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TOPICAL REVIEW

Physical (in)activity and endothelium-derived constricting
factors: overlooked adaptations
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The inner surrounding of arterial vessels, the endothelium, is optimally located to detect changes

in blood characteristics or blood flow that may result from changes in physical activity or

from diseases. In response to physical stimuli, the endothelium varies its release of circulating

vasoactive substances and serves as a source of local and systemic endothelium-derived dilator

and vasoconstrictor factors. Endothelial dysfunction is one of the earliest markers of vascular

abnormalities observed in cardiovascular disease and ageing. Exercise training is an efficient

therapeutic strategy to improve endothelial function. Traditionally, studies on endothelial

dysfunction and physical (in)activity-related effects on vascular adaptations are primarily

focused on vasodilator substances (i.e. nitric oxide). One may suggest that augmentation of

vasoconstrictor pathways (such as endothelin-1 and angiotensin II) contributes to the end-

othelial dysfunction observed after physical inactivity. Moreover, these pathways may also explain

the exercise-induced beneficial cardiovascular adaptations. This review summarizes the current

knowledge on the effects of physical (in)activity on several endothelium-derived vasoconstrictor

substances.
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The importance of physical inactivity as a modifiable
behavioural risk factor for cardiovascular disease is
widely recognized (Wannamethee & Shaper, 2001). The
endothelial function is suggested to underlie the physical
activity-induced vascular adaptations. Situated between
the circulating blood and the surrounding tissue, the
endothelium is optimally located to detect changes in
blood contents or blood flow that may result from physical
(in)activity. In response, the endothelium varies its release
of substances that modulate vascular tone (e.g. vasodilators
and vasoconstrictors), structure (proliferative) or blood
characteristics (e.g. coagulation pathway, inflammatory
control).

Vasodilators in general, and nitric oxide (NO)
specifically, have been the primary focus in explaining the
mechanisms of vascular changes resulting from activity
and inactivity. Several animal studies and human in
vivo invasive studies (using pharmacological blockade
or stimulation of vasodilators) have assessed the role
of these vasodilators in the regulation of vascular tone.
In an excellent recent review for this journal, Green
et al. (2004) summarized these studies and described
the importance of the endothelium-derived NO pathway
for exercise-induced cardiovascular adaptations. Whilst

the effects of the vasoactive substances on vascular tone
and vascular growth largely depend on a delicate balance
between dilators and constrictors (Spieker et al. 2006)
(Fig. 1), there is a predominance of studies focusing on
vasodilators (primarily NO) to explain exercise-induced
adaptations. It may well be that exercise-induced changes
are, at least in part, related to other pathways than NO.
In addition, physical inactivity results in cardiovascular
adaptations that are the opposite of the effects of exercise
training. Given the effects of exercise training on the
NO pathway, vascular changes to physical inactivity were
hypothesized to result from an inhibition of the NO
pathway. However, we (de Groot et al. 2004; Bleeker
et al. 2005) and others (Bonnin et al. 2001) found a
preserved contribution of NO to vascular tone and
preserved NO-dependent endothelial function during
inactivity.

The above results suggest that other pathways than
solely vasodilator mechanisms may be involved in cardio-
vascular adaptation to changes in physical activity. In this
review, we discuss findings regarding the contribution
of endothelium-derived constricting factors in explaining
cardiovascular adaptations during physical (in)activity in
healthy subjects and in cardiovascular disease. Studies
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Table 1. Physical stimuli that stimulate or inhibit the pathways of endothelin-1 and angiotensin II

Humoral stimuli Physical/exogenous stimuli

Endothelin-1 Angiotensin II Endothelin-1 Angiotensin II

Stimulators Angiotensin Endothelin Pulsatile stretch Pulsatile stretch
Insulin Insulin Shear stress (low) (cardiomyocytes)
Cytokines Cytokines Osmolarity Volume depletion
Interleukin-1 Interleukin-1 Hypoxia
Oxidized LDL Oxidized LDL
Vasopressin Progesterone
Adrenalin
TGF-β
Endotoxin
Glucose

Inhibitors Nitric Oxide Nitric oxide Statins Statins
Oestrogens Oestrogens Shear stress (high) Atrial distension
Prostacyclin FGF
Heparin Free radicals

LDL, low-density lipoprotein; FGF, fibroblast growth factor.

discussed in this review article related to (changes in)
physical activity pertain to dynamic exercise rather than
resistance exercise.

