documen-
tation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-200-4.ppt]

Additional file 5

ParaKMeans windows help file. This file is a windows help file (.chm)
that provides a more detailed overview of the software, installation
instructions, program tutorials, the ParaKMeans API and troubleshooting
help.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-200-S5.chm)]

Page 12 of 13

(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-200-S1.ppt
http://www.biomedcentral.com/content/supplementary/1471-2105-9-200-S2.ppt
http://www.biomedcentral.com/content/supplementary/1471-2105-9-200-S3.ppt
http://www.biomedcentral.com/content/supplementary/1471-2105-9-200-S4.ppt
http://www.biomedcentral.com/content/supplementary/1471-2105-9-200-S5.chm
http://www.amdcc.org/bioinformatics/software/parakmeans.aspx
http://bioanalysis.genomics.mcg.edu/parakmeans/help/webframe.html
http://bioanalysis.genomics.mcg.edu/parakmeans/help/webframe.html
http://bioanalysis.genomics.mcg.edu/parakmeans/
http://bioanalysis.genomics.mcg.edu/parakmeans/
http://www.magicajax.net

BMC Bioinformatics 2008, 9:200

Acknowledgements

This work is supported by grant U0IDK60966-01 from the National Insti-
tute of Diabetes Digestive and Kidney Diseases to RAM. We also thank Dr.
Jin-Xiong She for the use of his microarray data to test the program.

References

I. Tsai H, Horng S, Tsai S, Lee S, Kao T, Chen C: Parallel clustering
algorithms on a reconfigurable array of processors with
wider bus networks. Proc 1997 IEEE International Conference on Par-
allel and Distributed Systems, 1997.

2. Kantabutra S, Couch AL: Parallel K-means clustering algorithm
on NOWs. NOCTEC Technical Journal 2000, 1:243-248.

3. Dhillon IS, Modha DS: A data-clustering algorithm on distrib-
uted memory multiprocessors. Large-Scale Parallel Data Mining,
1999, 1759:245-260.

4. Xu S, Zhang J: A Hybrid Parallel Web Document Clustering
Algorithm and Its Performance Study. 2003 [http://
www.cs.uky.edu/~jzhang/pub/MINING/ppddp.ps.gz].

5. Gursoy A: Data Decomposition for Parallel K-means: 2003.
Edited by: Wyrzykowski R, Dongarra |, Paprzycki M and Wasniewski
). Czestochowa, Poland, Springer-Verlag, Berlin Heidelberg;
2004:241-248.

6. Liao W: Parallel K-Means Data Clustering. 2005 [http:/
www.ece.northwestern.edu/~wkliao/Kmeans/index.html].

7. Yanjun L, Soon C: Parallel bisecting k-means with prediction
clustering algorithm. The Journal of Supercomputing 2007,
39:19-37.

8. de Souza PSL, Britto AS, Sabourin R, de Souza SRS, Borges DL: K-
Means VQ Algorithm using a Low-Cost Parallel Cluster
Computing: 2004/2/19. Edited by: Hamza MH. Innsbruck, Austria;
2004:420-124.

9. Zhang B, Hsu M, Forman G: Accurate recasting of parameter
estimation algorithms using sufficient statistics for efficient
parallel speed-up: Demonstrated for center-based data clus-
tering algorithms. Proc of the 4th European Conference on Principles
of Data Mining and Knowledge Discovery (PKDD 2000) Lyon, France 2000.

10. M.N. J: Parallel K-Means Algorithm on Distributed Memory
Multiprocessors. 2003 [_http://www-users.cs.umn.edu/~mnjoshi/

PKMeans.pdf].
I'l. Collins CD, Purohit S, Podolsky RH, Zhao HS, Schatz D, Eckenrode

SE, Yang P, Hopkins D, Muir A, Hoffman M, McIndoe RA, Rewers M,
She JX: The application of genomic and proteomic technolo-
gies in predictive, preventive and personalized medicine.
Vascul Pharmacol 2006, 45:258-267.

12. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis
and display of genome-wide expression patterns. Proc Natl
Acad Sci U S A 1998, 95:14863-14868.

13. Milligan GW, Cooper MC: A study of the comparability of
external criteria for heirarchical cluster analysis. Multivar
Behav Res 1986, 21:441-458.

14. Hubert L, Arabie P: Comparing Partitions. | Classification 1985,
2:193-218.

15. Rand WM: Objective criteria for the evaluation of clustering
methods. | Am Stat Assoc 1971, 66:846-850.

16. Yeung KY, Medvedovic M, Bumgarner RE: Clustering gene-
expression data with repeated measurements. Genome Biol
2003, 4:R34.

17. Thalamuthu A, Mukhopadhyay |, Zheng X, Tseng GC: Evaluation
and comparison of gene clustering methods in microarray
analysis. Bioinformatics 2006, 22:2405-2412.

18. ParaKMeans Help 2008 [http://bioanalysis.genomics.mcg.edu/par
akmeans/help/webframe.html].

19. ParaKMeans Public Use 2008 [http://bioanalysis.genom

ics.mcg.edu/parakmeans].

http://www.biomedcentral.com/1471-2105/9/200

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)

http://www.cs.uky.edu/~jzhang/pub/MINING/ppddp.ps.gz
http://www.cs.uky.edu/~jzhang/pub/MINING/ppddp.ps.gz
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://www-users.cs.umn.edu/~mnjoshi/PKMeans.pdf
http://www-users.cs.umn.edu/~mnjoshi/PKMeans.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17030152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17030152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12734014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12734014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882653
http://bioanalysis.genomics.mcg.edu/parakmeans/help/webframe.html
http://bioanalysis.genomics.mcg.edu/parakmeans/help/webframe.html
http://bioanalysis.genomics.mcg.edu/parakmeans
http://bioanalysis.genomics.mcg.edu/parakmeans
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Algorithm
	Metric for Cluster Assignment
	Determination of the Initial Centroids
	Implementation
	Datasets Used for Analysis
	Simulated Datasets
	Experimental Microarray Data

	Configuration of Test System Used to Assess ParaKMeans
	Analysis of ParaKMeans Performance, Stability and Accuracy

	Results
	Significantly Increased Speedup
	ParaKMeans Initialization Schemes

	Comparison to Cluster
	Evaluation of the Cluster Quality
	Real Microarray Data

	Conclusion
	Availability and Requirements
	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