Endothelium-derived vasoconstricting factors

Endothelin-1. Endothelin-1 (ET-1) is the predominant
isoform of the endothelin family and is mainly secreted
by the endothelium (Yanagisawa et al. 1988) in response
to a variety of stimuli (Table 1). The release of ET-1 results
in activation of two receptors: ETA and ETB. Activation
of the ETA and ETB receptors on the smooth muscle cell
mediates a sustained constrictor action of ET-1. The ETB

receptors on the endothelium mediate the release of the
dilators NO and prostacyclin, but also mediate the rapid
uptake of ET-1 (Haynes & Webb, 1998). Therefore, the
endothelial ETB receptor largely opposes the vascular effect
of smooth muscle cell-located ETA/B receptors. In addition
to the direct vascular effects, ET-1 induces vascular smooth

Nitric oxide

Endothelium-derived 

hyperpolarizing factor (EDHF)

Prostacyclin (PGI2)

C-type natriuretic pepetide

Endothelin-1

Angiotensin II

Thromboxane A2

Prostaglandins (PGH2)

Figure 1. The delicate balance between endothelium-derived vasoactive substances contributing to the
vascular tone

muscle cell proliferation and growth in a dose-dependent
manner (Komuro et al. 1988).

Angiotensin II. After cleavage of angiotensinogen to
angiotensin (Ang) I via renin, this peptide is cleaved by the
angiotensin converting enzyme (produced by pulmonary
and systemic vascular endothelium) into Ang II, which
binds to its specific receptors on the vascular wall. Various
stimuli alter the level of synthesis of Ang II (Table 1).
Two well-described subtypes of the Ang II receptors,
designated AT1 and AT2, have been identified. The smooth
muscle cell-localized AT1 receptor subtype mediates the
predominant action of Ang II: vasoconstriction. These
vasoactive actions are partly counteracted by the
AT2 receptor, which causes vasodilatation (Hernandez
Schulman et al. 2007). Besides the vasoactive effects,
Ang II leads to proliferation and growth of the vascular
smooth muscle cells through activation of the AT1

receptor.
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Thromboxane A2. Thromboxane A2 (TXA2) is one of
the end products of arachidonic acid metabolism and is
produced by TXA2 synthase. TXA2 is primarily produced
by platelets, but also by the endothelium. The physiological
role of TXA2 is platelet aggregation and vasoconstriction
(Oates et al. 1988).

Prostaglandins. While prostaglandins have vasodilator
effects, the prostaglandin H2 (PGH2) isoform is a vaso-
constrictor substance. PGH2 is closely related to TXA2:
both are formed during arachidonic acid metabolism, and
PGH2 is the precursor of TXA2 and exerts its vascular
effects through the same receptors on the vascular wall
(Davidge, 2001).

We are not aware of any studies that have examined the
potential role of TXA2 or PGH2 in cardiovascular changes
during physical (in)activity. Therefore, the role of these two
endothelium-derived vasoconstricting factors will not be
discussed in this review.

Physical inactivity

Functional changes. While 5–18 days of space flight did
not alter ET-1 plasma concentrations in humans (Meck
et al. 2004), increased ET-1 plasma concentrations were
observed after hindlimb unloading in rats (Biondi et al.
1995) and detraining in humans (Maeda et al. 2001).
Short-term bed rest increased concentrations of Ang
II (Haruna et al. 1997; Bestle et al. 2001). Paralysed
muscles of spinal cord-injured individuals are subject to
extreme inactivity and can therefore serve as a ‘model
of nature’ for localized deconditioning. This population
demonstrated high concentrations of ET-1 (Robergs et al.
1993), which increased even further after a period of
training. Interpreting these scattered results, one should
realize that plasma concentrations do not necessarily
indicate a functional change in these pathways. In
our lab, we examined ET-1 plasma concentrations and
the ET-1-mediated leg vascular tone after intra-arterial
blockade of ETA/B receptors using BQ-123 and BQ-788
in the same subjects (Thijssen et al. 2007a,c). Combining
the results of these studies, we found that ET-1 plasma
concentrations do not correlate with the contribution of
ET to baseline vascular tone (Fig. 2). However, baseline
leg blood flow and ET-1-mediated vascular tone showed an
inverse relation (r2 = 0.12, P = 0.03), indicating that a low
leg blood flow correlates with an elevated ET-1-mediated
vascular tone. This advocates the use of local infusion to
assess the role of ET-1 to regulate vascular function, rather
than plasma concentrations.

Recently, we examined the contribution of ET-1 to
baseline blood flow in extremely inactive legs of spinal
cord-injured (SCI) individuals, using an intrafemoral
administration of selective ETA/B receptor blockers

(Thijssen et al. 2007a). We demonstrated that ET-1
importantly contributes to the increased vascular tone
observed during physical inactivity. This is supported by
the reversed ET-1-mediated vascular tone in these subjects
after 6 weeks of exercise training.

Regarding Ang II, it was demonstrated that significantly
lower dosages are necessary in SCI individuals compared
with able-bodied controls to achieve a similar increase in
blood pressure (Krum et al. 1992). This suggests the pre-
sence of an exaggerated pressor response to Ang II in SCI
individuals.

Structural changes. To date, no studies have examined
the role of endothelium-derived vasoconstricting factors
in the regulation of physical inactivity-induced structural
changes, such as an inward remodelling of conduit arteries
during inactivity.

Physcial activity as an intervention

Functional changes. Using a cross-sectional design, it was
demonstrated that the ET-1-sensitivity, ex vivo examined
using the concentration of ET-1 necessary to cause a
50% response (EC50), of the aorta and coronary artery is
reduced after a period of exercise training in swine (Jones
et al. 1999). In addition, aortic and cerebellar arteries
in exercise-trained rats have a diminished sensitivity
to the actions of ET-1 on lipid metabolism compared
with sedentary rats (Latorre et al. 2002). Moreover, the
postischaemic sensitivity to ET-1 in coronary arteries
was significantly lower in endurance-trained rats than
in sedentary rats (Symons et al. 2000). Regarding the
Ang II pathway, an exercise-induced decrease in Ang
II-induced pulmonary vasoconstriction was present in
rats that trained for 6 weeks (Kashimura et al. 1995).
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Figure 2. Correlation between the relative change in blood
flow of the infused leg during ET blockade (representing the
contribution of ET-1 to leg vascular tone) and baseline plasma
concentrations of ET-1
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In humans, only one single study examined potential
differences in the regulation of vascular tone by Ang II
between healthy athletic and sedentary men. A similar
response is reported in forearm vascular bed for Ang II
(but also for NO), between elite athletic and sedentary
healthy men (Kingwell et al. 1996).

Structural changes. Based on their potent proliferative
acivity, both ET-1 and Ang II contribute to pathological
structural changes. This is supported by the inhibited
formation of atherosclerotic lesions during prolonged
ETA receptor blockade (Barton et al. 1998) and by the
accelerated atherosclerotic process during overexpression
of the AT1 receptor (Nickenig & Harrison, 2002).
Regarding the effects of exercise, lower ET-1-mediated
DNA expression in arteries was found in exercise
trained swine compared with sedentary peers (Wamhoff
et al. 2002). Because amounts of DNA synthesis
are suggested to correlate with proliferative activity
(and therefore atherosclerosis), decreased proliferative
responses of constrictor pathways may contribute to the
exercise-induced cardioprotection. In addition, ET-1 and
Ang II are hypothesized to contribute to angiogenesis.
Under hypoxic conditions, ET-1 induces angiogenesis via
activation of the ETB receptors (Goligorsky et al. 1999) and
via enhanced expression of NO synthase (Liu et al. 2003),
while Ang II results in angiogenesis through the actions
of the vascular endothelial growth factor (Amaral et al.
2001).

Physical activity in specific groups

Ageing. Animal studies demonstrated that ET-1 (possibly
through ETA receptors) and Ang II (possibly through AT2

receptors) contribute to the age-related increase in vascular
tone in coronary arteries (Goodwin et al. 1999; Korzick
et al. 2005), mesenteric vessels (Pinaud et al. 2007), gastro-
cnemius vascular bed (Donato et al. 2005), total vascular
bed (Asai et al. 2001), and renal arteries (Tank et al.
1994). Recently, the pivotal role of ET-1 in the age-related
increase in vascular tone was confirmed with human in vivo
experiments in the lower (Thijssen et al. 2007c) as well as
in the upper extremities (Van Guilder et al. 2007). In the
forearm, this was possibly regulated via ETA receptors (Van
Guilder et al. 2007). Examining the potential beneficial
effects of exercise training in ageing, it was demonstrated
that 12 weeks of exercise in old rats did not change ETA/B

receptor-mediated responsiveness, examined ex vivo using
the EC50 value, of muscle arterioles (Donato et al. 2005).
This finding is in contrast with two recent human in vivo
studies, which reported a partly reversed ET-1-mediated
vascular tone after exercise training in older men in the
leg (Thijssen et al. 2007c) and forearm (Van Guilder
et al. 2007) vascular bed. Based on these recent findings,

it is hypothesized that the negative effects of ET-1 in
cardiovascular disease, predominantly occurring in the
ageing population, may be due to inactivity rather than
to senesence (Thijssen et al. 2007b).

Coronary artery disease. It has been demonstrated that
exercise training in patients with stable coronary artery
disease leads to a 49% reduction in Ang II-induced vaso-
constriction. Moreover, this adaptation is accompanied
by lower expression of the AT1 receptor and increased
expression of the AT2 receptor (Adams et al. 2005).

Pulmonary hypertension. Only one study so far has
examined the vascular effects after 5 weeks of exercise
training in pulmonary hypertensive rats on the ET
pathway. While the pulmonary vasomotor function
improved, the pulmonary vasoreactivity to vasoactive
agents (e.g. ET-1) did not change (Goret et al. 2005).
Pulmonary hypertension is the only widely accepted
cardiovascular pathology that is treated with ET receptor
blockers, so a large potential exists for exercise training to
attenuate the central and peripheral vasoactive effects of
the ET pathway in this disease.

Heart failure. Decreased plasma concentrations of Ang
II have been reported after exercise training in rabbits
with heart failure (Liu et al. 2000), while the significant
up-regulation in AT1 receptor mRNA in heart failure in rats
is normalized after exercise training (Zucker et al. 2004).
Also in patients with heart failure, improving physical
fitness results in suppressing circulating concentrations
of Ang II (Braith et al. 1999) and lowering of plasma
concentrations of ET-1 (Kubanek et al. 2006).

Conclusions

The studies discussed in the present review suggest
that inhibition of endothelium-derived vasoconstricing
pathways contribute to exercise-induced vascular changes.
Accordingly, cardiovascular adaptations to a change in
physical activity are likely to be regulated through tight
interactions between vasodilator (e.g. NO) and vaso-
constrictor pathways (e.g. ET-1, Ang II). This may even
be of special interest in disease states characterized by
altered endothelium-derived constrictor pathways. Better
insight into the underlying mechanisms (e.g. the role
of the receptors and of the post receptor signalling
pathways) will help us to understand the vascular changes
observed in physical (in)activity. In addition, little is
known regarding the role of endothelium-derived vaso-
constictors in structural changes after exercise or inactivity.
Also the field of vasoconstrictor prostanoids (TXA2 and
PGH2) is relatively unexplored.
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With respect to cardiovascular diseases, several scientific
lines of evidence are present that support a central role
for endothelium-derived vasoconstricting factors. Based
on the summarized findings in this review, one should
realize that the negative effects of ET-1 and Ang II in
cardiovascular disease may be importantly confounded by
the degree of inactivity. Therefore, inactivity, rather than
the pathology of these specific cardiovascular diseases, is
emerging as a strong candidate to explain the increased
vascular tone. However, only a few studies examined
the effect of exercise training on the role of these vaso-
constricting factors. The sparse data at present suggest
that exercise training potentially improves cardiovascular
function in these patients (at least partly) through
inhibition of the constrictor pathways. We strongly
advocate that future studies should examine the potential
for exercise training as a non-pharmacological inter-
vention in cardiovascular diseases, and take particular
interest in vasoconstrictor-related mechanisms to explain
the possible beneficial cardiovascular effect.
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